TweetFollow Us on Twitter

Jan 00 Challenge

Volume Number: 16 (2000)
Issue Number: 1
Column Tag: Programmer's Challenge

Programmer's Challenge

by Bob Boonstra, Westford, MA

Peg Triangle

Welcome to the New Year! If you're not one of those people who quibble about whether the new century starts in 2000 or 2001, welcome also to a new century and a new millennium! As I write this, I can't be certain whether the doomsday predictions will turn out to have had any validity, but I'm betting that as you read this, the lights will be on, the telephones will work, the ATMs might be occasionally short of cash, the grocery stores will be replenishing their canned goods, and the pundits will be questioning what the fuss was all about. (At least this is my prediction for the so-called First World - I'm not close enough to the situation in the rest of the world to be as confident.) Of course, as someone whose Real Job included making certain that this transition to January was as boring as any other, I know that there was a lot of hard work invested in ensuring that life went on in the IT world.

But I'm betting that most of you are ready and able to take on this month's Programmer's Challenge. Especially since most of you are presumably Mac users, who didn't (or don't) have to go through the complicated process of remediating their Monopoly-OS machine so that it would continue to function. We're going to make the Challenge a little simpler this month, in hopes of encouraging some new participants to take a shot at making the Top Five.

A while back my daughter presented me with a puzzle she had made in wood-shop. (Yes, my town has progressed to the point where the girls take wood-shop and metallurgy classes and the boys take cooking and sewing.) The puzzle is a triangular block of wood with holes drilled into a triangular pattern: 1 hole in the first row, 2 holes in the second, etc. A peg occupies each of the holes, except one. The puzzle is solved by a sequence of jump moves, where a peg jumps over an adjacent peg into an open hole in the same direction, after which the jumped peg is removed from the board. The object of the game is to remove all of the pegs from the board, except one.

Our Challenge will be a slight generalization of this puzzle. The initial board position will always contain at least one vacant hole, but perhaps more than one. The object will be to minimize the number of pegs remaining on the board at the end of the game, but because of the initial configuration it might not be possible to reduce the number of pegs remaining to one.

The prototype for the code you should write is:

#if defined(__cplusplus)
extern "C" {
#endif

typedef struct TrianglePegPosition {
	short row;	/* 0..numberOfRows */
	short col;	/* -row, -row+2, ..., +row */
} TrianglePegPosition;

typedef struct PegJump {
	TrianglePegPosition from;
	TrianglePegPosition to;
	// must satisfy
	// ( (to.row == from.row) && (to.col == from.col +- 4) && 
	//			((from.row +- 1, from.col +-2) occupied) ||
	//   (to.row == from.row +- 2) && (to.col == from.col +- 2) &&
	//			((from.row +- 1, from.col +-1) occupied) )
} PegJump;

short /* number of moves */ SolvePegTriangle (
	short triangleSize,	/* number of rows in triangle to solve */
	short numInitialPegs,	/* number of pegs in starting puzzle position */
	TrianglePegPosition initialPegPositions[],
		/* peg locations in starting puzzle position */
	PegJump pegJumps[]
		/* return peg moves that solve the puzzle here, in sequence */
);

#if defined(__cplusplus)
}
#endif

Your SolvePegTriangle routine is provided with the initial puzzle conditions and must store the moves required to solve the puzzle in pegJumps, returning from SolvePegTriangle the number of moves in pegJumps. As initial conditions, SolvePegTriangle is given the dimension of the puzzle (triangleSize), the number of pegs in the initial puzzle state (numInitialPegs), and the position of those initial pegs.

The winner will be the solution that solves a sequence of puzzles at the lowest cost. Each millisecond of execution time used to solve the puzzles will incur a cost of 1 point. Each peg left on the board beyond the first will incur a cost of 1000 points (whether or not it is possible to remove all but one peg from the board).

This will be a native PowerPC Challenge, using the CodeWarrior Pro 5 environment. Solutions may be coded in C, C++, or Pascal. Solutions in Java will also be accepted this month. Java entries must be accompanied by a test driver that uses the interface provided in the problem statement.

Remember that you can get a head start on the Programmer's Challenge by subscribing to the Challenge mailing list. See www.mactech.com/progchallenge/ for details.

Three Months Ago Winner

The October SuperDuperGhost Challenge attracted entries from four of the top six contestants in the Programmer's Challenge points standing, and the top two in the points standing finished one and two. Congratulations to Ernst Munter (Kanata, Ontario) and Tom Saxton for finishing first and second, respectively, in the Ghost Challenge.

The SuperDuperGhost Challenge required contestants to compete in a tournament, where the object was to win a generalized game of Ghost. The concept of Ghost is simple - players spell a word, taking turns adding letters, trying to avoid being the one to add the last letter to a word in the dictionary. SuperDuperGhost complicated the original game by allowing the addition of letters to the end of the string, to the beginning of the string, to the beginning or the end, or finally at any place in the growing string, depending on the mode of the game. Scoring was based on winning games, with a penalty based on execution time, and an additional penalty for forming a word without declaring yourself the loser.

Each of the four entries in the Challenge competed against every other entry, with each player having a chance to play first against each other. With four entries in this Challenge, that meant that there were 12 matches in each round, of which each entry competed in 6. I conducted 10 rounds of competition, times four game modes (addToEndOnly, addToBeginningOnly, addToBeginningOrEnd, addAnywhere), for a total of 480 matches, with each player competing in 60 of each type.

Playing first had a significant advantage. Ernst's winning entry was successful in every single match where it made the first move, regardless of whether the game mode allowed additions to the beginning, end, beginning or end, or arbitrary location within the growing word string. Tom's second place entry did almost as well, winning 117 of the 120 matches where it played first. The third-place entry of Sebastian Maurer won all of the entries where it played first for the game modes in which it chose to compete; however, Sebastian only had time to complete code for two of the modes of the game (addToEndOnly and addToBeginningOnly). The table below lists the number of wins achieved by each entry in each of the four modes of the game.

  Wins
addEnd
Wins
addBeginning
Wins
addEither
Wins
addAnywhere
Ernst Munter 38 40 50 49
Tom Saxton 39 40 49 45
Sebastian Maurer 39 40 0 0
JG Heithcock 4 0 21 26

In the addToEndOnly and addToBeginningOnly modes, Ernst employs a recursive solution to find a letter that does not complete a word, but which forces an opponent to complete a word. If a win cannot be guaranteed, he selects a letter that admits solutions where his opponent must complete a word. Depending on the dictionary, this strategy always succeeds when Ernst moves first and sometimes succeeds otherwise. In the other two game modes, the code attempts to force the opponent to complete a word, but otherwise tries to guarantee that the opponent is forced to make a word shorter than the shortest word Ernst can be forced to make.

The table below lists, for each of the solutions submitted, the total score achieved, the execution time in milliseconds, the total number of wins achieved, the number of wins when playing first, and the size and language code parameters. As usual, the number in parentheses after the entrant's name is the total number of Challenge points earned in all Challenges prior to this one.

Name Score Time (msec) Total Wins Wins play first Code Size Data Size Lang
Ernst Munter (527) 17700979 177120 10412 2019 C++
Tom Saxton (128) 17250 2575 173 117 6132 637 C
Sebastian Maurer (70) 7900 1157 79 60 4448 187 C
JG Heithcock (39) 5000 1543 51 28 2856 97 C

Top Contestants

Listed here are the Top Contestants for the Programmer's Challenge, including everyone who has accumulated 10 or more points during the past two years. The numbers below include points awarded over the 24 most recent contests, including points earned by this month's entrants.

RankNamePoints
1.Munter, Ernst237
2.Saxton, Tom126
3.Maurer, Sebastian77
4.Boring, Randy66
5.Rieken, Willeke51
6.Heithcock, JG43
7.Shearer, Rob34
8.Brown, Pat20
9.Hostetter, Mat20
10.Mallett, Jeff20
11.Jones, Dennis12
12.Hart, Alan11
13.Hewett, Kevin10
14.Murphy, ACC10
15.Selengut, Jared10
16.Smith, Brad10
17.Strout, Joe10
18.Varilly, Patrick10

There are three ways to earn points: (1) scoring in the top 5 of any Challenge, (2) being the first person to find a bug in a published winning solution or, (3) being the first person to suggest a Challenge that I use. The points you can win are:

1st place20 points
2nd place10 points
3rd place7 points
4th place4 points
5th place2 points
finding bug2 points
suggesting Challenge2 points

Here is Ernst's winning Ghost solution:

ghost-v2.cp
Copyright © 1999
Ernst Munter, Kanata, ON, Canada

/*  
  October 3, 1999.
  Submission to MacTech Programmer's Challenge for October 99.
  Copyright © 1999, Ernst Munter, Kanata, ON, Canada.
  
          "Super Duper Ghost"
          
  Version 2.
  
Problem Statement
---------
The program plays a game of ghost against one other player. Given a
dictionary, and an initial ghost string, one letter  must be added to
the ghost string without making a dictionary word.  But the new ghost
string must be part of a dictionary word.

There are four game types:
  (0) add a letter only to the end of the ghost string
  (1) add a letter only to the beginning.
  (2) add a letter only to the either the end or the beginning 
  (3) add a letter anywhere
  
Solution Strategy
---------
At each stage of the game the current ghost string is incremented by one
letter to yield a new ghost string.  Processing at each stage in the
game is independent of previous steps.  A "wordInMind" at one step may
be completely different from the wordInMind at the previous or the next
step.

A full lookahead is employed for game type (0), using recursion. The
objective is to find a letter which does not complete a word, but which
forces the opponent to make a word.

Depending on the actual dictionary, this strategy leads to a certain win
whenever possible.

If a win cannot be assured by the lookahead search, I select a move
which preferably includes words the opponent must make.  But of course,
the failed search means that the opponent can win if they play
correctly.

The strategy for game type (1) is identical.  In order to be able to use
the same code, all working strings are reversed, and the lookups are
done with a sorted inverse dictionary in which all words are reversed
(PLAIN becomes NIALP).

Modes 2 and 3
-------
Game types 2 and 3 are more complex and the strategy for these modes is
slightly different to account for the more difficult job of finding
valid target words.

Some of the code from the Disambiguator Programmers Challenge of July
1997 is reused to provide a method for finding dictionary words matching
ghost strings according to modes 2 and 3.

But because this lookup is not as fast as the direct binary search used
in modes 0 and 1, full look-ahead cannot be accomplished in a short
enough time.  So only a simple heuristic is used:

The words are conceptually divided into odd and even sets. A player who
starts will loose if he makes a word with an odd number of letters. 
Conversely, he can win if he can force the  opponent to make an
even-length word.

The choice of the next letter to play is thus based on an analysis of
all possible next letters, in all possible positions in the ghost
string.

The first choice, if available, is to use a letter that results in only
words the opponent can make (thus guaranteeing a win).

The second choice is to use a letter where the shortest word I can make
is longer than the shortest word the opponent can make.

Optimizations
-------
The moves for ghostStrings of length 0 and 1 are cached to avoid
recomputation when several games are played.

Assumptions
------
Dictionary words are at least 4, and at most 31 characters long.

Dynamic memory allocated by the program for the inverse dictionary and
the disambiguator tables is about 24 bytes per word of the  original
dictionary (depending on actual average word length).

Static memory is about 2K.

*/

#define DBG 0

#include "ghost.h"
#include "newdisambig.h"
#include "myString.h"
#include <string.h>
#include <stdlib.h>
#if DBG
#include <stdio.h>
#else
#define NDEBUG
#endif
#include <assert.h>

/******************** typedefs ************************/
typedef unsigned long ulong;
typedef const char* charPtr;
struct CacheType {
  ulong     response;// (insertion_point << 8) + character
  charPtr*  wordInMind;
};
typedef CacheType Cache[32];

/********************  globals  **********************/
static charPtr* gDictWords;
static long   gNumWords;     
static char*  gInverseChars;
static charPtr* gInverseDict;
static GameType gGameType;

// Selection of character orders for faster convergence
static char* gSearchOrder="JQXZWKVFBYHPMGUDCLOTNRASIE";
static char* gAlternateOrder="EISARNTOLCDUGMPHYBFVKWZXQJ"; 

// Caches of the 1st and second character choices
static Cache cache[4];
static CacheType* choices;
          
/******************** Utilities ***********************/
ClearCaches 
static void ClearCaches()
{
  memset(cache,0,sizeof(cache));
  choices=cache[0];
}

ReverseString 
static void ReverseString(char* s,int len)
{
  char* l=s;
  char* r=s+len-1;
  char t=*l;*l=*r;*r=t;
  for (int i=1;i<len/2;i++){
    char t=*++l;*l=*-r;*r=t;
  }
}

Expand 
inline void Expand(char* newGhost,char* fragment,
  int newGhostLen,int insert) 
// copy fragment into newGhost, leaving space for insert  
{
  strncpy(newGhost,fragment,insert);
  strncpy(newGhost+insert+1,fragment+insert,newGhostLen-insert);
  newGhost[newGhostLen]=0;
} 

CmpStr 
static int CmpStr(const void* a,const void* b)
{
  return StrCmp4(*((charPtr*)a),*((charPtr*)b));
}

IsinDict 
static charPtr* IsinDict(charPtr s)
{
  charPtr* x=(charPtr*)bsearch(&s,gDictWords,gNumWords,4,CmpStr);
  return x;
}

GetCharPositions 
static void GetCharPositions(
  char* ghostString,
  int   ghostLen,
  const char* word,
  int*  charPositions)
{
// Collects character positions for mode 3 from actual word
  int k=-1;
  for (int i=0;i<ghostLen;i++) {
    char c=*ghostString;
    char d;
    while (0 != (d=word[++k])) {
      if (c==d) break;
    }
    if (d==0)
      return;
    charPositions[i]=k; 
    ghostString++;
  }
} 


// Customized heap sort for the inverse dictionary
Send 
static void Send(
// Inserts word wp in wordList as a priority queue
// in preparation for sorting later
  charPtr wordList[],
  charPtr wp,
  ulong numWords) 
{
  charPtr* base=wordList-1;
  charPtr z;
  long i=numWords+1,j=i>>1;
  while ((j>0)&&StrCmp4(wp,z=base[j])>0) {
    base[i]=z;
    i=j;
    j=i>>1;
  }
  base[i]=wp;
}

Sort 
static void Sort(
  charPtr wordList[],
  long numWords) 
{
// Heap sort step 2, used for final sorting of the wordList.
  charPtr* sList=wordList-1;
  charPtr x;
  int  i,j;
  charPtr* b=sList+numWords+1;
  if (numWords>1) do {
    i=1;j=2;
    x=sList[numWords-];
    *(-b) = sList[1];
    if (numWords<=1) {
      sList[1]=x;
      break;
    }
    while (j<=numWords) {
      if ((j<numWords) &&
          (StrCmp4(sList[j],sList[j+1])<0))
        j++;
      if (StrCmp4(x,sList[j])>=0)
        break;
      sList[i]=sList[j];
      i=j;j+=j;
    }
    sList[i]=x;
  } while(1);
}


/****************** The inverse dictionary **********/
ScanDict 
static int ScanDict()
{
// counts characters in all dictionary words
  int num=0;
  const charPtr* d=gDictWords;
  for (int i=0;i<gNumWords;i++,d++)
  {
    num+=StrLen4(*d);
  }
  return num;
}

InverseCopy 
static void InverseCopy(int numChars)
{
// Copies/inverts all words from gDictWords to gInverseDict 
// by doing a character by character copy back to front.
  const charPtr* d=gDictWords;
  char* dest=gInverseChars+numChars;
  int numWords=0;
  for (int i=0;i<gNumWords;i++,d++)
  {
    *-dest=0;
    const char* src=*d;
    while (*src) {
      *-dest = *src++;
    }
    Send(gInverseDict,dest,numWords++);
  }
}

MakeInverseDict 
static void MakeInverseDict()
{
  if (gInverseDict) // already initialized
    return;
    
  int numChars=ScanDict();
  gInverseChars=new char[numChars+gNumWords];
  gInverseDict=new charPtr[gNumWords];
  InverseCopy(numChars+gNumWords);
  Sort(gInverseDict,gNumWords); 
}

DeleteInverseDict 
static void DeleteInverseDict()
{
  if (gInverseDict) {
    delete [] gInverseDict;
    gInverseDict=0;
  }
  if (gInverseChars) {
    delete [] gInverseChars;
    gInverseChars=0;
  }
}

/************ Finding ghosts in a dictionary ***********/

CmpFragment 
static int gLength;
static int CmpFragment(const void* a,const void* b)
{
  return strncmp(*((charPtr*)a),*((charPtr*)b),gLength);
}

FindFirst 
static charPtr* FindFirst(
  charPtr fragment,
  int len,
  charPtr* dict)
{
  charPtr* x;
  {
    gLength=len;          
    x=(charPtr*)bsearch(&fragment,dict,gNumWords,4,
      CmpFragment);
    if (strncmp(fragment,*x,len))
      return 0; 

    while (x>dict) {
      charPtr* y=x-1;           
      if (strncmp(fragment,*y,len)) 
        break;
      x=y;  
    }
  } 
  return x;
} 

/************** Choosing the next move *******************/

Choose01
static ulong Choose01(
  char* fragment, // word fragment (ghost string)
  int fragLen,  
  charPtr* dict)
// Recursive search for best next character, modes 0 and 1  
// Returns char-to-play that would force opp to make a word
{

// Try the whole alphabet, least used letters first
  char* tryChar=gSearchOrder;
  do {
// tack a character to the end of the fragment  
    fragment[fragLen-1]=*tryChar;       
// find the shortest matching word in the dictionary      
    charPtr* x=FindFirst(fragment,fragLen,dict);
    if (x){
      if ((*x)[fragLen]==0) {
// bad choice: we must not make a complete word
        continue;
      } else {
// call opponent's choice, see if they can win      
        char next=Choose01(fragment,fragLen+1,dict);
        if (next==0){
// opponont is forced to make a word, caller wins with this choice
          return *tryChar;
        } 
      }
    } 
  } while (*++tryChar); 
// remove letter and terminate shorter string before returning  
  fragment[fragLen-1]=0;
// failed 
  return 0;
}

#if DBG
static int S[4];
#endif

Choose23
static ulong Choose23(char* fragment,int newGhostLen)
// Search for best move for modes 2 and 3 
// Returns character and insertion point, packed in <16 bits
{
  ulong bestResponse=0;
  
// words are in groups according to length, even and odd.
// myGroups contain words I would complete
// oppGroups contain words the opponent would complete  
  int myGroups=newGhostLen & 1;
#define oppGroups (1 ^ myGroups)
#define MYGROUP(x) (0==(((x)^newGhostLen)&1))
#define OPPGROUP(x) (0!=(((x)^newGhostLen)&1))
  int step=1;
  if ((gGameType==addToBeginningOrEnd) &&
    (newGhostLen>1))
      step=newGhostLen-1;
  
  int delta,bestDelta=-64;
  for (int insert=0;insert<newGhostLen;insert+=step)
  {
    char newGhost[32];
    Expand(newGhost,fragment,newGhostLen,insert);
    
    char* tryChar;
    if (newGhostLen==1) tryChar=gAlternateOrder;
    else tryChar=gSearchOrder;
    
    do {
      newGhost[insert]=*tryChar;    
      int shortest[2];
      int numGroups=
      ShortestMatches(newGhost,newGhostLen,gGameType,shortest);
      
      if (numGroups==0) // The fragment is not found in any word
        continue;
      
      if (numGroups==1)
      {
        if MYGROUP(shortest[0]) { 
          if (shortest[0]==newGhostLen) {
// must never make a dictionary word
            continue;         
          }
// Mygroup words are bad, opp loose only if they make a mistake
          delta=shortest[0]-64;
          if (delta>bestDelta) {
// But keep longest of these choices, it may be all we have
            bestDelta=delta;
            bestResponse=*tryChar + (insert<<8);
          }
        } else { 
// I am guaranteed to win, return immediately
          bestResponse=*tryChar + (insert<<8);
          return bestResponse;
        }
      } else {
// Words in both groups. Keep the one with the highest delta,
// that is where opponents word(s) are shorter than mine.     
        if MYGROUP(shortest[0]) {
          if (shortest[0]==newGhostLen) {
// must never make a dictionary word
            continue;         
          }
          delta=shortest[0]-shortest[1];
        } else {
          if (shortest[1]==newGhostLen) {
// must never make a dictionary word
            continue;         
          }
          delta=shortest[1]-shortest[0];
        }
          
        if (delta>bestDelta) {
          bestDelta=delta;
          bestResponse=*tryChar + (insert<<8);
        }           
      }
      
    } while (*++tryChar);
  }
  return bestResponse;
}

/************** Playing the next move *******************/

PlayMode0
static charPtr* PlayMode0(
    int     newGhostLen,
    char    newGhostString[256],
    charPtr*  dict,
    ulong&    response)
{
  
// use recursive search for winning move  
  response=Choose01(newGhostString,newGhostLen,dict);

  if (response) goto OK;
  
// else
// no winning move was found, so let's use a heuristic choice:
// The preference is for the shortest string of even (odd) length
// which the opponent would have to make.  But if all available
// words are of the wrong length (I will have to make it), I choose
// a longer target word to increase the chances for the opponent
// to make a mistake.  
  charPtr* z=FindFirst(newGhostString,newGhostLen-1,dict);
  ulong bestResponse[2]={0,0};
  ulong len,bestLen[2];
  
  int preferShort=1 & (newGhostLen+1);
#define preferLong (1-preferShort)
  bestLen[preferLong]=0;
  bestLen[preferShort]=100;
  response=0; 
  for(;;) {
// get first word which differs in the next letter    
    do {
      ulong nextLetter=(*z)[newGhostLen - 1];
      if (nextLetter > response) {
        response=nextLetter;
        len=StrLen4(*z);
        if (len > newGhostLen)
          goto Try_This;
      }
      z++;
      if (z>=dict+gNumWords) 
        break;
// make sure it is still the same word stem 
    } while(0==strncmp(newGhostString,*z,newGhostLen-1));
no_other_choice:    
    break;
      
Try_This:
// record longest and shortest alternatives
    if ((len&1)==preferShort){
      if (len <= bestLen[preferShort]) {
        bestLen[preferShort]=len;
        bestResponse[preferShort]=response;
      }
    } else {
      if (len >= bestLen[preferLong]) {
        bestLen[preferLong]=len;
        bestResponse[preferLong]=response;
      }
    }
  }
    
  if (bestLen[preferShort] < 100) { 
    response=bestResponse[preferShort];
    goto OK;
  } 
  if (bestLen[preferLong] > 0) { 
    response=bestResponse[preferLong];
    goto OK;
  } 
  
// Bluffing is not allowed, so we have to give up:
  return 0;
  
OK: 
  newGhostString[newGhostLen-1]=response;
  newGhostString[newGhostLen]=0;  
  
  return FindFirst(newGhostString,newGhostLen,dict);
}

PlayMode1
static charPtr* PlayMode1(
  int newGhostLen,
  char newGhostString[256],
  ulong & response)
{ 
// returns wordInMind 
// mode 1 (add at beginning) can be handled by mode 0 logic
// after all strings are reversed.
  if (newGhostLen>2) 
    ReverseString(newGhostString,newGhostLen-1);
    
  charPtr* wordInMind = 
    PlayMode0(newGhostLen,newGhostString,gInverseDict,response);
    
  if (wordInMind)
  { 
// have to reverse wordInMind string and ghost string to normal
    char buffer[32];
    strcpy(buffer,*wordInMind); 
    int wordLen=strlen(buffer);
    ReverseString(buffer,wordLen);
    if (newGhostLen>1) 
      ReverseString(newGhostString,newGhostLen);
    
// and then find actual word in proper dictionary
    wordInMind=FindFirst(buffer,wordLen,gDictWords);

    return wordInMind;
  }
  return 0;
}

PlayMode23
static charPtr* PlayMode23(
  int   newGhostLen,
  char  newGhostString[256],
  ulong&  response)
{
// returns wordInMind 
  response=Choose23(newGhostString,newGhostLen);
  if (response) {
    char c=response & 0xFF;
    int insert=response>>8;
    
    char newGhost[32];
    Expand(newGhost,newGhostString,newGhostLen,insert);
    newGhost[insert]=c;
    strcpy(newGhostString,newGhost);
    
    charPtr wordInMind=ShortestWord(newGhost,gGameType);
    
// find the chosen word_in_mind in the dictionary
    charPtr* dictWord=IsinDict(wordInMind);
    return dictWord;
  }
  return 0; 
}

MakeReport 
static int MakeReport(
  int   ghostLen,
  char  newGhostString[256],
  charPtr* wordInMind,
    int   charPositions[256])
{
// Returns wordInMindIndex for the actual word chosen
// and computes charPositions from the word, according to mode
  int wordLen=strlen(*wordInMind);
  switch (gGameType) {
case addToEndOnly:
    for (int i=0;i<ghostLen;i++) 
      charPositions[i]=i;
    break;  
case addToBeginningOnly:
    for (int i=0;i<ghostLen;i++) 
      charPositions[i]=wordLen-ghostLen+i;
    break;  
case addToBeginningOrEnd: 
    {
      char* start=strstr(*wordInMind,newGhostString);
      assert(start);
      for (int i=0;i<ghostLen;i++) 
        charPositions[i]=start-*wordInMind+i;
    }
    break;
case addAnywhere:
    GetCharPositions(
      newGhostString,ghostLen,*wordInMind,charPositions);
  }
  return wordInMind-gDictWords;
}

/***************** Non-static Functions ********************/

InitSuperDuperGhost
void InitSuperDuperGhost(
  const char *dictWords[],  /* alphabetically sorted uppercase dictionary words */
  long numDictionaryWords /* number of null-terminated words in dictionary */
) {
  gDictWords=dictWords;
  gNumWords=numDictionaryWords;
  ClearCaches();
}  

NewGhostGame 
void NewGhostGame(
  GameType theGameType
) {
  if (gGameType != theGameType) {
    gGameType=theGameType;
    choices=cache[theGameType];
    
    if (gGameType == addToBeginningOnly) 
      MakeInverseDict();
      
    else if (gGameType > addToBeginningOnly)
      InitDisambiguator(gDictWords,gNumWords);
  }
}

PlayGhost 
void PlayGhost(
    const char *ghostString,  /* the string so far, null-terminated */
    char newGhostString[256], /* new ghostString, one letter added to ghostString */
    int *wordInMindIndex, /* your string will match dictWords[wordInMindIndex] */
    int charPositions[256]
  /* index into dictWords[wordInMindIndex] for each char in newGhostString */
) {
  int newGhostLen=strlen(ghostString)+1;
  strcpy(newGhostString,ghostString);
  newGhostString[newGhostLen]=0;
  charPtr* wordInMind=0;
  
// check cached choices for very short ghosts.
  ulong response=0;
  if (newGhostLen<=2) {
    if (newGhostLen<2) {
      wordInMind=choices[0].wordInMind;
      if (wordInMind) {
        response=choices[0].response;
        newGhostString[0]=response; 
        goto succeed; 
      }     
    } else {
      wordInMind=choices[31&ghostString[0]].wordInMind;
      if (wordInMind) {
        response=choices[31&ghostString[0]].response; 
        if (response>>8) {  
          newGhostString[1]=response; // append
        } else  {
          newGhostString[0]=response; // insert
          newGhostString[1]=ghostString[0]; 
        }
        goto succeed;
       }        
    }
  }
    
  switch (gGameType) {
case addToEndOnly:
    wordInMind=PlayMode0(
      newGhostLen,newGhostString,gDictWords,response);
    if (wordInMind) break;  
    else goto fail;
case addToBeginningOnly:
    wordInMind=PlayMode1(newGhostLen,newGhostString,response);
    if (wordInMind) break;  
    else goto fail;
case addToBeginningOrEnd:
case addAnywhere:
    wordInMind=PlayMode23(newGhostLen,newGhostString,response);
    if (wordInMind) break;  
    else goto fail;
  }

// remember choice in cache 
  if (newGhostLen<=2) {
    if (newGhostLen<2){
      choices[0].response=response;
      choices[0].wordInMind=wordInMind;         
    } else {
      if (gGameType==addToEndOnly) // fixup insertion point
        response |= (1<<8);
      choices[31&ghostString[0]].response=response;
      choices[31&ghostString[0]].wordInMind=wordInMind;   
    }
  }
  
succeed:
  
  *wordInMindIndex=MakeReport(newGhostLen,
    newGhostString,wordInMind,charPositions);
  return; 
  
fail: 
  newGhostString[0]=0;
}

TermSuperDuperGhost 
void TermSuperDuperGhost(void)
{
  DeleteInverseDict();
  TermDisambiguator();
}

newdisambig-v2.cp
#include "newdisambig.h"
#include "myString.h"
#define NDEBUG
#include <assert.h>
/*** Function prototypes ***/
static ulong MakeSubDigest(CCC* xString,char sig[]);
static bool MatchFirstN(CCC* x,char* findString,int minLen,int group);
static bool MatchLastN(CCC* x,char* findString,int minLen,int group);
static bool MatchMiddleN(CCC* x,char* findString,int minLen,int group);
static bool MatchAnyN(CCC* x,char* findString,int minLen,int group);
/*** Static allocations ***/
// charTable serves double duty: 
//    in parsing, it helps separate wild cards.
//    in digest forming, it provides a sort order. 
static char charTable[128] = {
 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
 1, 2, 3, 4, 5, 6, 7, 8, 9,10, 0, 0, 0, 0, 0, 0,
 0,25,12,19,18,28,10,16,13,27, 4, 7,20,14,23,21,
15, 3,24,26,22,17, 9, 8, 5,11, 6, 0, 0, 0, 0, 1,
 0,25,12,19,18,28,10,16,13,27, 4, 7,20,14,23,21,
15, 3,24,26,22,17, 9, 8, 5,11, 6, 0, 0, 0, 0, 0
};
typedef bool (*StringMatch)(CCC* x,char* findString,int minLen,int group);
static StringMatch stringMatch[4]={
  MatchFirstN,
  MatchLastN,
  MatchMiddleN,
  MatchAnyN
};
// The table LSB stores the position of the least 
// significant '1' bit in a byte (range 1 to 8), 
// a zero-byte reports 0.
// This table is built from nested #defines 
#define T1 1
#define T2 T1,2,T1
#define T3 T2,3,T2
#define T4 T3,4,T3
#define T5 T4,5,T4
#define T6 T5,6,T5
#define T7 T6,7,T6
#define T8 T7,8,T7
static char LSB[256]={0,T8}; 
static CCC** gWordList;
static ulong gNumWords;
#define MIN(a,b) (a&b)
// HASH is just shorthand for charTable.
#define HASH(c) (charTable[c])

struct WordIndex
// The class WordIndex holds a pointer to a word from
// wordList and computes digests and signature for it.
struct WordIndex {
  ulong digest1;
  CCC* word;
  void Init(CCC* wordx) {
    CCC* wp=wordx;
    int s=HASH(*wp);
    ulong dig1=1L<<s;
    for (;;) {
      int c;
      if (0==(c=*++wp)) break;
      s=HASH(c);
      ulong bit=1L<<s;
      dig1 |= bit;
    }
    digest1=dig1;
    word=wordx;
  }
  void GetSignature(char* sig) { 
// computes its signature, i.e. converts the digest to a string  
    ulong dig1=digest1>>1;
    char c=1;
    while (dig1){
      if (dig1 & 1)
        *sig++=c;
      c++; dig1 >>=1; 
    } 
    *sig=0;
    return;
  }
  CCC* Word(){return word;} 
};

struct Page
// The class Page holds indices of 32 words in wordList 
// which are of the same length (words >= 31 together).
// Page also contains both word digests for each word,
// in the bits[] array, stored in signature oriented columns. 
// A page provides string matching for the 32 words it owns.
struct Page{  
  CCC*  word[32];
  ulong fill;
  Page* next;
  ulong pageDigest1;      
  ulong bits[32];     
   
  void Init(Page* following) {
// clears all and sets linkage. 
// memory may already be precleared, but not necessarily
// since pages may overlay the temporary wordIndex 
    memset(this,0,sizeof(Page));
    next=following;
  }
  int IsFull() {return (fill>=32);}
  void Add(WordIndex* wip) {
  // Adds one word to a page, 
  // ORs the word digests into the page digests,
  // Also ORs the horizontal bit slice representing word digests
  //  into the bits array.
    char sig[64];
    ulong curbit=1L<<fill;
    word[fill++]=wip->word;
    pageDigest1 |= wip->digest1;
    wip->GetSignature(sig);
    int c;
    char* sigp=sig;
    while (0 !=(c=*sigp++)) {
      bits[c] |= curbit;
    }
  }
  ulong Match(char sig[]) 
  // Accumulates vertical bit slices from a given signature
  // Returns a bit map of likely candidate words
  {
    int c=sig[0];
    ulong acc=bits[c];
    while ((acc) && (0 != (c=*++sig))) {
      acc &= bits[c];
    }
    return acc;
  }
  CCC* GetFirst(
    StringMatch matchFun,
  ulong acc,
    char* findString,
    int minLen,
    int group) 
  {
    CCC** wp=word-1;         
    do {
      ulong accLo=acc & 0xFF;
      if (accLo) {
        int j=LSB[accLo];
        acc>>=j;
        wp+=j;
        if (matchFun(*wp,findString,minLen,group))
          return *wp;
      } else {     
        acc>>=8;  
        wp+=8;
      }
    } while (acc);
    return 0; 
  }
};       

struct PageIndex
// The class PageIndex contains a pointer to a page, and
// keeps a copy of the page digest1.
// During the scan, PageIndex provides a screening function
// to eliminate unnecessary page accesses if digest1 can
// already rule out all words on a page.  
struct PageIndex {
  ulong digest1;  
  Page* page;     
  ulong Init(Page* thePage) {
    digest1=thePage->pageDigest1;
    page=thePage;
    return thePage->fill;
  }
  Page* Screen(ulong findDigest1) {
    if ((findDigest1 ^ (findDigest1 & digest1))) 
      return 0;
    return page;    
  }
};     

struct PrivateData
// The class PrivateData is the main structure mapped into the
// private memory space allocated on the heap.
// The pageGroup[] array holds pointers to linked lists of
//    pages, according to word length.
// Once all pages are assembled, the page addresses are remapped
//    into a linear page index, sorted by ascending word length
// The indexGroup[i] array points to the the first page of each
//    group of pages of a given word length i.
static struct PrivateData {
// Page* nextPage; overlay on unused pageGroup[0]
#define nextPage pageGroup[0]
  Page*  pageGroup[32];
// PageIndex* endOfPageIndex; overlay on indexGroup[0] 
#define endOfPageIndex indexGroup[0]
  PageIndex* indexGroup[32];
  long storageSize;
  int  bottom[1];
  void Init(CCC* wordList[],ulong numWords,long minimumStorage) 
  { 
    gWordList=wordList;
    gNumWords=numWords;
    storageSize=minimumStorage;
    WordIndex* wip; 
// Initialize word index
    WordIndex* wordIndexList=(WordIndex*)bottom;
    for (int n=0;n<numWords;n++) 
      wordIndexList[n].Init(gWordList[n]);
// Unload word index and build pages in linked lists
// based on word length    
    nextPage=(Page*)this + storageSize/sizeof(Page) - 1;
    wip=wordIndexList+numWords;     
    while (wip>wordIndexList) {
      wip-;
      if (0==InsertWordInPage(wip)) 
        return;
    }
// Map linked lists to a linear index of pages by length    
    if (0==BuildIndex()) {
      nextPage=NULL;  // not enough storage
      return;
    }               
  }
  int InsertWordInPage(WordIndex* wip) {
// Inserts one word in a page, opens a new page if
// none exists or if the current page is full.  
    int len=strlen(wip->Word());
    if (len==0) return 1;  // ignore 0-length words
    Page* page=pageGroup[len];    
    if ((page==0) || (page->IsFull())) {             Page* temp=page;  
      page=nextPage-;      
// test if the bottom of the growing page array collides 
// with the top of the shrinking word index array        
      if (page <= (Page*)wip) {
// not enough storage, we have to bail out
        nextPage=NULL;  
        return 0;
      }
      page->Init(temp);
      pageGroup[len]=page;
    }  
    page->Add(wip);              
    return 1;
  }
  PageIndex* BuildIndex() {
// Builds the page index, starting at this->bottom, 
// overwriting storage previously used by word index.
    PageIndex* pi=(PageIndex*)bottom;
    PageIndex* piTop=(PageIndex*)nextPage;
    for (int len=1;len<32;len++) {
      Page* page=pageGroup[len];
      indexGroup[len]=pi;
      int num=0;
      while (page) {
        if (pi>=piTop) 
          return 0;
        num+=pi++->Init(page);
        page=page->next;
      }
    }
    return (endOfPageIndex=pi);
  }
  CCC* GetShortestWord( 
      char* findString,
      int mode) 
  {            
// Return the shortest word compatible with findstring and mode  
    char sig[64];
    ulong findDigest1=MakeSubDigest(findString,sig);
    int minLen=strlen(findString);
    for (int group=minLen;group<32;group++)
    {
    PageIndex* pi=indexGroup[group];
    PageIndex* endGroup=
    (group<31?indexGroup[group+1]:endOfPageIndex);
      for (;pi<endGroup;pi++) {
          Page* page=pi->Screen(findDigest1);
          if (page) {
            ulong acc=page->Match(sig);
            if (acc) {
              CCC* matchWord=page->GetFirst(
                stringMatch[mode&3],
                  acc,findString,minLen,group);
                if (matchWord)
                  return matchWord; 
              }   
          }
      }
    }
    return 0;
  }
  int GetShortestMatches( 
      char* findString,
      int minLen,
      int mode,
      int shortest[2]) 
  {           
//  Finds the shortest word matching findString and mode.
//  Returns the length of this word, or 0 if none found 
//  Only check words of even (odd) length
    char sig[64];
    ulong findDigest1=MakeSubDigest(findString,sig);  
    int step=1,numFound=0;
    for (int group=minLen;group<32;group+=step) {
    PageIndex* pi=indexGroup[group];
    PageIndex* endGroup=
    (group<31?indexGroup[group+1]:endOfPageIndex);
      for (;pi<endGroup;pi++) {
          Page* page=pi->Screen(findDigest1);
          if (page) {
            ulong acc=page->Match(sig);
            if (acc) {
              CCC* matchWord=page->GetFirst(
                stringMatch[mode&3],
                  acc,findString,minLen,group);
                if (matchWord) {
                  shortest[numFound++]=group;
                  
// return as soon as two matches are found.
                  if (numFound >= 2)
                    return numFound;
                    
// if this was the first match in an even (odd) group, 
// we continue with the odd (even) groups only.                     
                  group-;
                  step=2;
                  break;
                }   
              } 
          }
      }
    }
    return numFound;
  }
}* PD;
//*************** external access functions (API) **************

InitDisambiguator
void InitDisambiguator(
  CCC * wordList[],  
  ulong numWords ){
// Sets up the private data structure
  if (PD) // already done
    return;
  long wordIndexStore=numWords*sizeof(WordIndex);
  long pageStore=(31+numWords/32)*sizeof(Page);
  long pageIndexStore=pageStore * sizeof(PageIndex) / sizeof(Page);
    long minimumStorage=
      sizeof(*PD) +
      (wordIndexStore>pageStore+pageIndexStore?
        wordIndexStore:pageStore+pageIndexStore);
  PD=(PrivateData*)(new char[minimumStorage]);
  memset(PD,0,minimumStorage);
  PD->Init(wordList,numWords,minimumStorage);  
}

ShortestMatches
int /*number found*/ ShortestMatches(
//  Finds the shortest odd and even words matching findString 
//  Returns only the lengths of the 0, 1, or 2 words 
  char  *findString,
  int len,
  int mode,      
  int shortest[2]
) {  
    assert(PD);
    int numFound=
    PD->GetShortestMatches(findString,len,mode,shortest); 
    return numFound;
}

ShortestWord
CCC* ShortestWord(char  *findString,int mode)
{
  return PD->GetShortestWord(findString,mode);
}

TermDisambiguator
void TermDisambiguator(void)
{
  if (PD)
  {
    delete [] PD;// was allocated with new[]
    PD=0;
  } 
}

//******* Static Functions **********

MatchFirstN
static bool MatchFirstN(
    CCC* x,
    char* findString,
    int minLen,
    int group) {
#pragma unused(group)   
// match of x against findString, first minLen letters 
  return (0==strncmp(x,findString,minLen));
}

MatchLastN
static bool MatchLastN(
    CCC* x,
    char* findString,
    int minLen,
    int group) {
// match of x against findString, last minLen letters 
  return (0==strcmp(x+group-minLen,findString));
}

MatchMiddleN
static bool MatchMiddleN(
    CCC* x,
    char* findString,
    int minLen,
    int group) {
// match of x against findString, any consecutive minLen letters
  for (int d=0;d<=group-minLen;d++) { 
    if (0==strncmp(x+d,findString,minLen))
      return true;
  }
  return false;
}

MatchAnyN
static bool MatchAnyN(
    CCC* x,
    char* findString,
    int minLen,
    int group) {
// match of x against findString, any minLen letters in order
#pragma unused(group)
  for (int i=0;i<minLen;i++) {
    char c=*findString;
    char d;
    while (0 != (d=*x++)) {
      if (c==d) break;
    }
    if (d==0)
      return false;
    findString++;
  }
  return true;
}

MakeSubDigest
static ulong MakeSubDigest(
    CCC* xString,
    char sig[]) {

// Creates a pair of word digests and a signature from 
// findString.  No duplicate signature characters.

  int s=HASH(xString[0]);
  ulong digest1=1L<<s;
  for (;;) {
    int c;
    if (0==(c=*++xString)) break;
    s=HASH(c);
    ulong bit=1L<<s;
    if (0==(digest1 & bit)) {
      digest1 |= bit;
    }
  }

// Make the signature in bit order, that is with the
// less frequent English letters first, so that page
// scanning will fail as soon as possible if no word
// in the page will match.  

  ulong bit1=2;
  ulong single=digest1;
  int s1;
  for (s1=1;s1<=28;s1++) {
    if (single & bit1) *sig++=s1;
    bit1 += bit1;
  }
  *sig++=0;
  return digest1;
}  
mystring.h
#if defined(__cplusplus)
extern "C" {
#endif

#ifndef MYSTRING_H
#define MYSTRING_H
typedef unsigned long ulong;

StrCmp4
inline long StrCmp4(const char* a,const char* b)
// Fast comparator for words of minimum length 4
{
  const ulong* wa=(ulong*)(a);  
  const ulong* wb=(ulong*)(b);
  ulong ca=*wa;
  ulong cb=*wb;
  long d=ca-cb;
  if (d) return d;
  a+=3,b+=3;
  do// (;;)
  {
    ca=*++a;
    cb=*++b;    
    d=ca-cb;    
    //if (d) break;// words differ
    //if (ca==0) break;// words same, and NULL reached
  } while (ca && (d==0));
  return d;
}

StrCmpN4
inline long StrCmpN4(const char* a,const char* b,ulong n)
// Fast comparator for words of minimum length 4, up to n letters
{
  const ulong* wa=(ulong*)(a);  
  const ulong* wb=(ulong*)(b);
  ulong ca=*wa;
  ulong cb=*wb;
  long d=ca-cb;
  if (d) return d;
  a+=3,b+=3;
  for (int i=4;i<n;i++)
  {
    ca=*++a;
    cb=*++b;    
    d=ca-cb;    
    if (d) break;// words differ
    if (ca==0) break;// words same, and NULL reached
  }
  return d;
}

StrLen4
inline ulong StrLen4(const char* w)
{
  ulong len=4;
  w+=3;
  while (*++w) len++;
  return len;
}
#endif
#if defined(__cplusplus)
}
#endif
 
AAPL
$109.41
Apple Inc.
+2.67
MSFT
$45.74
Microsoft Corpora
+0.58
GOOG
$504.89
Google Inc.
+9.50

MacTech Search:
Community Search:

Software Updates via MacUpdate

Command-C 1.1.7 - Clipboard sharing tool...
Command-C is a revolutionary app which makes easy to share your clipboard between iOS and OS X using your local WiFi network, even if the app is not currently opened. Copy anything (text, pictures,... Read more
Tidy Up 4.0.2 - Find duplicate files and...
Tidy Up is a complete duplicate finder and disk-tidiness utility. With Tidy Up you can search for duplicate files and packages by the owner application, content, type, creator, extension, time... Read more
Typinator 6.3 - Speedy and reliable text...
Typinator turbo-charges your typing productivity. Type a little. Typinator does the rest. We've all faced projects that require repetitive typing tasks. With Typinator, you can store commonly used... Read more
GraphicConverter 9.5 - Graphics editor w...
GraphicConverter is an all-purpose image-editing program that can import 200 different graphic-based formats, edit the image, and export it to any of 80 available file formats. The high-end editing... Read more
Toast Titanium 12.0.1 - The ultimate med...
Toast Titanium goes way beyond the very basic burning in the Mac OS and iLife software, and sets the standard for burning CDs, DVDs, and now Blu-ray discs on the Mac. Create superior sounding audio... Read more
QuickBooks 2015 16.0.2.1422 R3 - Financi...
Save 20% on QuickBooks Pro for Mac today through this special discount link QuickBooks Pro 2013 helps you manage your business easily and efficiently. Organize your finances all in one place, track... Read more
Remotix 3.0.6 - Access all your computer...
Remotix is a fast and powerful application to easily access multiple Macs (and PCs) from your own Mac. Features: Complete Apple Screen Sharing support - including Mac OS X login, clipboard... Read more
BetterZip Quick Look Generator 1.5 - Let...
BetterZip Quick Look Generator lets you view the contents of compressed archives through OS X's Quick Look functions. Simply select an archive in the Finder, in Mail, or Spotlight and press the... Read more
Sandvox 2.9.3 - Easily build eye-catchin...
Sandvox is for Mac users who want to create a professional looking website quickly and easily. With Sandvox, you don't need to be a Web genius to build a stylish, feature-rich, standards-compliant... Read more
Pixelmator 3.3.1 - Powerful layer-based...
Pixelmator is a beautifully designed, easy-to-use, fast, and powerful image editor for OS X. It has everything you need to create, edit, and enhance your images. Pixelmator is a layer-based image... Read more

Latest Forum Discussions

See All

The Drive : Devil's Run (Games)
The Drive : Devil's Run 1.0 Device: iOS Universal Category: Games Price: $.99, Version: 1.0 (iTunes) Description: ON THE ROAD AGAIN! The Drive - Devil’s Run is classic point to point style racing game that pays homage to the classics... | Read more »
Procreate Pocket (Entertainment)
Procreate Pocket 1.01 Device: iOS iPhone Category: Entertainment Price: $2.99, Version: 1.01 (iTunes) Description: Create - anytime, anywhere. Made by the developers of the award-winning Procreate® for iPad®, Procreate Pocket™ allows... | Read more »
IRON FINGER - Mini Games Championship (...
IRON FINGER - Mini Games Championship 1.0 Device: iOS Universal Category: Games Price: $1.99, Version: 1.0 (iTunes) Description: Quick to play, easy to learn yet hard to master.. TAP, SWIPE & TILT your way through mini games that... | Read more »
Pentaction: Medieval (Games)
Pentaction: Medieval 1.0 Device: iOS Universal Category: Games Price: $1.99, Version: 1.0 (iTunes) Description: Pentaction: Medieval is a turn-based strategy board-game about chance and skill on the battlefield. Take control of your... | Read more »
Hipstify Review
Hipstify Review By Jennifer Allen on December 17th, 2014 Our Rating: :: COOL FILTERSUniversal App - Designed for iPhone and iPad Add filters, quotes, and fancy frames to your images, thanks to Hipstify.   | Read more »
Mighty Smighties Gets Evolve Cards and N...
Mighty Smighties Gets Evolve Cards and New Worlds Posted by Jessica Fisher on December 17th, 2014 [ permalink ] Universal App - Designed for iPhone and iPad | Read more »
Duckie Deck Card Wars Review
Duckie Deck Card Wars Review By Amy Solomon on December 17th, 2014 Our Rating: :: STYLISH GAME OF CARDSUniversal App - Designed for iPhone and iPad Duckie Deck Card Wars adapts the classic card game War for use on devices, complete... | Read more »
PDF Office Review
PDF Office Review By Jennifer Allen on December 17th, 2014 Our Rating: :: CONVENIENT PDF EDITINGiPad Only App - Designed for the iPad Want to create your own PDF files? Import them from elsewhere? Adapt a web page into a PDF? PDF... | Read more »
The Out There: Ω Edition Update will be...
The Out There: Ω Edition Update will be Releasing in 2015, Bringing Better Graphics and Additional Content Posted by Jessica Fisher on December 17th, 2014 [ permalink ] | Read more »
Pinball Planet Pro (Games)
Pinball Planet Pro 1.02 Device: iOS Universal Category: Games Price: $2.99, Version: 1.02 (iTunes) Description: - Our missionWe've always loved to play pinball games but we noticed most modern pinball games are simulators for the... | Read more »

Price Scanner via MacPrices.net

Holiday sales continue: MacBook Pros for up t...
 B&H Photo has new MacBook Pros on sale for up to $300 off MSRP as part of their Holiday pricing. Shipping is free, and B&H charges NY sales tax only: - 15″ 2.2GHz Retina MacBook Pro: $1699... Read more
Google Search App For iOS Gets A Major Makeov...
Google has given iOS users an early Christmas present with a substantial update of it’s not-very-often-upgraded Google Search app. Google Search has been my go-to tool for Web searches since it was... Read more
ShopKeep Apple Pay And Chip Card Reader Avail...
ShopKeep, a cloud-based technology provider to more than 10,000 small business owners to manage retail shops and restaurants with iPads, has released its new Apple Pay and chip card reader. This... Read more
Holiday sale! 27-inch 5K iMac for $2299, save...
 B&H Photo has the 27″ 3.5GHz 5K iMac in stock today and on sale for $2299 including free shipping plus NY sales tax only. Their price is $200 off MSRP, and it’s the lowest price available for... Read more
Holiday Sale! 3.7GHz Quad Core Mac Pro availa...
 B&H Photo has the 3.7GHz Quad Core Mac Pro on sale for $2599 including free shipping plus NY sales tax only. Their price is $400 off MSRP, and it’s the lowest price for this model from any... Read more
iPhone 6 Number 3 Canadian Google Search Of 2...
CTVNews.ca reports that Apple’s iPhone 6 was the third highest-trending Google Canada search topic of 2014, exceeded only by Robin Williams largely after his death by suicide in August, and the FIFA... Read more
New iPad mini 3 Counter-Top & Wall Mount...
newMacgadgets has announced new secure all-acrylic displays for the iPad mini 3 (also works fine with the mini 2, last year’s iPad mini With Retina Display, and the original iPad mini). The new iPad... Read more
Holiday sales continue, MacBook Airs for up t...
B&H Photo has 2014 MacBook Airs on sale for up to $120 off MSRP, for a limited time, for the Thanksgiving/Christmas Holiday shopping season. Shipping is free, and B&H charges NY sales tax... Read more
B&H lowers price on 27-inch 3.2GHz iMac t...
B&H Photo has lowered their price on the 27″ 3.2GHz iMac, now on sale for $1629 including free shipping plus NY sales tax only. Their price is $170 off MSRP, and it’s the lowest price for this... Read more
15-inch 2.0GHz Retina MacBook Pro available f...
B&H Photo has lowered their price on leftover 2013 15″ 2.0GHz Retina MacBook Pros to $1499 including free shipping plus NY sales tax only. Their price is $500 off original MSRP. Read more

Jobs Board

*Apple* Retail - Multiple Positions (US) - A...
Sales Specialist - Retail Customer Service and Sales Transform Apple Store visitors into loyal Apple customers. When customers enter the store, you're also the Read more
*Apple* Retail - Multiple Positions (US) - A...
Sales Specialist - Retail Customer Service and Sales Transform Apple Store visitors into loyal Apple customers. When customers enter the store, you're also the Read more
*Apple* Retail - Multiple Positions (US) - A...
Job Description: Sales Specialist - Retail Customer Service and Sales Transform Apple Store visitors into loyal Apple customers. When customers enter the store, Read more
*Apple* Retail - Multiple Positions (US) - A...
Sales Specialist - Retail Customer Service and Sales Transform Apple Store visitors into loyal Apple customers. When customers enter the store, you're also the Read more
Project Manager / Business Analyst, WW *Appl...
…a senior project manager / business analyst to work within our Worldwide Apple Fulfillment Operations and the Business Process Re-engineering team. This role will work Read more
All contents are Copyright 1984-2011 by Xplain Corporation. All rights reserved. Theme designed by Icreon.