TweetFollow Us on Twitter

Black Hawk Down

Volume Number: 21 (2005)
Issue Number: 1
Column Tag: Programming

QuickTime Toolkit

by Tim Monroe

Black Hawk Down

Developing QuickTime Applications with Awk


Occasionally, we workaday programmers have one of those Aha! moments, in which an idea that had bounced around inside our heads with vagueness and imprecision becomes crystal clear. Suddenly things make sense; new ways of approaching a task are revealed; life is good. Most often, I think, these moments come about as a result of drawing connections between disparate items, of bringing techniques and capabilities from one domain to bear on some other domain. Sometimes, however, quite the reverse is true. An Aha! moment can arise from the realization that separations and distinctions can be drawn in a domain previously thought to present a unified structure. In this article, I want to tease out one such realization. On first glance it might look like a yawner, but I think that on closer examination it will reveal useful possibilities for developing QuickTime applications of a significantly different nature than any we have considered so far in this series of articles.

The realization is this: when we develop a QuickTime application, we need to work with at least three distinct kinds of software tools. First, and perhaps most obvious, there is the programming language. In past articles, we've seen how to develop QuickTime applications using C, Objective-C, Java, a couple variants of BASIC, Transcript (a HyperTalk offshoot), AppleScript, and Tcl. There are of course plenty of other popular programming languages that it might be nice to investigate, including C++, C#, Object Pascal, Perl, and perhaps even Lisp.

The second kind of tool we have worked with is a graphical user interface toolkit. Examples we've encountered hitherto include Cocoa's Application Kit, AWT, Swing, Tk, and the standard Macintosh User Interface Toolbox (comprised of the Window Manager, the Dialog Manager, the Control Manager, and their ilk). We even saw that we can use the Mac User Interface Toolbox on Windows, thanks to the magic of the QuickTime Media Layer. Often, the GUI toolkit is part of a larger application framework that provides extensive event-handling and document-based capabilities. Think here of Cocoa, PowerPlant, MFC, and the like.

The third kind of tool we need to bring into play is whatever else is necessary to get QuickTime movie playback and editing to work with a specific GUI toolkit. In some cases, this additional element is already included in the GUI toolkit, as is the case with Cocoa and its NSMovie and NSMovieView classes. But more often than not, we need some additional software components to display and manage QuickTime movies. In past articles, this third element has consisted of the QuickTime for Java package, QuickTimeTcl, a QuickTime-specific ActiveX control, or the QuickTime libraries themselves.

Now, I suspect that this division of labor is intuitively obvious when presented like this. However, I think that it's not at all obvious when approaching individual development environments with the intention of building a QuickTime-savvy application. Some of the RAD tools make very little distinction between the underlying language, the windowing toolkit, and their QuickTime support; rather, it's all built into the development environment and presented as a monolithic whole. Other languages and GUI toolkits are so closely connected as to be in practice indistinguishable: Tcl and Tk go so closely together that they are usually combined into the moniker "Tcl/Tk", and Java is almost always used with either AWT or Swing, or indeed both. So you will perhaps count it as understandable that I should have been lulled into conflating these three elements on some level. Or maybe I'm just dense.

At any rate, once we have clearly distinguished these three elements, interesting new possibilities open up. First and foremost, we can combine these elements in novel ways. In this article I want to illustrate some of the possibilities here by developing a QuickTime application (called "AwkEez") that uses Awk as the underlying programming language, Tk as the graphical user interface, and QuickTimeTcl as the additional element that provides QuickTime support. I chose Awk partly for its shock value, since it is a semi-outmoded language that very few people would suspect could be used to build a full-featured QuickTime application. But the techniques we'll learn here could just as easily be applied to more mainstream or more modern languages like Perl or Python or Ruby. As we'll see, all we really require of the underlying programming language is the ability to store data in some easy manner, to perform standard arithmetic and string operations, and to read data from a standard input source and write data to a standard output source. Those requirements are satisfied by an incredibly wide variety of existing languages.

We'll begin by taking a brief look at the Awk programming language and at the structure of a typical Awk program. Then we'll see how to use its capabilities to exchange data with the Tk graphical user interface toolkit. A good bit of the Tk and QuickTimeTcl code can be lifted neatly from the TickLeez application we built in the previous two articles ("Tickle Me" in MacTech, June 2004, and "Horse Feathers" in July 2004). So we can focus here on more interesting tasks.

Awk Overview

Awk was designed and developed in 1977 by three researchers at Bell Labs, Alfred Aho, Peter Weinberger, and Brian Kernighan. It's one of those fun utility languages that abound on UNIX and UNIX-like systems: small languages targeted at a specific problem domain. In the case of Awk, the problem domain is parsing text files, searching for patterns within those files, accumulating data from those patterns, and eventually printing a summary of parts of that data. In a nutshell, Awk is most often described as a pattern-matching language. It includes a robust regular expression syntax similar to what is found in other tools like Sed and Grep. It includes C-like flow-control statements, variables that can hold string and numeric values, the ability to define functions and procedures, and support for arrays and associative arrays for storing accumulated data. It also supports basic arithmetic operations and string operations (concatenation, substring, and the like).

The basic structure of an Awk program reflects this focus on pattern matching within text streams. Any nontrivial program contains four distinct sections: (1) definitions of functions used in the program; (2) a BEGIN section that is executed before any input is read; (3) a list of patterns and associated commands; and (4) and END section that is executed after all input has been read. Each line of input is examined to see whether it matches one or more of the patterns in the pattern list; for each matched pattern, the associated commands are executed. So the general structure of an Awk program looks like this:

function definitions
pattern   {command}
pattern   {command}
pattern   {command}

To repeat, Awk reads its standard input, matches each line of that input against the patterns, executes the commands associated with each matched pattern, and optionally prints some summary of the data before exiting.

Defining Functions

Awk provides a reasonably large assortment of built-in commands for manipulating strings and numbers. It also allows us to define functions that encapsulate sets of commands. For instance, Listing 1 shows an Awk version of the basename function that we've encountered in several previous articles. Given a full pathname, it returns the portion of the pathname following the rightmost path separator. This function is especially easy to implement in Awk, which provides the split function that splits a string into an array, using the specified delimiting character. In this case, the delimiting character is stored in a global data array so that, on application launch, it can be set to "/" on Macintosh systems and to "\" on Windows systems. The split function also returns as its result the number of components in the new array.

Listing 1: Getting the basename of a filename

function basename (fileName) {
   numParts = split(fileName, paths, appData[PATHC_FIELD]);

Executing Shell Commands

In addition to the built-in operations and user-defined functions, Awk also supports several methods of executing arbitrary shell commands or other command-line tools. The simplest way to execute some external command is using the system command, like this:

system("rm " tempFile);

This command will remove from the file system the file specified by the tempFile variable.

In cases where we'd like our Awk script to capture the output of an external command, we can use a construct like this:

"uname" | getline appData[CUROS_FIELD];

This runs the uname command and grabs its output into the array element appData[CUROS_FIELD]. Awk's getline command, in the form used here, reads the first line of input from the uname command into the specified variable. Notice that we need to explicitly close the pipe with the close command.

As you probably know, the uname command prints the name of the current operating system. On Mac OS X, it returns the string "Darwin". So we can use the code in Listing 2 to determine which operating system the script is running on and to set the path separator character accordingly.

Listing 2: Setting the path separator

MACOS_TAG      = "Darwin";      # output of uname on Mac OS X

"uname" | getline appData[CUROS_FIELD];

if (appData[CUROS_FIELD] ~ MACOS_TAG) {
   appData[PATHC_FIELD] = "/";
} else {
   appData[PATHC_FIELD] = "\\";

Storing Data

Since AwkEez will be able to open multiple movies and (for instance) allow the user to cut and paste data from one movie to another, we need to keep track of the movie controller and other pieces of data associated with any particular movie. Awk does not provide any mechanism for defining structured data types, but we can simulate such types with associative arrays. So we'll maintain a global associative array called appData. In fact, we'll use the appData array for two purposes, to hold global data values (like the value appData[PATHC_FIELD] used above) and to hold data associated with a particular window. Listing 3 shows the definition of the initApp function, which initializes some of the values in the appData array.

Listing 3: Initializing the application

function initApp () {
   # constants identifying fields in the appData array
   DIRTY_FIELD            = 10;
   FNAME_FIELD            = 11;
   BNAME_FIELD            = 12;
   DNAME_FIELD            = 13;
   MOVIE_FIELD            = 14;
   UNDOL_FIELD            = 15;
   CTYPE_FIELD            = 16;
   OPRTN_FIELD            = 17;
   CUROS_FIELD            = 20;
   ABOUT_FIELD            = 21;
   NEWNO_FIELD            = 22;
   WINNO_FIELD            = 23;
   PATHC_FIELD            = 24;

   # the range of constants that are specific to a movie 

   # values for the CTYPE_FIELD field
   CNTRL_LINEAR            = 0;
   CNTRL_VR                = 1;
   # some strings
   NEW_MOVIE_NAME            = "Untitled";
   APP_NAME                  = "AwkEez";
   WIN_NAME                  = "winRTM";
   MACOS_TAG                 = "Darwin";

   # global variables   
   appData[NEWNO_FIELD]   = 1;
   appData[WINNO_FIELD]   = 1;
   appData[ABOUT_FIELD]   = 0;
   # get the name of the current operating system
   "uname" | getline appData[CUROS_FIELD];
   if (appData[CUROS_FIELD] ~ MACOS_TAG) {
      appData[PATHC_FIELD] = "/";
   } else {
      appData[PATHC_FIELD] = "\\";

Values associated with a movie window are added to the appData array by creating "two-dimensional" array keys. For instance, we can store information about the dirty state of a movie window whose name is "winRTM1" like this:

winName = "winRTM1";
appData[winName,DIRTY_FIELD] = 0;

AwkEez Overview

Now, how do we hook an Awk script up to the Tk graphical user interface and the QuickTimeTcl extension? Quite easily, in fact. It turns out that when we install the Tcl/Tk package on Mac OS X, a shell script called wish is installed into the /usr/bin directory. This shell script merely launches the Wish Shell application and attaches the standard input of that application to the standard input of the script. This allows us to create windows and other user interface elements from the command line, for instance like this:

[Kant: ~] monroe% echo "toplevel .win1" | /usr/bin/wish

Executing this command causes a new toplevel window to be displayed by Wish Shell.

So it's easy to get an Awk script to send the appropriate Tk and QuickTimeTcl commands to the Tcl/Tk interpreter:

[Kant: ~] monroe% awk -f AwkEez.awk | /usr/bin/wish

All that AwkEez needs to do is send Tcl/Tk or QuickTimeTcl commands to its standard output, using the doTk function defined in Listing 4.

Listing 4: Sending commands to the Wish Shell

function doTk (string) {
   print string;

As you can see, doTk simply prints the specified string to its standard output and then flushes the output stream by calling the function flush. The flush function is defined in Listing 5. (I'm not entirely sure how or why this works, but indeed it does work.)

Listing 5: Flushing the output stream

function flush () {

But how do we get information back from the Tk interpreter to the Awk script? Ideally we would like to connect the standard output of the Wish Shell to the standard input of the Awk script. This then would give us bidirectional communication between Awk and the Wish Shell: Awk's standard output goes to the standard input of Wish, whose standard output is directed to the standard input of Awk.

Connecting Awk and Wish in this way requires a simple C program or a Perl script, which we'll investigate later in this article. In the meantime, let's suppose that we've successfully linked the standard inputs and outputs of Awk and Wish as described. Let's see how to exploit that linkage. First, when AwkEez starts up, it executes any commands contained in the BEGIN section of the script, shown in Listing 6. Notice that AwkEez defines some Tcl procedures and sends them to Wish using the doTk command.

Listing 6: Flushing the output stream

   # initialize constants and global variables
   # prime the pump: define some Tcl procedures
   doTk("package require QuickTimeTcl");   
   doTk("proc doAwk {s} {puts stdout $s; flush stdout}");
   doTk("proc sendVal {v} {global $v; set varFile 
         [open varFileTmp.txt w+]; puts $varFile 
                  [set [set v]]; close $varFile}");
   doTk("proc topMovieWindow {} {set winlist 
      [wm stackorder .]; set index [expr 
            [llength $winlist] - 1]; return 
               [string range [lindex $winlist $index] 1 end]}");
   doTk("proc max {a b} {if {$a > $b} 
               {set a} else {set b}}");
   doTk("proc min {a b} {if {$a < $b} 
                  {set a} else {set b}}");
   if (appData[CUROS_FIELD] ~ MACOS_TAG) {
   } else {
   # hide the root window and the Console window
   doTk("wm withdraw .");
   doTk("console hide");

We can ignore most of this for the moment. Notice however the definition of the doAwk procedure. It essentially does what doTk does, but on the Tcl/Tk side: it prints the string argument on the standard output and flushes the output stream. This causes that string to be sent to Awk for immediate processing.

As you know, Awk's main role is to match lines in its standard input against some known patterns and to react accordingly. Listing 7 shows the pattern-matching segment of AwkEez.

Listing 7: Handling commands

$1 ~ /^doOpen$/                  { doOpen(); }
$1 ~ /^doNew$/                   { doNew(); }
$1 ~ /^doClose$/                 { doClose(); }
$1 ~ /^doSave$/                  { doSave(); }
$1 ~ /^doSaveAs$/                { doSaveAs(); }
$1 ~ /^doExit$/                  { doExit(); }

$1 ~ /^doUndo$/                  { doUndo(); }
$1 ~ /^doEdit$/                  { doEdit($2); }
$1 ~ /^doSelect$/                { doSelect($2); }

$1 ~ /^doToggleBar$/             { doToggleBar(); }
$1 ~ /^doAbout$/                 { doAbout(); }

$1 ~ /^openFileInWindow$/        { openFileInWindow($2, $3); }
$1 ~ /^setTopWindow$/            { topWindow = $2; }
$1 ~ /^doAttemptClose$/          { doAttemptClose($2, $3); }
$1 ~ /^doHandleKey$/             { doHandleKey($2, $3); }
$1 ~ /^adjustMenus$/             { adjustMenus($2); }

Most of these patterns correspond to menu item selections. We can get Wish to emit those strings for example like this:

$m add command -label "Open..." -accelerator "Command-O" 
                                             -command {doAwk "doOpen"}

In other words, the Awk script is essentially saying to the Wish interpreter: I want you to add a menu item to the File menu with the label "Open..."; when the user selects that menu item, send me the string "doOpen".

As you can see in Listing 7, when AwkEez receives the string "doOpen", it calls its function doOpen, which is shown in Listing 8. The doOpen function tells Tk to display the standard file-opening dialog box and then send AwkEez the "openFileInWindow" string followed by the filename and the parameter 0.

Listing 8: Opening a movie file

function doOpen () {
   doTk("set filename [tk_getOpenFile -title \"" APP_NAME ": Open a Movie File\"]");
   doTk("if {$filename != \"\"} {doAwk \"openFileInWindow ${filename} 0\"}");

It's worth noting that this current implementation does not allow white space to occur in file names. Fixing that is left as an easy exercise for the reader.

Most of the Awk functions called from Listing 7 (or called by any of those functions) are quite easy to implement, given that we have at hand a working Tcl/Tk QuickTime application, TickLeez. For instance, Listing 9 shows the TickLeez version of the setWindowDirty function.

Listing 9: Marking a movie window as changed (TickLeez)

proc setWindowDirty {winName state} {
   global appData

   set appData($winName,dirty) $state
   if {[string match "mac*" $appData(os)]} {
      wm attributes .$winName -modified $state

This can be fairly easily modified into the Awk function shown in Listing 10.

Listing 10: Marking a movie window as changed (AwkEez)

function setWindowDirty (winName, state) {
   appData[winName,DIRTY_FIELD] = state;
   if (appData[CUROS_FIELD] ~ MACOS_TAG) {
      doTk("wm attributes ." winName " -modified " state);

Interprocess Communication

One key step remains, which is to see how to form a bidirectional communications link between our Awk script and the Tcl/Tk interpreter Wish. In a C program this is reasonably easy to do using the socketpair(2) system call, which creates a pair of connected sockets. It's actually even easier to do in Perl, which supports the Socket module. Lsiting 11 shows the complete definition of a Perl script that establishes the desired bidirectional links. Because this script forms the glue between an Awk script and the Wish interpreter, let's call it AwkwA (for "Awk-to-Wish-Adhesive").

Listing 11: Connecting Awk to Wish
#!/usr/bin/env perl
use Socket;
use IO::Handle;

use strict;
use warnings;

   my ($awkScript, $line, $pid_a, $pid_b, $pid_c, 

   $tclInterp = '/usr/bin/wish';
  $awkScript = '/Users/monroe/QuickQuid/AwkEez/AwkEez.awk';

        or die "socketpair failed: $!\n";


   if ($pid_a = fork()) {

            or die "socketpair failed: $!\n";


      if ($pid_b = fork()) {
         if ($pid_c = fork()) {
            while (defined($line=<AWKEEZ>)) {
            # print "AwkEez => Wish: $line\n";
               print WISH "$line\n";
         } elsif (defined($pid_c)) {
            while (defined($line=<WISH>)) {
               # print "Wish => AwkEez: $line\n";
               print AWKEEZ "$line\n";
         } else {die "fork failed: $!\n";}

      } elsif (defined($pid_b)) {
         open(STDOUT, '>&AWKWA_CHILD');
         open(STDIN,  '>&AWKWA_CHILD');
         select STDOUT; $| = 1;
         exec "awk -f $awkScript --";
      } else {die "fork failed: $!\n";}

   } elsif (defined($pid_a)) {
      open(STDOUT, '>&AWKWA');
      open(STDIN,  '>&AWKWA');
      select STDOUT; $| = 1;
      exec "$tclInterp --";
   } else {die "fork failed: $!\n";}

Notice that by uncommenting two lines in the script, we can have AwkwA print on its standard output the strings it is passing between Awk and Wish. This is a very useful debugging tool.

Once we launch the script, we'll have three interpreters running simultaneously: the Awk interpreter is doing most of the data storage and program control; the Tcl/Tk interpreter is handling user interface commands from the Awk script and sending strings back to it; and the Perl interpreter is handling the bidirectional communication between the Awk and Tcl/Tk interpreters. This might seem like a recipe for really slow operation, but in fact the whole thing works fairly well.

Immediate Evaluation

The simple sting-passing mechanism that we have used so far to connect our Awk script to the Tcl/Tk interpreter, via the AwkwA Perl script, works quite marvelously in most cases. The user interface elements of our application are configured to send strings like "doOpen" and "doEdit cut" back to the Awk script, which matches those strings in its "main event loop" and then calls the corresponding function. And the Awk script sends Tk commands to the Tcl/Tk interpreter to create and configure the application's menus, windows, and dialog boxes.

Occasionally, however, this mechanism is not powerful enough to fit our needs. At times, we need an immediate response from the Tcl/Tk side of the ledger during the execution of an Awk function. For instance, inside the openFileInWindow function, we need to determine whether a given movie is a QuickTime VR movie (for instance, so that we can set up the correct key bindings and adjust the application's menus correctly).

It might well be possible to solve this problem by suitably refactoring the AwkEez script. When we determine that we need a value from the Tcl/Tk interpreter, we could send it a request for that value and then wait for a response to arrive in the standard input stream. This solution however might introduce as many problems as it solves. We would need to maintain more state information and make sure that certain operations do not happen until a movie window is fully loaded and configured.

A better solution is to devise a way to get immediate responses from the Tcl/Tk interpreter, without reentering the AwkEez "main event loop". That is to say, we want to figure out a way for the Awk script to communicate with the Tcl/Tk interpreter within the execution of an Awk function. We can accomplish that like this: our Awk script will send a request for a specific value, which the Tcl/Tk interpreter writes into a temporary file. The Awk script then suspends operation and waits for a value to be written into that file; when a value is written into the file, Awk reads the value and then continues operation.

Listing 12 shows our definition of the getTkVal function, which implements this strategy.

Listing 12: Getting immediate values from Wish

function getTkVal (string) {
   tempFile = "varFileTmp.txt";
   doTk("global answer; set answer " string "; 
                                                         sendVal answer");   
   while ((getline ans < tempFile) != 1) {
      # spin our heels
   system("rm " tempFile);

Here we're using a slightly different form of the getline command, which reads a line from a specified file into a variable (in this case, ans). A value is written into that file by the Tcl function sendVal, defined in Listing 13.

Listing 13: Writing a value into a file

proc sendVal {v} {
   global $v

   set varFile [open varFileTmp.txt w+]
   puts $varFile [set [set v]]
   close $varFile

Now we can get immediate responses from the Tcl/Tk interpreter fairly easily. For instance, in the doSaveAs function we can elicit a filename from the use like this:

newFile = getTkVal("[tk_getSaveFile]");

Wish will display the standard file-saving dialog box and then return the name of the selected file to the AwkEez script, via a temporary file.


Incredible as it may seem, it's really quite straightforward to build a QuickTime playback and editing application that relies for basic program control and data storage on the Awk scripting language. The key is to realize that the Tcl/Tk interpreter Wish can be driven from the command line or from other scripts; in particular, Wish can have its standard input and standard output hooked up to the standard output and standard input of our Awk script, by executing a fairly simple Perl program.

In theory, we could use this technique to rely on virtually any programming language that can read from its standard input and write to its standard output. (QuickTime programming in Sed anyone?) But in practice this is a moderately messy and unsatisfying solution. As we've seen, the careful quoting required to embed Awk variables into Tk commands can get fairly tedious (look again at Listing 8). There are better solutions available. For instance, there is a Perl/Tk package that provides access to Tk commands from Perl scripts. And there is a RubyCocoa framework that allows Cocoa programming to be done using Ruby. If your goal is to drive a QuickTime application using a scripting language like Awk, Perl, Ruby, or Python, your best bet is probably to look for a package that binds that language to an existing GUI package like Tk or Cocoa.


The AwkwA Perl script was loosely inspired by the perlwafe script written by Gustaf Neumann, subsequently modified for use with Tcl/Tk by Dov Grobgeld. Thanks are due to Vicki Brown and Rich Morin for providing useful feedback on my Perl programming.

Tim Monroe is a member of the QuickTime engineering team at Apple. You can contact him at The views expressed here are not necessarily shared by his employer.


Community Search:
MacTech Search:

Software Updates via MacUpdate

Path Finder 7.2 - Powerful, award-winnin...
Become a master of file management with Path Finder. Take full control over your file system. Save your time: compare and synchronize folders, view hidden files, use Dual Pane and full keyboard... Read more
Sid Meier's Civilization: Beyond Ea...
Sid Meier's Civilization: Beyond Earth is a new science-fiction-themed entry into the award-winning Civilization series. Set in the future, global events have destabilized the world leading to a... Read more
ForkLift 2.6.6 - Powerful file manager:...
ForkLift is a powerful file manager and ferociously fast FTP client clothed in a clean and versatile UI that offers the combination of absolute simplicity and raw power expected from a well-executed... Read more
Microsoft Remote Desktop 8.0.21 - Connec...
With Microsoft Remote Desktop, you can connect to a remote PC and your work resources from almost anywhere. Experience the power of Windows with RemoteFX in a Remote Desktop client designed to help... Read more
OnyX 3.1.0 - Maintenance and optimizatio...
OnyX is a multifunctional utility for OS X. It allows you to verify the startup disk and the structure of its System files, to run miscellaneous tasks of system maintenance, to configure the hidden... Read more
Spotify - Stream music, crea...
Spotify is a streaming music service that gives you on-demand access to millions of songs. Whether you like driving rock, silky R&B, or grandiose classical music, Spotify's massive catalogue puts... Read more
ExpanDrive - Access cloud storag...
ExpanDrive builds cloud storage in every application, acts just like a USB drive plugged into your Mac. With ExpanDrive, you can securely access any remote file server directly from the Finder or... Read more
Markly 1.5.3 - Create measurement and de...
Markly is a measurement and design-spec plugin/extension for Photoshop and Sketch. It is made for modern Web designers and app front-end developers. You can add specification marks simply by clicking... Read more
Suitcase Fusion 6 17.3.0 - Font manageme...
Suitcase Fusion 6 is the creative professional's font manager. Every professional font manager should deliver the basics: spectacular previews, powerful search tools, and efficient font organization... Read more
Nisus Writer Pro 2.1.2 - Multilingual wo...
Nisus Writer Pro is a powerful multilingual word processor, similar to its entry level products, but brings new features such as table of contents, indexing, bookmarks, widow and orphan control,... Read more

Balls & Holes - Tips and tricks to h...
Balls & Holes is a gorgeous new endless runner that challenges you to make it as far up a mountain as possible before inevitably being sliced into a load of gooey bits. Making this task more difficult are both the wide variety of balls that... | Read more »
Balloony Land offers a fresh twist on th...
Balloony Land by Palringo offers a fresh twist on the match three genre and is out now on iOS and Android. First-off, you'll be popping balloons instead of crushing candy and the balloons will float up and fill the empty spaces instead of dropping... | Read more »
Graphic - vector illustration and design...
Graphic - vector illustration and design 1.0 Device: iOS iPhone Category: Productivity Price: $2.99, Version: 1.0 (iTunes) Description: Autodesk Graphic is a powerful full-featured vector drawing and illustration application right in... | Read more »
Sago Mini Babies (Education)
Sago Mini Babies 1.0 Device: iOS Universal Category: Education Price: $2.99, Version: 1.0 (iTunes) Description: Introducing the Sago Mini babies. Boys and girls love caring for these adorable characters. Feed Robin her favorite mush... | Read more »
PAUSE - Relaxation at your fingertip (H...
PAUSE - Relaxation at your fingertip 1.1 Device: iOS iPhone Category: Healthcare & Fitness Price: $1.99, Version: 1.1 (iTunes) Description: | Read more »
Super Sharp (Games)
Super Sharp 1.1 Device: iOS Universal Category: Games Price: $1.99, Version: 1.1 (iTunes) Description: Your finger has never been so sharp! Cut with skill to complete the 120 ingenious physics levels of Super Sharp and become a cut... | Read more »
Assembly - Graphic design for everyone...
Assembly - Graphic design for everyone 1.0 Device: iOS Universal Category: Photography Price: $2.99, Version: 1.0 (iTunes) Description: Assembly is the easiest most powerful design tool on the App Store. Create anything you can... | Read more »
Dub Dash (Games)
Dub Dash 1.0 Device: iOS Universal Category: Games Price: $1.99, Version: 1.0 (iTunes) Description: ARE YOU READY FOR THE ULTIMATE CHALLENGE? UNIQUE SYMBIOSIS OF MUSIC AND GRAPHICS | Read more »
Leave Me Alone (Games)
Leave Me Alone 1.0 Device: iOS Universal Category: Games Price: $1.99, Version: 1.0 (iTunes) Description: 33% off launch sale!!! Somewhere between the 1980s and 1990s there exists a world that never was. A world of skatepunks,... | Read more »
YAMGUN (Games)
YAMGUN 1.0 Device: iOS Universal Category: Games Price: $2.99, Version: 1.0 (iTunes) Description: The invasion has begun! Protect the walls of the citadel against waves of enemies! But watch out, you will soon run out of ammo...... | Read more »

Price Scanner via

13-inch 2.7GHz/128GB Retina MacBook Pro on sa...
Best Buy has the 13″ 2.7GHz/128GB Retina MacBook Pro on sale for $1174.99 for a limited time. Choose free shipping or free local store pickup (if available). Sale price for online orders only, in-... Read more
App Tamer 2.1 Makes El Capitan Cooler, Quiete...
St. Clair Software has announced the availability of a free update to its App Tamer utility for Mac OS X. App Tamer 2.1 delivers compatibility with Yosemite and improves its support for a number of... Read more
15-inch Retina MacBook Pros on sale for up to...
B&H Photo has 2015 15″ Retina MacBook Pros on sale for up to $160 off MSRP including free shipping plus NY sales tax only: - 15″ 2.2GHz Retina MacBook Pro: $1849.99 $150 off - 15″ 2.5GHz Retina... Read more
12-inch Retina MacBooks on sale for $100 off...
Best Buy has 12″ Retina MacBooks available for $100 off MSRP on their online store. Choose free shipping or free local store pickup (if available). Discounted prices available for online orders only... Read more
MacBook Airs on sale for up to $100 off MSRP
Save up to $100 on the purchase of a new 2015 13″ or 11″ 1.6GHz MacBook Air at the following resellers. Shipping is free with each model: 11" 128GB MSRP $899 11" 256GB... Read more
Save 15% with Apple refurbished Mac Pros
The Apple Store has Apple Certified Refurbished Mac Pros available for up to $600 off the cost of new models. An Apple one-year warranty is included with each Mac Pro, and shipping is free. The... Read more
Apple restocks refurbished Mac minis for up t...
Apple has restocked Certified Refurbished 2014 Mac minis, with models available starting at $419. Apple’s one-year warranty is included with each mini, and shipping is free: - 1.4GHz Mac mini: $419 $... Read more
TP-LINK Next-Gen Routers Support a Large Numb...
TP-LINK, specialists in consumer and business networking products, have announced the availability of Archer C2600, the company’s next-generation router featuring wireless AC, multi-user MIMO, and 4-... Read more
Apple’s Education discount saves up to $300 o...
Purchase a new Mac or iPad using Apple’s Education Store and take up to $300 off MSRP. All teachers, students, and staff of any educational institution qualify for the discount. Shipping is free, and... Read more
Save up to $350 with Apple refurbished iMacs
Apple has Certified Refurbished iMacs available for up to $350 off the cost of new models. Apple’s one-year warranty is standard, and shipping is free: - 27″ 3.5GHz 5K iMac – $1949 $350 off MSRP - 27... Read more

Jobs Board

*Apple* Retail - Multiple Positions (US) - A...
Job Description:SalesSpecialist - Retail Customer Service and SalesTransform Apple Store visitors into loyal Apple customers. When customers enter the store, you're Read more
Validation Engineering Manager - *Apple* Wa...
…hardware and software development to lead the validation of the next generation Apple Watch and related products. The Validation Team works closely with many Read more
Senior Payments Architect - *Apple* Pay - A...
**Job Summary** Apple , Inc. is looking for a highly motivated, innovative and hands-on senior payments architect to join the Apple Pay Engineering team. You will Read more
*Apple* Retail for Business Support Supervis...
…is looking for a motivated, outgoing, and creative individual who wants to offer Apple Business Customers an unparalleled customer experience. The Apple Retail for Read more
*Apple* Solutions Consultant - Retail Sales...
**Job Summary** As an Apple Solutions Consultant (ASC) you are the link between our customers and our products. Your role is to drive the Apple business in a retail Read more
All contents are Copyright 1984-2011 by Xplain Corporation. All rights reserved. Theme designed by Icreon.