TweetFollow Us on Twitter

Exploring Leopard with DTrace

Volume Number: 23 (2007)
Issue Number: 11
Column Tag: Programming

Exploring Leopard with DTrace

How to use DTrace for debugging and exploration

by Greg Miller


Software is abstract and non-tactile by its very nature. It can be difficult to see what it is doing and why it may be misbehaving. To get a better view of software, we often use tools like gdb, leaks, lsof, and sc_usage, just to name a few. We even still use "caveman debugging" techniques like recompiling the code with additional print statements.

A few years back, Sun Microsystems developed DTrace: a new and innovative way to trace running software on live systems. DTrace enables developers and administrators to "see" what their code, and others' code, is doing in a flexible and dynamic way. With the release of Leopard, Apple has brought DTrace to Mac OS X.

This article will begin with a crash course in DTrace. If you're already a seasoned DTrace veteran, feel free to skip that section. We will then move on to some examples of how to use DTrace by exploring our Leopard systems and discovering what makes them purr.

A crash course in DTrace

DTrace is a software tracing facility that can dynamically instrument code by modifying a program after it gets loaded into memory. DTrace can be used on production systems with optimized binaries, without ever having to restart the application - let alone, recompile it! Moreover, DTrace is not limited to tracing user-space applications like most other tracing tools, such as ktrace, strace, and truss. Parts of the system, such as the kernel itself, that were previously off-limits to runtime inspection are now fair game. And, since DTrace instruments code dynamically at runtime, it has zero overhead when not in use.

That said, DTrace will not, and should not, replace all of your other tools. You'll still want to use Shark, Sampler, ObjectAlloc, leaks, Instruments, etc. where they make sense. And let's not forget about good ol' fashion thinking. DTrace is not magic; it's just another tool (albeit a powerful tool) in your toolbox.

DTrace is often used to help answer questions about software, such as "Is function foo ever being called, and if so, by whom?", and "How much time is my code spending in the pwrite system call?". However, you must know what to ask. If you are tracing your own software, you probably have a good understanding of how it's supposed to work, so coming up with the right questions might not be too difficult. However, if you're using DTrace to explore someone else's software, it may be more difficult to ask the right questions. But never fear; we'll see later that there are some very common questions that are generally good jumping off points. As in life, the answer to one question often begets another. Follow your nose! Using DTrace is very much like surfing the web: your questions about the system are hyperlinks that when clicked will take you to another page full of new links/questions.

You interact with DTrace by writing small programs in the D programming language. These D programs can be saved in text files and run like shell scripts, or they can stretched out right on the command line for quick, ad-hoc use (or if you simply want to impress your friends). An example D script that totals all the system calls made for each process on the system is shown in Listing 1.

Listing 1: syscalls_per_proc.d

Totals up all the system calls made for each process

   @[execname] = count();

When run for about 5 seconds on my laptop I got the following output:

$ sudo dtrace -s syscalls_per_proc.d
dtrace: script 'syscalls_per_proc.d' matched 427 probes
  Quicksilver   1
  Finder   2
  Pages   2
  DirectoryServic   3
  fseventsd   3
  mds   6
  ntpd   21
  WindowServer    22
  mDNSResponder   24
  dtrace    38
  Terminal   85

We could have also specified the D script on the command line as follows:

$ sudo dtrace -n 'syscall:::entry { @[execname] = count() }'

Key Concepts and the D Programming Language

The D programming language has syntax very similar to C's and should be very easy for C programmers to use. The D program structure, however, is more akin to AWK's and is made up of one or more clauses of the following form.

probe descriptions
/ predicate /
   action statements

One of the key concepts in DTrace is that of a probe, which identifies a point (or points) of interest in the kernel or in a user process. Probes are identified by their probe description, which is either a unique integer ID, or more commonly, a 4-tuple written as provider:module:function:name.

Fields in a probe description may use shell-style globbing, and omitted fields are assumed to match everything. For example, the probe description syscall::read:entry identifies the beginning of the read system call by naming the syscall provider, any module, the read function, and the probename entry. The probe description syscall::*read:entry, however, identifies both the read and pread system calls. You can see a list of many (but not all!) of the probes on your system by running dtrace -l.

$ sudo dtrace -l | wc -l                                                         

Each probe may be associated with an optional block of action statements that will be evaluated when the probe fires. A probe may also have an optional predicate that must evaluate to true before the probe's action statements will be called. For example, the following will use the built-in variable execname and print the name of each process that calls read.

   printf("%s\n", execname);

And the following will only print the names of processes that are reading from their standard input (file descriptor 0):

/arg0 == 0/
   printf("%s\n", execname);

It is not always insightful to see a separate line of output each time a probe fires. Instead, we may be interested in looking at the data in aggregate form. For example, we could find the total number of bytes allocated by malloc by setting a probe at the entry to malloc, printing out the size argument (arg0), then post-processing the data to sum it up. That would work. But DTrace makes this much easier by using aggregating functions and data structures called aggregates. In this way, I could see that Safari mallocs about 2.4MB on my machine when loading my website's homepage.

$ sudo dtrace -n 'pid147::malloc:entry { @total = sum(arg0) }'

dtrace: description 'pid147::malloc:entry ' matched 2 probes



Here's how that DTrace script (i.e., the argument to -n) breaks down:

  • The full "probe description" is pid147::malloc:entry, which uses the pid provider to set a probe at the entry of the malloc function in process ID 147 (Safari)
  • We do not specify a predicate, so the action statements are always executed when the probe fires
  • The only action statement in this example is the use of the aggregating function sum, which totals the argument passed to malloc, and stores the result in the aggregate data structure named @total
  • Nothing is displayed until we hit ctrl-c; at which point @total is displayed
  • A large part of writing useful D scripts is knowing what built-in variables and functions are available. The following are a few of the more useful built-in D variables:
  • arg0, ..., arg9 - The first 10 arguments to the function matching the probe
  • execname - The name of the currently executing process
  • pid - The process ID of the currently executing process
  • ppid - The parent process ID of the currently executing process
  • probefunc - The function name of the current probe description

And here are some of the more frequently used data recording functions:

  • trace() - Evaluates its argument and outputs the result
  • printf() - Like trace(), but takes a C-style format string
  • stack() - Records a kernel stack trace
  • ustack() - Records a user stack trace

DTrace Architecture

Users generally interact with DTrace through the dtrace(1) command, which is a generic front-end to the DTrace facility (an alternative front-end is Instruments, which we will not cover in this article). D programs get compiled in user-space and sent to the DTrace virtual machine in the kernel for execution. In other words, the D scripts you write are sent into the kernel and run inside the kernel's address space. They do not run in the dtrace process, nor do they run in the target process you are trying to instrument. This is important, and it is the reason we need DTrace functions like copyin and copyinstr, which are functions that copy data from user space into the kernel's address space.

DTrace providers live in the kernel and can be thought of as plugins to the in-kernel DTrace framework. They are responsible for creating probes by instrumenting various parts of the system. The probes made available by a given provider can be listed using the dtrace command. For example, the command dtrace -l -n proc::: will list all the probes available from the proc provider. The following are some of the providers available on Leopard and what they instrument.

  • syscall - System calls in the kernel
  • fbt (Function Boundary Tracing) - Functions in the kernel
  • proc - Functions related to the process life cycle
  • mach_trap - Mach traps in the kernel
  • pid - C functions (or individual instructions) in user space
  • objc - Objective-C objects in user space

Figure 1 shows the relationship between some of the different components of DTrace.

Figure 1. DTrace architecture

Exploring Leopard

Let us now look at a few examples of using DTrace to explore our Leopard system. Note that in order to minimize line wrapping we use /dev/stdin as the argument to dtrace -s, we type our D scripts right into the standard input, then close standard input by typing ctrl-d (^D).

Tracing Objective-C messages

Tracing system calls and other low-level functions can be fun and insightful, but it may also be too low-level for some situations. Many of the great application frameworks on OS X are written in Objective-C, and it would be nice to trace them at that level. Apple apparently agreed, and they equipped DTrace with a provider for tracing Objective-C messages.

The objc provider is very much like the pid provider, in that the provider name must include the process ID of the target process. The objc provider exposes Objective-C class names as probe modules, and selector names as probe functions. For example, the probe description objc123:NSView:-isFlipped:entry would match the entry to the isFlipped instance method on the NSView class in process 123. Let's try this out by watching what Safari does when it loads

$ sudo dtrace -q -s /dev/stdin
   printf("%s %s\n", probemod, probefunc);
dtrace: script '/dev/stdin' matched 66888 probes
(... TONS of output omitted ...)
NSConcreteNotification -recycle
NSObject -retainCount
NSCFString -release
NSObject -release
NSGarbageCollector +defaultCollector
NSLock -lock
NSThread +currentThread
NSObject -hash
NSCFArray -countByEnumeratingWithState:objects:count:
NSLock -unlock

That's cool, but it's a TON of information. With a tool as powerful as DTrace, you can quickly find yourself with more data than you can grok. In this case, we could lessen the output by sharpening our probe description to match only what we're really interested in. For example, if we were only interested in methods dealing with URL handling, we could use the probe description objc3447:NSURL*::entry. This quickly cuts the 66,000+ probes down to a manageable 500.

Another way to conquer this mountain of information is with an aggregating function. For example, let's say we're now interested in how long these Objective-C messages take to complete. We could figure this out using the following D script.

Listing 2: objc_msg_times.d

This is a D script to quantize the running time of Objective-C messages. We use the timestamp built-in D variable to record the entry time to the Objective-C method in a thread-local variable. Upon the method's return, we quantize the difference between the current timestamp and the start time. $target is a special D variable that evaluates to the PID of the process under inspection.

  self->start = timestamp;
  @ = quantize(timestamp - self->start);
  self->start = 0;
$ sudo dtrace -s objc_msg_times.d -p 3447
dtrace: script 'objc_msg_times.d' matched 136042 probes
           value  ------------- Distribution --------- count    
            1024 |                                      0        
            2048 |@@@@@@@@@@@@@@@@@@@@@@@@@          526082   
            4096 |@@@@@@@@@                         188440   
            8192 |@@@@                              84940    
           16384 |@                                 22815    
           32768 |                                   6999     
           65536 |                                    464      
          131072 |                                    82       
          262144 |                                     33       
          524288 |                                     26       
      value  ------------- Distribution --------- count    
     1048576 |                                     13       
     2097152 |                                       9        
     4194304 |                                      3        
     8388608 |                                      5        
    16777216 |                                      0  

This script introduces a couple new things: thread-local variables and the quantize function. D allows you to save variables in thread-local storage by using the self-> syntax. These variables will be available in other clauses that fire on the same thread. We also use the built-in quantize aggregating function to build a power-of-two frequency distribution of the Objective-C messaging times; this can be an incredibly powerful way to interpret the data collected by DTrace. We see here that most of the Objective-C messages completed within 2048-4096 nanoseconds.

File activity

It can be enlightening to see which files are accessed on a system. For example, you may see that is frequently writing to some file, or maybe that is calling stat(2) on a log file every 10ms. This information can help you debug your own programs, or perhaps better understand the system in general. Below we use a small D script to print out the name of each file as it's opened.

$ sudo dtrace -s /dev/stdin 
   printf("%s %s", execname, copyinstr(arg0));
dtrace: script '/dev/stdin' matched 3 probes
  0  17584      open:entry Finder /.vol/234881026/562669
  0  17584      open:entry Finder /.vol/234881026/562669
  1  17584      open:entry iChatAgent /Users/jgm/Library/Caches/...
  0  17584      open:entry iChatAgent /Users/jgm/Library/Caches/...
  1  17584      open:entry iChat /System/Library/PrivateFrameworks/...

This script sets a probe at the entry to all system calls having names beginning with "open". DTrace tells us that our probe description matched three probes. They are: open, open_extended, and open_nocancel. Our action statement prints out the name of the process (execname) that caused the probe to fire, and the first argument (arg0) to the function that matched the probe. Notice that we need to use the copyinstr function here rather than just printing arg0 directly. This is because D scripts execute in the kernel's address space, but the pathname argument to open is stored in user space. We could also modify our D script so that it shows us which files are accessed most often, as follows.

$ sudo dtrace -s /dev/stdin 
   @[copyinstr(arg0)] = count();
dtrace: script '/dev/stdin' matched 3 probes
/Library/Managed Preferences/   1
/Library/Preferences/            1
/Users/jgm/Library/Caches/   1
.                                                               2
/.vol/234881026/562669                                             2
/Users/jgm/Library/Preferences/   3

I am a little surprised to see Finder opening files in the /.vol directory. Volfs is a separate file system that is used to support the Carbon File Manager atop the BSD file system. It was used on earlier versions of Mac OS X, but it was removed in Leopard.

$ sw_vers -productVersion
$ df -k
Filesystem    1024-blocks     Used Available Capacity  Mounted on
/dev/disk0s2     81732372 38929756  42546616       48%        /
devfs                112      112         0   100%     /dev
fdesc                  1        1         0   100%     /dev
map -hosts             0        0         0   100%      /net
map auto_home           0        0         0   100%     /home
$ ls -al /.vol 
total 0
drwxr-xr-x@  2 root  wheel    68 Jul 30 22:08 ./
drwxrwxr-t  31 root  admin  1122 Sep 16 10:22 ../

I do not have a volfs file system, but apparently, accessing volfs paths still works.

$ ls -l /.vol/234881026/562669            
total 3512
(... output snipped for brevity ...)
-rw-r--r--   1 jgm  staff        0 Sep 17 11:50 I_am_on_your_desktop.txt

Apparently, /.vol/234881026/562669 refers to my Desktop. We can see which functions are using these paths by looking at the user stack trace when they are opened.

$ sudo dtrace -s /dev/stdin
/copyinstr(arg0) == "/.vol/234881026/562669"/
dtrace: script '/dev/stdin' matched 3 probes
CPU     ID                    FUNCTION:NAME
  1  17584                       open:entry 
   DesktopServicesPriv`TNode::ReconcileChildren(bool, bool)+0x63
   DesktopServicesPriv`TNode::HandleSync(bool, bool, bool, bool)+0x1b1

Looking at this stack, we can see that it is indeed the Carbon File Manager APIs that are using these volfs paths. Just as we expected. So, even though volfs no longer exists as a file system in Leopard, its main functionality still exists in the kernel to support the Carbon File Manager. Thanks DTrace!

Hard linking directories

One addition in Leopard that has the potential to send shivers up spines, is the addition of directory hard linking. This functionality was added to enable Time Machine to backup large directory structures of unchanged data without wasting space. The canonical argument against hard linked directories is that they can cause cycles in the directory tree. However, Apple avoided this problem by placing some restrictions on directory hard linking.

The only problem I currently see with directory hard links is that I can't get them to work.

$ mkdir Dir1
$ ln Dir1 Dir2
ln: Dir1: Is a directory
$ sudo ln Dir1 Dir2
ln: Dir1: Is a directory

Perhaps we can use DTrace to figure out what's going on. Let's start like we normally do by looking at all the system calls made by ln. We will use dtrace's -c option to run and trace the command in question. As we've already seen, the PID of the command is made available to our D script through the $target macro variable.

$ sudo dtrace -s /dev/stdin -c "ln Dir1 Dir2"                           
/pid == $target/
dtrace: script '/dev/stdin' matched 427 probes
ln: Dir1: Is a directory
dtrace: pid 4389 has exited
CPU     ID                    FUNCTION:NAME
  1  17950                       stat:entry 
  1  18368             write_nocancel:entry 
  1  18368             write_nocancel:entry 
  1  18368             write_nocancel:entry 
  1  18368             write_nocancel:entry 
  1  17576                       exit:entry 

This is interesting because we don't see any calls to link, which is the system call ultimately responsible for creating the hard link. Let's see if we can get a better view of what ln is doing, by using the D script in listing 3.

Listing 3: ln.d

Uses the pid provider to trace all function calls in libSystem. To help limit the output, we only look at user stacks with a depth less than 6.

/ustackdepth < 6/

And we will run it like this:

$ sudo dtrace -F -s ln.d -c "ln Dir1 Dir2"
dtrace: script 'ln.d' matched 8679 probes
ln: Dir1: Is a directory
dtrace: pid 6171 has exited
CPU FUNCTION                                 
  1  <- __cxa_atexit                          
  1  -> rindex                                
  1  <- rindex                                
  1  -> getopt$UNIX2003                       
  1  <- getopt$UNIX2003                       
  1  -> stat                                  
  1    -> _sysenter_trap                      
  1      -> __error                           
  1      <- __error                           
  1      -> warn                              
  1      <- __error                           
  1    <- vwarnc                              
  1  <- fprintf                               
  1  <- warn                                  
  1  -> exit                                  
  1    -> __cxa_finalize                      
  1    <- __cxa_finalize                      
  1    -> _cleanup                            
  1    <- _fwalk                              
  1  <- _cleanup                              
  1  <- exit                                  
  1  -> _exit                                 
  1    -> _sysenter_trap 

This script traces the function calls in libSystem, and it uses the -F (flow indent) option to visually indicate when functions are entered and return. This output shows that stat is called, followed by functions to print the error message. This indicates that ln itself is detecting that the first path is a directory and is giving us the error without ever calling link. To get past this stumbling block, we will write our own simple C program that calls link directly.

Listing 4: hlink.c

Given two file name arguments, creates a hard link from the first to the second.

#include <unistd.h>
#include <stdio.h>
main(int argc, char *argv[])
   if (argc != 3)
      return 1;
   int ret = link(argv[1], argv[2]);
   if (ret != 0)
   return ret;
$ gcc -o hlink hlink.c -Wall
$ ./hlink Dir1 Dir2 
link: Operation not permitted
$ sudo ./hlink Dir1 Dir2
link: Operation not permitted

OK, it still didn't work, but at least we know that link is definitely being called. We could use DTrace's fbt provider to dig further down in the kernel and perhaps see why we're getting this new error, but let's not forget what we learned above: DTrace does not replace all of our other tools. It takes time to write D scripts, so maybe spending a few more seconds just thinking about the problem is a better solution. In our case we know that hard links do indeed work because Time Machine uses them. So, perhaps the problem is that we're trying to create the hard link in the same directory as the original. Let's try creating the hard link to a directory with a different parent.

$ mkdir NewDir
$ ./hlink Dir1 NewDir/Dir2
$ ls -lid Dir1 NewDir/Dir2 
1140587 drwxr-xr-x  2 jgm  staff  68 Sep 17 18:08 Dir1/
1140587 drwxr-xr-x  2 jgm  staff  68 Sep 17 18:08 NewDir/Dir2/

Cool! It worked! Dir2 is a hard link to Dir1 and I don't even feel dirty (nor did I need to be root). We can verify that the hard link worked by looking at the directories' inode numbers (the first column in our ls output).


As we've seen here, DTrace is a very powerful and flexible tool, but it is just that - a tool. And it's best used in the hands of a skilled craftsman. The OpenSolaris DTrace community provides a collection of useful D scripts, under the name DTraceToolkit. Thankfully, the code-smiths at Apple have ported many of these scripts to Leopard. You can get a list of the more than 40 available DTrace scripts by running man -k dtrace. There are also examples of their use in /usr/share/examples/DTTk. One of the more useful D scripts is called dtruss, which most users will embrace as a replacement for ktrace. Some of the DTrace examples in this article could have been replaced by simpler dtruss invocations, but then what fun is that?! We wanted to play with DTrace.

We've just barely scratched the surface of the tip of the DTrace iceberg. We didn't get to touch on the more exotic topics like DTrace's "destructive" actions, the fasttrap provider, instrumenting individual instructions, or accessing external variables using the scoping operator. The technology behind DTrace is impressive, and it is open source so you can see what is happening behind the scenes. Perhaps Apple will provide some DTrace documentation soon, but in the meantime you can find a lot of documentation on Sun's website at, on the OpenSolaris website at, or better yet, just Google it!

Greg Miller is a software engineer on the Macintosh Engineering team at Google. He is a bit of a Unix "junkie", but has a passion for many areas of computer science, especially operating system internals. You can reach him through his personal website at


Community Search:
MacTech Search:

Software Updates via MacUpdate

GraphicConverter 10.5.1 - $39.95
GraphicConverter is an all-purpose image-editing program that can import 200 different graphic-based formats, edit the image, and export it to any of 80 available file formats. The high-end editing... Read more
Delicious Library 3.7 - Import, browse a...
Delicious Library allows you to import, browse, and share all your books, movies, music, and video games with Delicious Library. Run your very own library from your home or office using our... Read more
Adobe Animate CC 2017 - Anima...
Animate CC 2018 is available as part of Adobe Creative Cloud for as little as $19.99/month (or $9.99/month if you're a previous Flash Professional customer). Animate CC 2018 (was Flash CC) lets you... Read more
Adobe After Effects CC 2018 15.0 - Creat...
After Effects CC 2018 is available as part of Adobe Creative Cloud for as little as $19.99/month (or $9.99/month if you're a previous After Effects customer). The new, more connected After Effects CC... Read more
Adobe Premiere Pro CC 2018 12.0.0 - Digi...
Premiere Pro CC 2018 is available as part of Adobe Creative Cloud for as little as $19.99/month (or $9.99/month if you're a previous Premiere Pro customer). Adobe Premiere Pro CC 2018 lets you edit... Read more
Alarm Clock Pro 10.3 - $19.95
Alarm Clock Pro isn't just an ordinary alarm clock. Use it to wake you up in the morning, send and compose e-mails, remind you of appointments, randomize the iTunes selection, control an internet... Read more
Adobe Lightroom 20170919-1412-ccb76bd] -...
Adobe Lightroom is available as part of Adobe Creative Cloud for as little as $9.99/month bundled with Photoshop CC as part of the photography package. Lightroom 6 is also available for purchase as a... Read more
Adobe Illustrator CC 2018 22.0.0 - Profe...
Illustrator CC 2018 is available as part of Adobe Creative Cloud for as little as $19.99/month (or $9.99/month if you're a previous Illustrator customer). Adobe Illustrator CC 2018 is the industry... Read more
Hopper Disassembler 4.3.0- - Binary disa...
Hopper Disassembler is a binary disassembler, decompiler, and debugger for 32- and 64-bit executables. It will let you disassemble any binary you want, and provide you all the information about its... Read more
Adobe InDesign CC 2018 - Prof...
InDesign CC 2018 is available as part of Adobe Creative Cloud for as little as $19.99/month (or $9.99/month if you're a previous InDesign customer). Adobe InDesign CC 2018 is part of Creative Cloud.... Read more

ICEY (Games)
ICEY 1.0 Device: iOS Universal Category: Games Price: $2.99, Version: 1.0 (iTunes) Description: ICEY is a 2D side-scrolling action game. As you follow the narrator's omnipresent voice, you will see through ICEY's eyes and learn the... | Read more »
The best new games we played this week -...
We've made it, folks. Another weekend is upon us. It's time to sit back and relax with the best new releases of the week. Puzzles, strategy RPGs, and arcade games abound this week. There's a lot of quality stuff to unpack this week, so let's hop... | Read more »
Wheels of Aurelia (Games)
Wheels of Aurelia 1.0.1 Device: iOS Universal Category: Games Price: $3.99, Version: 1.0.1 (iTunes) Description: | Read more »
Halcyon 6: Starbase Commander guide - ti...
Halcyon 6 is a well-loved indie RPG with stellar tactical combat and some pretty good writing, too. It's now landed on the App Store, so mobile fans, if you're itching for a good intergalactic adventure, here's your game. Being a strategy RPG, the... | Read more »
Game of Thrones: Conquest guide - how to...
Fans of base building games might be excited to know that yet another entry in the genre has materialized - Game of Thrones: Conquest. Yes, you can now join the many kingdoms of the famed book series, or create your own, as you try to conquer... | Read more »
Halcyon 6: Starbase Commander (Games)
Halcyon 6: Starbase Commander Device: iOS Universal Category: Games Price: $6.99, Version: (iTunes) Description: An epic space strategy RPG with base building, deep tactical combat, crew management, alien diplomacy,... | Read more »
Legacy of Discord celebrates its 1 year...
It’s been a thrilling first year for fans of Legacy of Discord, the stunning PvP dungeon-crawling ARPG from YOOZOO Games, and now it’s time to celebrate the game’s first anniversary. The developers are amping up the festivities with some exciting... | Read more »
3 reasons to play Thunder Armada - the n...
The bygone days of the Battleship board game might have past, but naval combat simulators still find an audience on mobile. Thunder Armada is Chinese developer Chyogames latest entry into the genre, drawing inspiration from the explosive exchanges... | Read more »
Experience a full 3D fantasy MMORPG, as...
Those hoping to sink their teeth into a meaty hack and slash RPG that encourages you to fight with others might want to check out EZFun’s new Eternity Guardians. Available to download for iOS and Android, Eternity Guardians is an MMORPG that lets... | Read more »
Warhammer Quest 2 (Games)
Warhammer Quest 2 1.0 Device: iOS Universal Category: Games Price: $4.99, Version: 1.0 (iTunes) Description: Dungeon adventures in the Warhammer World are back! | Read more »

Price Scanner via

12″ iPad Pros on sale for $50 off MSRP, no ta...
Adorama has 12″ iPad Pros on sale today for $50 off MSRP. Shipping is free, and Adorama charges sales tax in NY & NJ only: – 12″ 64GB iPad Pro: $749, save $50 – 12″ 256GB iPad Pro: $899, save $50... Read more
9″ iPads on sale for $30 off, starting at $29...
MacMall has 9″ iPads on sale for $30 off including free shipping: – 9″ 32GB iPad: $299 – 9″ 128GB iPad: $399 Read more
Apple restocks full line of refurbished 13″ M...
Apple has restocked a full line of Apple Certified Refurbished 2017 13″ MacBook Pros for $200-$300 off MSRP. A standard Apple one-year warranty is included with each MacBook, and shipping is free.... Read more
13″ 3.1GHz/256GB MacBook Pro on sale for $167...
Amazon has the 2017 13″ 3.1GHz/256GB Space Gray MacBook Pro on sale today for $121 off MSRP including free shipping: – 13″ 3.1GHz/256GB Space Gray MacBook Pro (MPXV2LL/A): $1678 $121 off MSRP Keep an... Read more
13″ MacBook Pros on sale for up to $120 off M...
B&H Photo has 2017 13″ MacBook Pros in stock today and on sale for up to $120 off MSRP, each including free shipping plus NY & NJ sales tax only: – 13-inch 2.3GHz/128GB Space Gray MacBook... Read more
15″ MacBook Pros on sale for up to $200 off M...
B&H Photo has 15″ MacBook Pros on sale for up to $200 off MSRP. Shipping is free, and B&H charges sales tax in NY & NJ only: – 15″ 2.8GHz MacBook Pro Space Gray (MPTR2LL/A): $2249, $150... Read more
Roundup of Apple Certified Refurbished iMacs,...
Apple has a full line of Certified Refurbished 2017 21″ and 27″ iMacs available starting at $1019 and ranging up to $350 off original MSRP. Apple’s one-year warranty is standard, and shipping is free... Read more
Sale! 27″ 3.8GHz 5K iMac for $2098, save $201...
Amazon has the 27″ 3.8GHz 5K iMac (MNED2LL/A) on sale today for $2098 including free shipping. Their price is $201 off MSRP, and it’s the lowest price available for this model (Apple’s $1949... Read more
Sale! 10″ Apple WiFi iPad Pros for up to $100...
B&H Photo has 10.5″ WiFi iPad Pros in stock today and on sale for $50-$100 off MSRP. Each iPad includes free shipping, and B&H charges sales tax in NY & NJ only: – 10.5″ 64GB iPad Pro: $... Read more
Apple iMacs on sale for up to $130 off MSRP w...
B&H Photo has 21-inch and 27-inch iMacs in stock and on sale for up to $130 off MSRP including free shipping. B&H charges sales tax in NY & NJ only: – 27″ 3.8GHz iMac (MNED2LL/A): $2179 $... Read more

Jobs Board

Engineering Manager, *Apple* Retail Enginee...
# Engineering Manager, Apple Retail Engineering Job Number: 58139948 Santa Clara Valley, California, United States Posted: 20-Oct-2017 Weekly Hours: 40.00 **Job Read more
*Apple* Retail - Multiple Positions - Apple,...
Job Description: Sales Specialist - Retail Customer Service and Sales Transform Apple Store visitors into loyal Apple customers. When customers enter the store, Read more
Commerce Engineer, *Apple* Media Products -...
Commerce Engineer, Apple Media Products (New York City) Job Number: 113028813New York City, New York, United StatesPosted: Sep. 20, 2017Weekly Hours: 40.00 Job Read more
US- *Apple* Store Leader Program - Apple (Un...
US- Apple Store Leader Program Job Number: VariousUnited StatesPosted: Oct. 19, 2017Retail Store Job Summary Learn and grow as you explore the art of leadership at Read more
Product Manager - *Apple* Pay on the *Appl...
Job Summary Apple is looking for a talented product manager to drive the expansion of Apple Pay on the Apple Online Store. This position includes a unique Read more
All contents are Copyright 1984-2011 by Xplain Corporation. All rights reserved. Theme designed by Icreon.