TweetFollow Us on Twitter

Mar 99 Challenge

Volume Number: 15 (1999)
Issue Number: 3
Column Tag: Programmer's Challenge

Mar 99 Programmer's Challenge

by Bob Boonstra, Westford, MA

Terrain Traversal

You're on foot with cargo to deliver, and a mountain range between you and your destination. You have no map, nothing except a set of elevation readings provided by a meticulous surveyor that you met at a pub in the last town. And oh, how you hate to climb. Fortunately, this month's Challenge comes to the rescue once again with an efficient and labor saving solution to your problem.

The prototype for the code you should write to solve this Challenge is:

#if defined(__cplusplus)
extern "C" {
#endif

typedef long PointNum, TriangleNum;

typedef struct Point2D {
   double x;                    /* x coordinate */
   double y;                    /* y coordinate */
} Point2D;

typedef struct Point3D {
   PointNum thePointNum;        /* point number */
   Point2D thePoint;            /* x and y coordinates */
   double ht;                   /* point height (z coordinate) */
} Point3D;

typedef struct Triangle {
   TriangleNum theTriangleNum;  /* triangle number */
   PointNum thePoints[3];       /* numbers of points comprising triangle */
} Triangle;

typedef struct Segment {
   TriangleNum theTriangleNum;  /* segment is part of triangle with this number */
   Point2D startingPoint;       /* x,y coordinates of segment start */
   Point2D endingPoint;         /* x,y coordinates of segment end */
} Segment;

long /*numTriangles*/ InitTerrainMap(
   const Point3D thePoints[],   /* input points */
   long numPoints,              /* number of input points */
   Triangle theTriangles[]   /* output triangles constructed from thePoints */
);

long /*numSegments*/ FindAPath(
   const Point3D thePoints[],   /* input points (input to InitTerrainMap) */
   long numPoints,                /* number of input points */
   const Triangle theTriangles[], /* input triangles (from InitTerrainMap) */
   long numTriangles,             /* number of input triangles */
   const Point2D pathStart,       /* input starting point x,y */
   const Point2D pathEnd,         /* input ending point x,y */
   Segment theSegments[]       /* output segments from pathStart to pathEnd */
);

void TermTerrainMap(void);

#if defined(__cplusplus)
}
#endif

Your InitTerrainMap routine is provided a set of points (thePoints), numbered between 1 and numPoints, that define the terrain to be traversed. It is required to divide the terrain into a set of non-overlapping triangles (theTriangles) that will be provided to FindAPath and return the number of triangles created. InitTerrainMap can divide the terrain into any set of triangles, provided that each of thePoints is a member of at least one triangle, and that none of thePoints is strictly inside of any triangle, measured in the x-y plane. Thus, given points (0,1), (1,-1),(-1,1), and (0,0), the triangle formed by (0,1),(1,-1), and (0,0) would be legal, but the triangle formed by (0,1), (1,-1), and (-1,-1) would not be allowed, because (0,0) is strictly inside the latter.

After InitTerrainMap is called, FindAPath will be called an average of 5 times to generate a sequence of theSegments that traverse a route from pathStart to pathEnd. FindAPath is provided the same set of thePoints given to InitTerrainMap, as well as theTriangles produced by InitTerrainMap. Each segment created by FindAPath crosses from a point along one edge of a triangle to another point along an edge of the same triangle. The startingPoint and endingPoint of each segment must be inside or on the boundary of the same triangle (theTriangleNum). The startingPoint of segment 0 must be pathStart, the endingPoint of segment j must be identical to the startingPoint of segment j+1, and the endingPoint of the last segment must be pathEnd. The starting and ending points pathStart and pathEnd will be in the set of thePoints given to InitTerrainMap, and therefore will be vertices in at least one of theTriangles.

After traversal of some number of paths across the terrain, TermTerrainMap will be called, where you should dispose of any dynamically allocated storage.

Unfortunately, the surveyor who provided us with thePoints in our terrain map was not considerate enough to put them on a regular x-y grid. However, he was limited in the amount of storage he had with him on his mapping expedition, so we know that there will be no more than 32K points in any given terrain map.

The winner will be the solution that minimizes the amount of work required to reach the destination, where work is a combination of distance traveled and elevation change. Specifically, the total work is the sum of the work expended on each segment, which is calculated as the distance traveled in the x-y plane, plus ten times the absolute value of the elevation change from the starting and ending points of the segment. In addition, there will be a penalty of 10% for each second of execution time required to compute a solution. There is no storage constraint for this Challenge, except that your solution must run on a 128MB machine.

This will be a native PowerPC Challenge, using the latest CodeWarrior environment. Solutions may be coded in C, C++, or Pascal.

Three Months Ago Winner

The December Word Neighbors Challenge was intended to be a little easier than some recent Challenges, but apparently that was not the case. The Challenge was to find all occurrences of a set of words that occurred within a specified distance of one another in a body of text. The problem had enough subtle complications that none of the four solutions submitted by the deadline completed all of my test cases correctly. The solution by Randy Boring, however, performed correctly with a two-line code change. It also was the most efficient submission and exhibits some interesting techniques, so I chose to publish that solution. The code change, while small, was algorithmically significant, so no prizes or points are going to be awarded for this Challenge. Ludovic Nicolle and Gregory Sadetsky did submit a correct solution, but it was submitted after the deadline. Since they described the code as the "ugliest I have ever written in my entire life", I decided against publishing that solution.

The problem complication that tripped up two of the solutions had to do with treatment of overlapping matches. The problem requirement was to find all occurrences of the search words in the text where the distance between search words is less than a specified amount. No word in the text was allowed to be part of more than one match, and the solutions were required to return the location of the first matching word. The fact that search words need not be immediately adjacent allows the match sequences to overlap. As an example, if the problem is to find a case insensitive and order independent match of the words "a", "b", "c", "d", "e", and "f" within a distance of 4 or fewer intervening words in the following text:

c.2.D.4.b.B.7.B.a.B.D.d.C.14.B.e.f.F.F.A.b.F.a.c.E.d

the correct solution is to return the matches starting at character 0 and character 4, as indicated below:

text:     c.2.D.4.b.B.7.B.a.B.D.d.C.14.B.e.f.F.F.A.b.F.a.c.E.d
match1:   c----b----a---d----e-f
match2:   --D-----B-----C-----F--A-----E

Because of the correctness issues, I did not run the full set of evaluation test cases that I had originally planned. In putting together a collection of digitized text to use for testing, I found my way to the Project Gutenberg site at <http://sailor.gutenberg.org/gutenberg/>, home to a large and growing collection of digitized literature. It has been quite a while since I read "Twenty Thousand Leagues Under The Sea", and it was something of a surprise to rediscover, courtesy of this Challenge, the fact that Captain Nemo doesn't appear until the second half of the book.

Randy's solution is sparsely commented, but there are some interesting features to notice. Noticing that the problem statement called for numerous searches for each set of text, Randy parses the text in his InitText routine, creating a UniqueSummary table of each unique word in the text, and a WordInstance table entry for each word occurrence in the text. To save space, Randy kept pointers back to the text only in the UniqueSummary table, not in the WordInstance table, which cost him the Challenge win. The problem has been corrected in the published solution by adding a word pointer to the WordInstance table, increasing storage requirements, in order to provide the required output. To make word comparisons efficient, Randy hashes each word in the Hash function, and uses that hash to compare words in the FindUniqueWord function.

In searching for a match, Randy divides the code into four cases, based on whether the search is case sensitive or not, and on whether the order of the search words is to be preserved or not. The solution then performs a recursive search of the word instance table to determine if a match exists within the specified distance.

The table below lists, for each of the solutions submitted, the total execution time, the types of errors that turned up in the evaluation, the code and data size, and the programming language. As usual, the number in parentheses after the entrant's name is the total number of Challenge points earned in all Challenges prior to this one.

NameTime (msec)Memory Alloc.ErrorsCode SizeData SizeLang
Randy Boring (83)262Original*B708834132C++
Ed Agoff334OriginalA32124236C++
Ernst Munter (430)2022NewA114321624C++
Ludovic Nicolle (48) /
Gregory Sadetsky (2) 120964NewLate9676434C
P.B. -NewCRASH5176539C++

A - problems with overlapping matches
B - incorrect return values before correction; correction required revised memory allocation

Top Contestants

Listed here are the Top Contestants for the Programmer's Challenge, including everyone who has accumulated 20 or more points during the past two years. The numbers below include points awarded over the 24 most recent contests, including points earned by this month's entrants.

  1. Munter, Ernst 204
  2. Saxton, Tom 79
  3. Boring, Randy 56
  4. Mallett, Jeff 50
  5. Rieken, Willeke 47
  6. Maurer, Sebastian 40
  7. Heithcock, JG 37
  8. Cooper, Greg 34
  9. Murphy, ACC 34
  10. Lewis, Peter 31
  11. Nicolle, Ludovic 27
  12. Brown, Pat 20
  13. Day, Mark 20
  14. Higgins, Charles 20
  15. Hostetter, Mat 20

There are three ways to earn points: (1) scoring in the top 5 of any Challenge, (2) being the first person to find a bug in a published winning solution or, (3) being the first person to suggest a Challenge that I use. The points you can win are:

1st place20 points
2nd place10 points
3rd place7 points
4th place4 points
5th place2 points
finding bug2 points
suggesting Challenge2 points

Here is the corrected version of Randy's Word Neighbors solution:

Nearby.cp
Copyright © 1998 Randy Boring

// Corrections by JRB marked by the following define
#define JRB_CORRECTION 1

#include <MacTypes.h>
#include "Nearby.h"

#define SINGLEWORDALLOWED   0   // can't find a _nearby_ single word!
#define DEBUG   0
#if DEBUG
#include <iostream>
using namespace std;
#endif

WordInstance
typedef struct WordInstance {
   unsigned long   mark:1;      // has been used in a found set
   unsigned long   usi:18;      // index of our unique summary
      // a quarter million unique words should be enough
   unsigned long   hint:13;     // partial summary
#if JRB_CORRECTION
   char *word;
#endif
   } Inst, StackElem, *Stack, *Set;

#define kHintSize   13       // only the presence of upper or lower
#define kHintMask   0x1FFF   // p umlh sirn aote are in the hint
#define isMarked(w)   ((w).mark)
#define Mark(wp)   (wp->mark = 1)
#define UnMark(wp)   (wp->mark = 0)
#define WordsAreExactlyEqual(w1,w2)   ((w1).usi == (w2).usi)

UniqueSummary
typedef struct UniqueSummary {
   unsigned long         unused:1;
   unsigned long         lowerNumbers:5;
   unsigned long         lowerLetters:26;
   unsigned long         unused2:1;
   unsigned long         upperNumbers:5;
   unsigned long         upperLetters:26;
   struct UniqueSummary   *next;   // of same hash
   char               *word;
   } US, *HashList;
#define USIndex(w)         (gUS - w)
#define USfromIndex(i)      (&gUS[-(i)])
#if !JRB_CORRECTION
#define TextPosition(ip)   (USfromIndex((ip)->usi)->word - gText)
#else
#define TextPosition(ip)   ((ip)->word - gText)
#endif

#define MAXHASH         0x00002000L   // 8K entries of 4 bytes = 32K
#define MAXSEARCHWORDS   100
#define MAXSTACK      MAXSEARCHWORDS

static HashList gHashTable[MAXHASH];
static long gTotalInstances;

static US *gUS, *gUSLast;
static Inst *gInstp, *gInstpLast;
static long gDist;
static char *gText;
static long gTextLength;

#define kX   (0x100)     // illegal input
#define kD   (0x80)      // delimiter
#define kN   (0x40)      // numeric
#define kU   (0x20)      // upper case (or 5-9)
#define kM   (0x1F)      // mask of bit index within category

#define NotDelimType(typ)   (((typ) & (kX | kD)) == 0)
#define NotDelim(c)         (((gCharType[c]) & (kX | kD)) == 0)
#define IsDelimType(typ)   (((typ) & (kX | kD)) != 0)
#define IsDelim(c)         (((gCharType[c]) & (kX | kD)) != 0)

gCharType
static /* const */ short gCharType[
#if DEBUG
   256
#else
   128
#endif
   ] = {
   /* these aren't legal input (0x00-0x1F), except tab, lf, cr */
   kX,kX,kX,kX,kX,kX,kX,kX, kX,kD,kD,kX,kX,kD,kX,kX,
   kX,kX,kX,kX,kX,kX,kX,kX, kX,kX,kX,kX,kX,kX,kX,kX,
   /* begin rest of legal input with 0x20 (space) */
   kD,kD,kD,kD,kD,kD,kD,kD, kD,kD,kD,kD,kD,kD,kD,kD,
   0x40,0x41,0x42,0x43,0x44,   // 'lower' digits 0-4
   0x60,0x61,0x62,0x63,0x64,   // 'upper' digits 5-9
   kD,kD,kD,kD,kD,kD,
   kD,      // ASCII 0x40
   
   0x23,   // A=3   etoanris hlmup are renumbered as most common
   0x2D,   // B   01234567 89ABC
   0x2E,   // C
   0x2F,   // D
   0x20,   // E=0
   0x30,   // F
   0x31,   // G
   0x28,   // H=8
   0x26,   // I=6
   0x32,   // J
   0x33,   // K
   0x29,   // L=9
   0x2A,   // M=A
   0x24,   // N=4
   0x22,   // O=2
   0x2C,   // P=C
   0x34,   // Q
   0x25,   // R=5
   0x27,   // S=7
   0x21,   // T=1
   0x2B,   // U=B
   0x35,   // V
   0x36,   // W
   0x37,   // X
   0x38,   // Y
   0x39,   // Z   ASCII 0x5A
   
   kD,kD,kD,kD,kD,
   kD,      // ASCII 0x60
   
   0x03,   // a=3   etoanris hlmup are renumbered as most common
   0x0D,   // b   01234567 89ABC
   0x0E,   // c
   0x0F,   // d
   0x00,   // e=0
   0x10,   // f
   0x11,   // g
   0x08,   // h=8
   0x06,   // i=6
   0x12,   // j
   0x13,   // k
   0x09,   // l=9
   0x0A,   // m=A
   0x04,   // n=4
   0x02,   // o=2
   0x0C,   // p=C
   0x14,   // q
   0x05,   // r=5
   0x07,   // s=7
   0x01,   // t=1
   0x0B,   // u=B
   0x15,   // v
   0x16,   // w
   0x17,   // x
   0x18,   // y
   0x19,   // z   ASCII 0x7A
   
   kD,kD,kD,kD,   // ASCII 0x7E is last legal delimiter
   kX      // ASCII 0x7F
#if DEBUG
   ,
   /* these aren't legal input! 0x80 - 0xFF */
   kX,kX,kX,kX,kX,kX,kX,kX, kX,kX,kX,kX,kX,kX,kX,kX,
   kX,kX,kX,kX,kX,kX,kX,kX, kX,kX,kX,kX,kX,kX,kX,kX,
   kX,kX,kX,kX,kX,kX,kX,kX, kX,kX,kX,kX,kX,kX,kX,kX,
   kX,kX,kX,kX,kX,kX,kX,kX, kX,kX,kX,kX,kX,kX,kX,kX,
   kX,kX,kX,kX,kX,kX,kX,kX, kX,kX,kX,kX,kX,kX,kX,kX,
   kX,kX,kX,kX,kX,kX,kX,kX, kX,kX,kX,kX,kX,kX,kX,kX,
   kX,kX,kX,kX,kX,kX,kX,kX, kX,kX,kX,kX,kX,kX,kX,kX,
   kX,kX,kX,kX,kX,kX,kX,kX, kX,kX,kX,kX,kX,kX,kX,kX
#endif
   };

static StackElem gStack[MAXSTACK];

#if DEBUG
static long gUniqueHashEntries;

static int alreadyAllocated = true;   // ensures we init it at first
#endif

//----//----//----//----//----//----
static void
FreeStack(Stack *ioStack)
{
#if DEBUG
   *ioStack = nil;
   alreadyAllocated = false;
#else
#pragma unused (ioStack)
#endif
}

//----//----//----//----//----//----
static Stack
NewStack(void)
{
#if DEBUG
   if (alreadyAllocated)
      DebugStr("\p already allocated!");
   else
      alreadyAllocated = true;
#endif
   return gStack;   // only works once, of course
}

//----//----//----//----//----//----
static void
InitStack(void)
{
#if DEBUG
   alreadyAllocated = false;
#endif
}

//----//----//----//----//----//----
static /* inline */ void
StackPush(Stack *ioStack, StackElem e)
{
#if DEBUG
   if ((*ioStack - gStack) >= MAXSTACK)
      DebugStr("\p blew stack up!");
   else
#endif
//   *ioStack++ = e;
   **ioStack = e;
   (*ioStack)++;
}

//----//----//----//----//----//----
// Return the element at the top of the stack and pop it off
static /* inline */ StackElem
StackPopTop(Stack *ioStack)
{
#if DEBUG
   if (*ioStack <= gStack)
      {
      DebugStr("\p poked bottom of stack!");
      return **ioStack;   // no good choice here
      }
   else
#endif
   return *(-*ioStack);
}

//----//----//----//----//----//----
static /* inline */ int
StackIsEmpty(const Stack inStack)
{
   return (inStack == gStack);
}

//----//----//----//----//----//----
static /* inline */ int
SetIsSizeOne(const Set inSet)
{
   return (inSet == gStack + 1);
}

//----//----//----//----//----//----
#define SetAdd(s,w)   StackPush(s,w)

//----//----//----//----//----//----
static void
SetRemove(Set *ioSet, Inst *toRemove)
{
   // remove top element, and overwrite toRemove element
   *toRemove = StackPopTop(ioSet);
}

Hash
// Generate a case-insensitive hash from the characters of 
//   the null-terminated string
//   h1 is sum of w[i-1] * w[i] where w[-1] = 1
//   h2 is simple sum of w[i]
//   result puts h2 in upper 6 bits of a 13 bit word
static long
Hash(char *w, char **outDelim)
{
   long h1 = 0, h2 = 0, lastNum = 1, thisNum;
   char cw = *w;   // assumes first char not null
   do   {
      if (cw >= 'a')      // is lowercase
         thisNum = cw - ('a' - 1);
      else if (cw >= 'A')   // is uppercase
         thisNum = cw - ('A' - 1);
      else            // is digit
         thisNum = cw;
      cw = *++w;   // the next char
      h1 += lastNum * thisNum;
      h2 += thisNum;
      lastNum = thisNum;
      } while (cw);
   *outDelim = w;
   return (h1 + (h2 << 7)) & 0x00001FFF;
}

//----//----//----//----//----//----
// Returns whether the hash table entry at h is valid
static /* inline */ int
ValidHashEntry(long h)
{
   return (gHashTable[h] != nil);
}

//----//----//----//----//----//----
static void
HashAdd(US *inUSp, long h)
{
   if (ValidHashEntry(h))
      {   // append to existing hash table list
      inUSp->next = gHashTable[h];
      gHashTable[h] = inUSp;
      }
   else {   // add new hash table entry
      gHashTable[h] = inUSp;
#if DEBUG
      gUniqueHashEntries++;
#endif
      }
}

//----//----//----//----//----//----
static void
InitHash(void)
{
   double fr0 = 0.0, fr1 = 0.0, fr2 = 0.0, fr3 = 0.0;
   long count = sizeof(gHashTable) >> 5;
   double *p = (double *) gHashTable;
   do   {
      -count;
      *p = fr0;
      *(p + 1) = fr1;
      *(p + 2) = fr2;
      *(p + 3) = fr3;
      p += 4;
      } while (count);
#if DEBUG
   gUniqueHashEntries = 0;
#endif
}

#if DEBUG
static void
PrintHashTable(void)
{
   long i;
   for (i = 0; i < MAXHASH; i++)
      if (ValidHashEntry(i))
         {
         cout << "h = " << i;
         HashList e = gHashTable[i];
         long ct = 0;
         do   {
            cout << ", " << e->word;
            e = e->next;
            ++ct;
            } while (e);
         cout << endl << "  ct = " << ct << endl;
         }
}
#endif

EqualStrings
// Return true if the strings are exactly equal
// This is like strcmp (ignoring less or greater)
// Assumes first char of w is not null
static int
EqualStrings(char *w, char *u)
{
   char cw = *w, cu = *u;
   do   {
      if (cw != cu)
         return 0;
      cw = *++w;
      cu = *++u;
      } while (cw);
   return 1;
}

EqualStringsNCS
// Return true if the strings are equal, ignoring case
// Assumes first char of w is not null
static int
EqualStringsNCS(char *w, char *u)
{
   char cw = *w, cu = *u;
   do   {
      if (cw >= 'a')       // cw is lowercase
         cw -= ('a' - 'A');   // uppercase it
      if (cu >= 'a')       // cu is lowercase
         cu -= ('a' - 'A');   // uppercase it
      if (cw != cu)
         return 0;
      cw = *++w;
      cu = *++u;
      } while (cw);
   return 1;
}

CreateSummary
// Record the presence of each kind of alphanumeric char in
//   the word
// And point to the actual word for final exact check
static void
CreateSummary(char *w, US *usp)
{
   long lowN = 0, lowL = 0, upN = 0, upL = 0;
   short cwtype;
   char cw = *w;
   cwtype = gCharType[cw];
   usp->word = w;
   do   {
      long presenceBit;
      int isUpper, isNumber;   // NOT mutually exclusive
      cw = *++w;
      presenceBit = 0x0001 << (cwtype & kM);
      isUpper = cwtype & kU;
      isNumber = cwtype & kN;
      cwtype = gCharType[cw];
      if (isUpper)   // upper case letter or high number
         if (isNumber)   // number
            upN |= presenceBit;
         else
            upL |= presenceBit;
      else if (isNumber)
         lowN |= presenceBit;
      else
         lowL |= presenceBit;
      } while (NotDelimType(cwtype));
   
   usp->unused = 0;
   usp->upperNumbers = upN;
   usp->upperLetters = upL;
   usp->unused2 = 0;
   usp->lowerNumbers = lowN;
   usp->lowerLetters = lowL;
   usp->next = nil;
}

FindUniqueWord
// Return the UniqueWordSummary for the word, w, if any
static US *
FindUniqueWord(char *w, long *outHash, char **outDelim)
{
   unsigned short h = Hash(w, outDelim);
   US *usp = gHashTable[h];
   *outHash = h;
   if (!ValidHashEntry(h))
      return nil;
   while (usp && !EqualStrings(w, usp->word))
      usp = usp->next;
   return usp;
}

AddWord
// Find word w in hash table (or add it, if unique) and 
// Build instance pointer and add it
// Return ptr to next char after word ends (its delimiter)
static char *   // next character after word
AddWord(char *w)
{
   long h;
   char *afterWord;
   US *theUSp = FindUniqueWord(w, &h, &afterWord);
   if (!theUSp)   // new unique word, add it
      {
      theUSp = gUSLast;
      -gUSLast;
#if DEBUG
      if ((Ptr)theUSp < (Ptr)gInstpLast)
         DebugStr("\p dictionary ran into the index!");
#endif
      CreateSummary(w, theUSp);
      HashAdd(theUSp, h);
      }
   Inst theInst;
   theInst.mark = 0;
   theInst.usi = USIndex(theUSp);
   theInst.hint = (theUSp->upperLetters | theUSp->lowerLetters)
         & kHintMask;
#if JRB_CORRECTION
   theInst.word = w;
#endif
   *gInstpLast++ = theInst;
   return afterWord;
}

InitText
// Index each word in the text
static void
InitText(char *text, long length)
{
   char *stop = text + length;
   // skip illegals and delimiters
   while (IsDelim(*text))
      ++text;
   while (text < stop)
      {
      text = AddWord(text);
      while (IsDelim(*text) && text < stop)
         ++text;
      }
}

FixTextAndCountInsts
// Return count of word instances and length of input text
// Null-terminate each word instance in the text
//   Allowed since 'text' is not const char *
//   Helpful since it simplifies all word ending detection
static long
FixTextAndCountInsts(char *text, long *outLength)
{
   long ct = 0;
   char *textStart = text;
                  // find beginning of first word
   while (IsDelim(*text))
      ++text;
   while (*text)
      {
                  // find end of word
      while (NotDelim(*text))
         ++text;
      ++ct;         // count the word
      if (*text == 0)
         break;
      *text++ = 0;   // null-terminate the word
                  // find beginning of next word
      while (*text && IsDelim(*text))
         ++text;
      }
   *outLength = text - textStart;
   return ct;
}

//----//----//----//----//----//----
// A Set is implemented as a Stack (for now)
#define FillSet(s,w,n)   FillStackBackwards(s,w,n)
#define NewSet()      NewStack()
#define FreeSet(s)      FreeStack(s)

Initialize
pascal void Initialize(
   char *text,                /* NULL terminated text to be searched */
   long distance,             /* max distance between nearby words */
   void *privateStorage,      /* private storage for your use */
   long storageBytes          /* number of bytes in privateStorage */
   )
{
   InitHash();
   InitStack();
   gTotalInstances = FixTextAndCountInsts(text, &gTextLength);
   
   /* from gTotalInstances we can guess what strategy to use */
   
   // InitInstances (left to right from beginning, 
postincrementing)
   gInstpLast = (Inst *) privateStorage;
   gInstp = gInstpLast;
   // InitUniqueSummaries (right to left from end, postdecrementing)
   // masking with 0xFFFFFFFC gives us 4-Byte alignment
   gUS = ((US *) (((unsigned long) privateStorage + storageBytes) & 0xFFFFFFFC)) - 1;
   gUSLast = gUS;
   InitText(text, gTextLength);
   gText = text;
   gDist = distance + 1;   // distance allowed is 0 through distance
#if DEBUG
   if (gTotalInstances != gInstpLast - gInstp)
      DebugStr("\p gTotalInstances != gInstpLast - gInstp");
   PrintHashTable();
   cout << "# of words total in input text:
                             " << gTotalInstances << endl;
   cout << "# of unique words in input text:
                             " << gUS - gUSLast << endl;
   cout << "# of hash table entries used:   
                             = " << gUniqueHashEntries << endl;
#endif
}

FillStackBackwards
static void
FillStackBackwards(Stack *ioStack, char *words[], long numWords)
{
   for (int i = numWords - 1; i >= 0; -i)
      {
      long dummy;   // we don't need the returned hash value
      char *dummy2;
      Inst elem;
      US *wUSp;
      wUSp = FindUniqueWord(words[i], &dummy, &dummy2);
#if DEBUG
      if (nil == wUSp)
         {
         DebugStr("\p find word not in text!");
         continue;
         }
#endif
      elem.mark = 0;
      elem.usi = USIndex(wUSp);
      elem.hint = (wUSp->upperLetters | wUSp->lowerLetters)
         & kHintMask;
      StackPush(ioStack, elem);
      }
}

WordsAreEqualExceptCase
// Return true if the words are same except for case
//   1. hints of Inst will be same if words same 
//   2. summaries will have same bitfields of char presence
//      but for case (OR upper and lower fields before compare)
//   3. words will be letter-for-letter the same (ignoring case)
static int
WordsAreEqualExceptCase(Inst w1, Inst w2)
{
   if (w1.hint != w2.hint)
      return 0;   // they have different common letters
   US *u1 = USfromIndex(w1.usi), *u2 = USfromIndex(w2.usi);
   unsigned long u1letters = u1->lowerLetters | u1-
                                >upperLetters;
   unsigned long u2letters = u2->lowerLetters | u2-
                                >upperLetters;
   if (u1letters != u2letters)
      return 0;
   if ((u1->lowerLetters | u1->upperLetters)
      != (u2->lowerLetters | u2->upperLetters))
      return 0;
   if (u1->lowerNumbers != u2->lowerNumbers)
      return 0;
   if (u1->upperNumbers != u2->upperNumbers)
      return 0;
   return (EqualStringsNCS(u1->word, u2->word));
}

FindInSetCS
// Find the set element (a search word modelled as an Inst)
//   that is the same as inst, case-sensitive
static Inst *
FindInSetCS(Set inSet, Inst inst)
{
   -inSet;
   do   {
      if (WordsAreExactlyEqual(*inSet, inst))
         return inSet;
      } while (inSet->gStack);
   return nil;
}

FindInSetNCS
// Find the set element (a search word modelled as an Inst)
//   that is the same as inst, ignoring case
static Inst *
FindInSetNCS(Set inSet, Inst inst)
{
   -inSet;
   do   {
      if (WordsAreExactlyEqual(*inSet, inst) ||
            WordsAreEqualExceptCase(*inSet, inst))
         return inSet;
      } while (inSet->gStack);
   return nil;
}

FindNextIOMatchCS
static int
FindNextIOMatchCS(Inst *currInstp, Stack st, long maxDist)
{
   long currDist = maxDist;
   Inst w = StackPopTop(&st);
   int atBottom = StackIsEmpty(st);
   
   do   {
      Inst currW = *currInstp;
      if (isMarked(currW))
         goto nextInst;
      if (WordsAreExactlyEqual(currW, w)) // this word matches!
         if (atBottom)
            {   // we found a set!
            Mark(currInstp);
            StackPush(&st, w);   // restore our stack item
            return 1;
            }
         else // recurse to see if we can finish finding a set
         if (FindNextIOMatchCS(currInstp + 1, st, maxDist))
            {   // set found by recursion
            Mark(currInstp);
            StackPush(&st, w);   // restore our stack item
            return 1;
            }
         else {   // no set found by recursion
            StackPush(&st, w);   // restore our stack item
            return 0;
            }
   nextInst:
      -currDist;
      ++currInstp;
      } while (currDist);
   
   // no matching word found within max distance
   StackPush(&st, w);   // restore our stack item
   return 0;
}

FindIOMatchesCS
static long
FindIOMatchesCS(Stack st, long maxToFind, long matchPositions[])
{
   Inst *currInstp;
   Inst *lastInstp = gInstpLast;
   Inst w = StackPopTop(&st);
   long count = 0;
#if SINGLEWORDALLOWED
   int atBottom = StackIsEmpty(st);
#endif
   
   for (currInstp = gInstp; currInstp < lastInstp; ++currInstp)
      if (isMarked(*currInstp))   // already used in a found set
         UnMark(currInstp);
      else {
         if (WordsAreExactlyEqual(*currInstp, w))
            {
#if SINGLEWORDALLOWED
            if (atBottom) // only one search word!
               matchPositions[count++] = TextPosition(currInstp);
            else // recurse
#endif
            if (FindNextIOMatchCS(currInstp + 1, st, gDist))
               matchPositions[count++] = TextPosition(currInstp);
            if (count == maxToFind)
               break;
            }
         }
   return count;
}

FindNextIOMatchNCS
static int
FindNextIOMatchNCS(Inst *currInstp, Stack st, long maxDist)
{
   long currDist = maxDist;
   Inst w = StackPopTop(&st);
   int atBottom = StackIsEmpty(st);
   
   do   {
      Inst currW = *currInstp;
      if (isMarked(currW))
         goto nextInst;
      if (WordsAreExactlyEqual(currW, w) ||
            WordsAreEqualExceptCase(currW, w))
            // this word matches!
         if (atBottom)
            {   // we found a set!
            Mark(currInstp);
            StackPush(&st, w);   // restore our stack item
            return 1;
            }
         else // recurse to see if we can finish finding a set
         if (FindNextIOMatchCS(currInstp + 1, st, maxDist))
            {   // set found by recursion
            Mark(currInstp);
            StackPush(&st, w);   // restore our stack item
            return 1;
            }
         else {   // no set found by recursion
            StackPush(&st, w);   // restore our stack item
            return 0;
            }
   nextInst:
      -currDist;
      ++currInstp;
      } while (currDist);
   
   // no matching word found within max distance
   StackPush(&st, w);   // restore our stack item
   return 0;
}

FindIOMatchesNCS
static long
FindIOMatchesNCS(Stack st, long maxToFind, long matchPositions[])
{
   Inst *currInstp;
   Inst *lastInstp = gInstpLast;
   Inst w = StackPopTop(&st);
   long count = 0;
#if SINGLEWORDALLOWED
   int atBottom = StackIsEmpty(st);
#endif
   
   for (currInstp = gInstp; currInstp < lastInstp; ++currInstp)
      if (isMarked(*currInstp))   // already used in a found set
         UnMark(currInstp);
      else {
         if (WordsAreExactlyEqual(*currInstp, w) ||
            WordsAreEqualExceptCase(*currInstp, w))
            {
#if SINGLEWORDALLOWED
            if (atBottom) // only one search word!
               matchPositions[count++] = TextPosition(currInstp);
            else // recurse
#endif
            if (FindNextIOMatchNCS(currInstp + 1, st, gDist))
               matchPositions[count++] = TextPosition(currInstp);
            if (count == maxToFind)
               break;
            }
         }
   return count;
}

FindNearbyInOrder
static long
FindNearbyInOrder(            /* return number of matches found */
   char *words[],             /* words to find in text */
   long numWords,             /* number of words */
   Boolean caseSensitive,     /* true if match is case sensitive */
   long matchPositions[],     /* position in text of first word in match */
   long maxMatches            /* max number of matches to return */
   )
{
   Stack st = NewStack();
   long found = 0;
   FillStackBackwards(&st, words, numWords);
   if (caseSensitive)
      found = FindIOMatchesCS(st, maxMatches, matchPositions);
   else
      found = FindIOMatchesNCS(st, maxMatches, matchPositions);
   FreeStack(&st);
   return found;
}

FindNextAOMatchCS
static int
FindNextAOMatchCS(Inst *currInstp, Set st, long maxDist)
{
   long currDist = maxDist;
   int atBottom = SetIsSizeOne(st);
   
   do   {
      Inst currW = *currInstp;
      if (isMarked(currW))
         goto nextInst;
      Inst *saveInstp = FindInSetCS(st, currW);
      if (saveInstp != nil)   // found a match
         {
         Inst saveInst = *saveInstp;   // only needed in NCS
         SetRemove(&st, saveInstp);
         if (atBottom) // last search word
            {   // we found a set!
            Mark(currInstp);
            SetAdd(&st, saveInst);   // restore our set item
            return 1;
            }
         else // recurse to see if we can finish finding a set
         if (FindNextAOMatchCS(currInstp + 1, st, maxDist))
            {   // set found by recursion
            Mark(currInstp);
            SetAdd(&st, saveInst);   // restore our set item
            return 1;
            }
         //else    // no set found by recursion
         SetAdd(&st, saveInst);
         }
   nextInst:
      -currDist;
      ++currInstp;
      } while (currDist);
   
   // no matching word found within max distance
   return 0;
}

FindAOMatchesCS
static long
FindAOMatchesCS(Set st, long maxToFind, long matchPositions[])
{
   long count = 0;
   Inst *currInstp;
   Inst *lastInstp = gInstpLast;
#if SINGLEWORDALLOWED
   int atBottom = SetIsSizeOne(st);
#endif
   for (currInstp = gInstp; currInstp < lastInstp; ++currInstp)
      if (isMarked(*currInstp))   // already used in a found set
         UnMark(currInstp);
      else {
         Inst *saveInstp = FindInSetCS(st, *currInstp);
         if (saveInstp != nil)   // found a match
            {
            Inst saveInst = *saveInstp;
            SetRemove(&st, saveInstp);
#if SINGLEWORDALLOWED
            if (atBottom) // only one search word!
               matchPositions[count++] = TextPosition(currInstp);
            else // recurse
#endif
            if (FindNextAOMatchCS(currInstp + 1, st, gDist))
               matchPositions[count++] = TextPosition(currInstp);
            SetAdd(&st, saveInst);
            if (count == maxToFind)
               break;
            }
         }
   return count;
}

FindNextAOMatchNCS
static int
FindNextAOMatchNCS(Inst *currInstp, Stack st, 
      long maxDist)
{
   long currDist = maxDist;
   int atBottom = SetIsSizeOne(st);
   
   do   {
      Inst currW = *currInstp;
      if (isMarked(currW))
         goto nextInst;
      Inst *saveInstp = FindInSetNCS(st, currW);
      if (saveInstp != nil)   // found a match
         {
         Inst saveInst = *saveInstp;   // only needed in NCS
         SetRemove(&st, saveInstp);
         if (atBottom) // last search word
            {   // we found a set!
            Mark(currInstp);
            SetAdd(&st, saveInst);   // restore our set item
            return 1;
            }
         else // recurse to see if we can finish finding a set
         if (FindNextAOMatchNCS(currInstp + 1, st, maxDist))
            {   // set found by recursion
            Mark(currInstp);
            SetAdd(&st, saveInst);   // restore our set item
            return 1;
            }
         //else    // no set found by recursion
         SetAdd(&st, saveInst);
         }
   nextInst:
      -currDist;
      ++currInstp;
      } while (currDist);
   
   // no matching word found within max distance
   return 0;
}

FindAOMatchesNCS
static long
FindAOMatchesNCS(Set st, long maxToFind, long matchPositions[])
{
   long count = 0;
   Inst *currInstp;
   Inst *lastInstp = gInstpLast;
#if SINGLEWORDALLOWED
   int atBottom = SetIsSizeOne(st);
#endif
   for (currInstp = gInstp; currInstp < lastInstp; ++currInstp)
      if (isMarked(*currInstp))   // already used in a found set
         UnMark(currInstp);
      else {
         Inst *saveInstp = FindInSetNCS(st, *currInstp);
         if (saveInstp != nil)   // found a match
            {
            Inst saveInst = *saveInstp;
            SetRemove(&st, saveInstp);
#if SINGLEWORDALLOWED
            if (atBottom) // only one search word!
               matchPositions[count++] = TextPosition(currInstp);
            else // recurse
#endif
            if (FindNextAOMatchNCS(currInstp + 1, st, gDist))
               matchPositions[count++] = TextPosition(currInstp);
            SetAdd(&st, saveInst);
            if (count == maxToFind)
               break;
            }
         }
   return count;
}

FindNearbyAnyOrder
static long
FindNearbyAnyOrder(            /* return number of matches found */
   char *words[],              /* words to find in text */
   long numWords,              /* number of words */
   Boolean caseSensitive,      /* true if match is case sensitive */
   long matchPositions[],      /* position in text of first word in match */
   long maxMatches             /* max number of matches to return */
   )
{
   Set st = NewSet();
   long found = 0;
   FillSet(&st, words, numWords);
   if (caseSensitive)
      found =  FindAOMatchesCS(st, maxMatches, matchPositions);
   else
      found =  FindAOMatchesNCS(st, maxMatches, matchPositions);
   FreeSet(&st);
   return found;
}

FindNearby
pascal long FindNearby(      /* return number of matches found */
   char *words[],            /* words to find in text */
   long numWords,            /* number of words */
   Boolean caseSensitive,    /* true if match is case sensitive */
   Boolean preserveOrder,    /* true if words must be found in order */
   long matchPositions[],    /* position in text of first word in match */
   long maxMatches           /* max number of matches to return */
   )
{
   if (preserveOrder)
      return FindNearbyInOrder(words, numWords, caseSensitive, 
            matchPositions, maxMatches);
   else
      return FindNearbyAnyOrder(words, numWords, caseSensitive, 
            matchPositions, maxMatches);
}
 
AAPL
$102.47
Apple Inc.
+2.71
MSFT
$44.88
Microsoft Corpora
+0.80
GOOG
$526.54
Google Inc.
+5.70

MacTech Search:
Community Search:

Software Updates via MacUpdate

EyeTV 3.6.6 - Watch and record TV on you...
EyeTV brings a rich TV experience to your Mac. Watch live TV on your Mac. Pause, rewind, and record whenever you want. EyeTV gives you powerful control over what you watch and how you watch it. Put... Read more
RapidWeaver 6.0 - Create template-based...
RapidWeaver is a next-generation Web design application to help you easily create professional-looking Web sites in minutes. No knowledge of complex code is required, RapidWeaver will take care of... Read more
NTFS 12.0.39 - Provides full read and wr...
Paragon NTFS breaks down the barriers between Windows and OS X. Paragon NTFS effectively solves the communication problems between the Mac system and NTFS, providing full read and write access to... Read more
RestoreMeNot 2.0.3 - Disable window rest...
RestoreMeNot provides a simple way to disable the window restoration for individual applications so that you can fine-tune this behavior to suit your needs. Please note that RestoreMeNot is designed... Read more
Macgo Blu-ray Player 2.10.9.1750 - Blu-r...
Macgo Mac Blu-ray Player can bring you the most unforgettable Blu-ray experience on your Mac. Overview Macgo Mac Blu-ray Player can satisfy just about every need you could possibly have in a Blu-ray... Read more
Apple iOS 8.1 - The latest version of Ap...
The latest version of iOS can be downloaded through iTunes. Apple iOS 8 comes with big updates to apps you use every day, like Messages and Photos. A whole new way to share content with your family.... Read more
TechTool Pro 7.0.5 - Hard drive and syst...
TechTool Pro is now 7, and this is the most advanced version of the acclaimed Macintosh troubleshooting utility created in its 20-year history. Micromat has redeveloped TechTool Pro 7 to be fully 64... Read more
PDFKey Pro 4.0.2 - Edit and print passwo...
PDFKey Pro can unlock PDF documents protected for printing and copying when you've forgotten your password. It can now also protect your PDF files with a password to prevent unauthorized access and/... Read more
Yasu 2.9.1 - System maintenance app; per...
Yasu was originally created with System Administrators who service large groups of workstations in mind, Yasu (Yet Another System Utility) was made to do a specific group of maintenance tasks... Read more
Hazel 3.3 - Create rules for organizing...
Hazel is your personal housekeeper, organizing and cleaning folders based on rules you define. Hazel can also manage your trash and uninstall your applications. Organize your files using a... Read more

Latest Forum Discussions

See All

Swap Heroes (Games)
Swap Heroes 1.0 Device: iOS Universal Category: Games Price: $.99, Version: 1.0 (iTunes) Description: **Half price for a limited time only** Swap Heroes is a casual turn-based strategy adventure. Form a group of heroes and guide them... | Read more »
Ghost Blade (Games)
Ghost Blade 1.1 Device: iOS Universal Category: Games Price: $4.99, Version: 1.1 (iTunes) Description: Get the most outstanding 3D Action Game from App Store NOW! For those who dare pursue dreams. Masterpiece of Yu Shi Game ---China... | Read more »
Fiete – A Day on a Farm Review
Fiete – A Day on a Farm Review By Amy Solomon on October 21st, 2014 Our Rating: :: A MEMORABLE EXPERIENCEUniversal App - Designed for iPhone and iPad Fiete – A day on a farm in an interactive app for young children full of... | Read more »
Tilt to Live: Gauntlet’s Revenge is Almo...
Tilt to Live: Gauntlet’s Revenge is Almost Here Posted by Jessica Fisher on October 21st, 2014 [ permalink ] One Man Left has announced the official release date of Tilt to Live: Gauntlet’s Re | Read more »
Sago Mini Monsters Celebrates Halloween...
Sago Mini Monsters Celebrates Halloween with Fun Costumes and Special Treats. Posted by Jessica Fisher on October 21st, 2014 [ permal | Read more »
Inferno 2 Review
Inferno 2 Review By Andrew Fisher on October 21st, 2014 Our Rating: :: TWIN STICK GOODNESSUniversal App - Designed for iPhone and iPad With tight controls and awesome, stark visuals, Inferno 2 is loads of fun.   | Read more »
Clips Review
Clips Review By Jennifer Allen on October 21st, 2014 Our Rating: :: CONVENIENT PASTINGUniversal App - Designed for iPhone and iPad Making copying and pasting more powerful than usual, Clips is a great way to move stuff around.   | Read more »
MonSense Review
MonSense Review By Jennifer Allen on October 21st, 2014 Our Rating: :: ORGANIZED FINANCESiPhone App - Designed for the iPhone, compatible with the iPad Organize your finances with the quick and easy to use, MonSense.   | Read more »
This Week at 148Apps: October 13-17, 201...
Expert App Reviewers   So little time and so very many apps. What’s a poor iPhone/iPad lover to do? Fortunately, 148Apps is here to give you the rundown on the latest and greatest releases. And we even have a tremendous back catalog of reviews; just... | Read more »
Angry Birds Transformers Review
Angry Birds Transformers Review By Jennifer Allen on October 20th, 2014 Our Rating: :: TRANSFORMED BIRDSUniversal App - Designed for iPhone and iPad Transformed in a way you wouldn’t expect, Angry Birds Transformers is a quite... | Read more »

Price Scanner via MacPrices.net

Select MacBook Airs $100 off MSRP, free shipp...
B&H Photo has 2014 a couple of MacBook Airs on sale for $100 off MSRP. Shipping is free, and B&H charges NY sales tax only. They also include free copies of Parallels Desktop and LoJack for... Read more
13-inch 2.5GHz MacBook Pro on sale for $100 o...
B&H Photo has the 13″ 2.5GHz MacBook Pro on sale for $999.99 including free shipping plus NY sales tax only. Their price is $100 off MSRP. Read more
Strong iPhone, Mac And App Store Sales Drive...
Apple on Monday announced financial results for its fiscal 2014 fourth quarter ended September 27, 2014. The Company posted quarterly revenue of $42.1 billion and quarterly net profit of $8.5 billion... Read more
Apple Posts How-To For OS X Recovery
OS X 10.7 Lion and later include OS X Recovery. This feature includes all of the tools you need to reinstall OS X, repair your disk, and even restore from a Time Machine backup. OS X Recovery... Read more
Mac OS X Versions (Builds) Supported By Vario...
Apple Support has posted a handy resource explaining which Mac OS X versions (builds) originally shipped with or are available for your computer via retail discs, downloads, or Software Update. Apple... Read more
Deals on 2011 13-inch MacBook Airs, from $649
Daily Steals has the Mid-2011 13″ 1.7GHz i5 MacBook Air (4GB/128GB) available for $699 with a 90 day warranty. The Mid-2011 13″ 1.7GHz i5 MacBook Air (4GB/128GB SSD) is available for $649 at Other... Read more
2013 15-inch 2.0GHz Retina MacBook Pro availa...
B&H Photo has leftover previous-generation 15″ 2.0GHz Retina MacBook Pros now available for $1599 including free shipping plus NY sales tax only. Their price is $400 off original MSRP. B&H... Read more
Updated iPad Prices
We’ve updated our iPad Air Price Tracker and our iPad mini Price Tracker with the latest information on prices and availability from Apple and other resellers, including the new iPad Air 2 and the... Read more
Apple Pay Available to Millions of Visa Cardh...
Visa Inc. brings secure, convenient payments to iPad Air 2 and iPad mini 3as well as iPhone 6 and 6 Plus. Starting October 20th, eligible Visa cardholders in the U.S. will be able to use Apple Pay,... Read more
Textkraft Pocket – the missing TextEdit for i...
infovole GmbH has announced the release and immediate availability of Textkraft Pocket 1.0, a professional text editor and note taking app for Apple’s iPhone. In March 2014 rumors were all about... Read more

Jobs Board

Senior Event Manager, *Apple* Retail Market...
…This senior level position is responsible for leading and imagining the Apple Retail Team's global event strategy. Delivering an overarching brand story; in-store, Read more
*Apple* Solutions Consultant (ASC) - Apple (...
**Job Summary** The ASC is an Apple employee who serves as an Apple brand ambassador and influencer in a Reseller's store. The ASC's role is to grow Apple Read more
Project Manager / Business Analyst, WW *Appl...
…a senior project manager / business analyst to work within our Worldwide Apple Fulfillment Operations and the Business Process Re-engineering team. This role will work Read more
*Apple* Retail - Multiple Positions (US) - A...
Job Description: Sales Specialist - Retail Customer Service and Sales Transform Apple Store visitors into loyal Apple customers. When customers enter the store, Read more
Position Opening at *Apple* - Apple (United...
…customers purchase our products, you're the one who helps them get more out of their new Apple technology. Your day in the Apple Store is filled with a range of Read more
All contents are Copyright 1984-2011 by Xplain Corporation. All rights reserved. Theme designed by Icreon.