TweetFollow Us on Twitter

Mar 99 Challenge

Volume Number: 15 (1999)
Issue Number: 3
Column Tag: Programmer's Challenge

Mar 99 Programmer's Challenge

by Bob Boonstra, Westford, MA

Terrain Traversal

You're on foot with cargo to deliver, and a mountain range between you and your destination. You have no map, nothing except a set of elevation readings provided by a meticulous surveyor that you met at a pub in the last town. And oh, how you hate to climb. Fortunately, this month's Challenge comes to the rescue once again with an efficient and labor saving solution to your problem.

The prototype for the code you should write to solve this Challenge is:

#if defined(__cplusplus)
extern "C" {
#endif

typedef long PointNum, TriangleNum;

typedef struct Point2D {
   double x;                    /* x coordinate */
   double y;                    /* y coordinate */
} Point2D;

typedef struct Point3D {
   PointNum thePointNum;        /* point number */
   Point2D thePoint;            /* x and y coordinates */
   double ht;                   /* point height (z coordinate) */
} Point3D;

typedef struct Triangle {
   TriangleNum theTriangleNum;  /* triangle number */
   PointNum thePoints[3];       /* numbers of points comprising triangle */
} Triangle;

typedef struct Segment {
   TriangleNum theTriangleNum;  /* segment is part of triangle with this number */
   Point2D startingPoint;       /* x,y coordinates of segment start */
   Point2D endingPoint;         /* x,y coordinates of segment end */
} Segment;

long /*numTriangles*/ InitTerrainMap(
   const Point3D thePoints[],   /* input points */
   long numPoints,              /* number of input points */
   Triangle theTriangles[]   /* output triangles constructed from thePoints */
);

long /*numSegments*/ FindAPath(
   const Point3D thePoints[],   /* input points (input to InitTerrainMap) */
   long numPoints,                /* number of input points */
   const Triangle theTriangles[], /* input triangles (from InitTerrainMap) */
   long numTriangles,             /* number of input triangles */
   const Point2D pathStart,       /* input starting point x,y */
   const Point2D pathEnd,         /* input ending point x,y */
   Segment theSegments[]       /* output segments from pathStart to pathEnd */
);

void TermTerrainMap(void);

#if defined(__cplusplus)
}
#endif

Your InitTerrainMap routine is provided a set of points (thePoints), numbered between 1 and numPoints, that define the terrain to be traversed. It is required to divide the terrain into a set of non-overlapping triangles (theTriangles) that will be provided to FindAPath and return the number of triangles created. InitTerrainMap can divide the terrain into any set of triangles, provided that each of thePoints is a member of at least one triangle, and that none of thePoints is strictly inside of any triangle, measured in the x-y plane. Thus, given points (0,1), (1,-1),(-1,1), and (0,0), the triangle formed by (0,1),(1,-1), and (0,0) would be legal, but the triangle formed by (0,1), (1,-1), and (-1,-1) would not be allowed, because (0,0) is strictly inside the latter.

After InitTerrainMap is called, FindAPath will be called an average of 5 times to generate a sequence of theSegments that traverse a route from pathStart to pathEnd. FindAPath is provided the same set of thePoints given to InitTerrainMap, as well as theTriangles produced by InitTerrainMap. Each segment created by FindAPath crosses from a point along one edge of a triangle to another point along an edge of the same triangle. The startingPoint and endingPoint of each segment must be inside or on the boundary of the same triangle (theTriangleNum). The startingPoint of segment 0 must be pathStart, the endingPoint of segment j must be identical to the startingPoint of segment j+1, and the endingPoint of the last segment must be pathEnd. The starting and ending points pathStart and pathEnd will be in the set of thePoints given to InitTerrainMap, and therefore will be vertices in at least one of theTriangles.

After traversal of some number of paths across the terrain, TermTerrainMap will be called, where you should dispose of any dynamically allocated storage.

Unfortunately, the surveyor who provided us with thePoints in our terrain map was not considerate enough to put them on a regular x-y grid. However, he was limited in the amount of storage he had with him on his mapping expedition, so we know that there will be no more than 32K points in any given terrain map.

The winner will be the solution that minimizes the amount of work required to reach the destination, where work is a combination of distance traveled and elevation change. Specifically, the total work is the sum of the work expended on each segment, which is calculated as the distance traveled in the x-y plane, plus ten times the absolute value of the elevation change from the starting and ending points of the segment. In addition, there will be a penalty of 10% for each second of execution time required to compute a solution. There is no storage constraint for this Challenge, except that your solution must run on a 128MB machine.

This will be a native PowerPC Challenge, using the latest CodeWarrior environment. Solutions may be coded in C, C++, or Pascal.

Three Months Ago Winner

The December Word Neighbors Challenge was intended to be a little easier than some recent Challenges, but apparently that was not the case. The Challenge was to find all occurrences of a set of words that occurred within a specified distance of one another in a body of text. The problem had enough subtle complications that none of the four solutions submitted by the deadline completed all of my test cases correctly. The solution by Randy Boring, however, performed correctly with a two-line code change. It also was the most efficient submission and exhibits some interesting techniques, so I chose to publish that solution. The code change, while small, was algorithmically significant, so no prizes or points are going to be awarded for this Challenge. Ludovic Nicolle and Gregory Sadetsky did submit a correct solution, but it was submitted after the deadline. Since they described the code as the "ugliest I have ever written in my entire life", I decided against publishing that solution.

The problem complication that tripped up two of the solutions had to do with treatment of overlapping matches. The problem requirement was to find all occurrences of the search words in the text where the distance between search words is less than a specified amount. No word in the text was allowed to be part of more than one match, and the solutions were required to return the location of the first matching word. The fact that search words need not be immediately adjacent allows the match sequences to overlap. As an example, if the problem is to find a case insensitive and order independent match of the words "a", "b", "c", "d", "e", and "f" within a distance of 4 or fewer intervening words in the following text:

c.2.D.4.b.B.7.B.a.B.D.d.C.14.B.e.f.F.F.A.b.F.a.c.E.d

the correct solution is to return the matches starting at character 0 and character 4, as indicated below:

text:     c.2.D.4.b.B.7.B.a.B.D.d.C.14.B.e.f.F.F.A.b.F.a.c.E.d
match1:   c----b----a---d----e-f
match2:   --D-----B-----C-----F--A-----E

Because of the correctness issues, I did not run the full set of evaluation test cases that I had originally planned. In putting together a collection of digitized text to use for testing, I found my way to the Project Gutenberg site at <http://sailor.gutenberg.org/gutenberg/>, home to a large and growing collection of digitized literature. It has been quite a while since I read "Twenty Thousand Leagues Under The Sea", and it was something of a surprise to rediscover, courtesy of this Challenge, the fact that Captain Nemo doesn't appear until the second half of the book.

Randy's solution is sparsely commented, but there are some interesting features to notice. Noticing that the problem statement called for numerous searches for each set of text, Randy parses the text in his InitText routine, creating a UniqueSummary table of each unique word in the text, and a WordInstance table entry for each word occurrence in the text. To save space, Randy kept pointers back to the text only in the UniqueSummary table, not in the WordInstance table, which cost him the Challenge win. The problem has been corrected in the published solution by adding a word pointer to the WordInstance table, increasing storage requirements, in order to provide the required output. To make word comparisons efficient, Randy hashes each word in the Hash function, and uses that hash to compare words in the FindUniqueWord function.

In searching for a match, Randy divides the code into four cases, based on whether the search is case sensitive or not, and on whether the order of the search words is to be preserved or not. The solution then performs a recursive search of the word instance table to determine if a match exists within the specified distance.

The table below lists, for each of the solutions submitted, the total execution time, the types of errors that turned up in the evaluation, the code and data size, and the programming language. As usual, the number in parentheses after the entrant's name is the total number of Challenge points earned in all Challenges prior to this one.

NameTime (msec)Memory Alloc.ErrorsCode SizeData SizeLang
Randy Boring (83)262Original*B708834132C++
Ed Agoff334OriginalA32124236C++
Ernst Munter (430)2022NewA114321624C++
Ludovic Nicolle (48) /
Gregory Sadetsky (2) 120964NewLate9676434C
P.B. -NewCRASH5176539C++

A - problems with overlapping matches
B - incorrect return values before correction; correction required revised memory allocation

Top Contestants

Listed here are the Top Contestants for the Programmer's Challenge, including everyone who has accumulated 20 or more points during the past two years. The numbers below include points awarded over the 24 most recent contests, including points earned by this month's entrants.

  1. Munter, Ernst 204
  2. Saxton, Tom 79
  3. Boring, Randy 56
  4. Mallett, Jeff 50
  5. Rieken, Willeke 47
  6. Maurer, Sebastian 40
  7. Heithcock, JG 37
  8. Cooper, Greg 34
  9. Murphy, ACC 34
  10. Lewis, Peter 31
  11. Nicolle, Ludovic 27
  12. Brown, Pat 20
  13. Day, Mark 20
  14. Higgins, Charles 20
  15. Hostetter, Mat 20

There are three ways to earn points: (1) scoring in the top 5 of any Challenge, (2) being the first person to find a bug in a published winning solution or, (3) being the first person to suggest a Challenge that I use. The points you can win are:

1st place20 points
2nd place10 points
3rd place7 points
4th place4 points
5th place2 points
finding bug2 points
suggesting Challenge2 points

Here is the corrected version of Randy's Word Neighbors solution:

Nearby.cp
Copyright © 1998 Randy Boring

// Corrections by JRB marked by the following define
#define JRB_CORRECTION 1

#include <MacTypes.h>
#include "Nearby.h"

#define SINGLEWORDALLOWED   0   // can't find a _nearby_ single word!
#define DEBUG   0
#if DEBUG
#include <iostream>
using namespace std;
#endif

WordInstance
typedef struct WordInstance {
   unsigned long   mark:1;      // has been used in a found set
   unsigned long   usi:18;      // index of our unique summary
      // a quarter million unique words should be enough
   unsigned long   hint:13;     // partial summary
#if JRB_CORRECTION
   char *word;
#endif
   } Inst, StackElem, *Stack, *Set;

#define kHintSize   13       // only the presence of upper or lower
#define kHintMask   0x1FFF   // p umlh sirn aote are in the hint
#define isMarked(w)   ((w).mark)
#define Mark(wp)   (wp->mark = 1)
#define UnMark(wp)   (wp->mark = 0)
#define WordsAreExactlyEqual(w1,w2)   ((w1).usi == (w2).usi)

UniqueSummary
typedef struct UniqueSummary {
   unsigned long         unused:1;
   unsigned long         lowerNumbers:5;
   unsigned long         lowerLetters:26;
   unsigned long         unused2:1;
   unsigned long         upperNumbers:5;
   unsigned long         upperLetters:26;
   struct UniqueSummary   *next;   // of same hash
   char               *word;
   } US, *HashList;
#define USIndex(w)         (gUS - w)
#define USfromIndex(i)      (&gUS[-(i)])
#if !JRB_CORRECTION
#define TextPosition(ip)   (USfromIndex((ip)->usi)->word - gText)
#else
#define TextPosition(ip)   ((ip)->word - gText)
#endif

#define MAXHASH         0x00002000L   // 8K entries of 4 bytes = 32K
#define MAXSEARCHWORDS   100
#define MAXSTACK      MAXSEARCHWORDS

static HashList gHashTable[MAXHASH];
static long gTotalInstances;

static US *gUS, *gUSLast;
static Inst *gInstp, *gInstpLast;
static long gDist;
static char *gText;
static long gTextLength;

#define kX   (0x100)     // illegal input
#define kD   (0x80)      // delimiter
#define kN   (0x40)      // numeric
#define kU   (0x20)      // upper case (or 5-9)
#define kM   (0x1F)      // mask of bit index within category

#define NotDelimType(typ)   (((typ) & (kX | kD)) == 0)
#define NotDelim(c)         (((gCharType[c]) & (kX | kD)) == 0)
#define IsDelimType(typ)   (((typ) & (kX | kD)) != 0)
#define IsDelim(c)         (((gCharType[c]) & (kX | kD)) != 0)

gCharType
static /* const */ short gCharType[
#if DEBUG
   256
#else
   128
#endif
   ] = {
   /* these aren't legal input (0x00-0x1F), except tab, lf, cr */
   kX,kX,kX,kX,kX,kX,kX,kX, kX,kD,kD,kX,kX,kD,kX,kX,
   kX,kX,kX,kX,kX,kX,kX,kX, kX,kX,kX,kX,kX,kX,kX,kX,
   /* begin rest of legal input with 0x20 (space) */
   kD,kD,kD,kD,kD,kD,kD,kD, kD,kD,kD,kD,kD,kD,kD,kD,
   0x40,0x41,0x42,0x43,0x44,   // 'lower' digits 0-4
   0x60,0x61,0x62,0x63,0x64,   // 'upper' digits 5-9
   kD,kD,kD,kD,kD,kD,
   kD,      // ASCII 0x40
   
   0x23,   // A=3   etoanris hlmup are renumbered as most common
   0x2D,   // B   01234567 89ABC
   0x2E,   // C
   0x2F,   // D
   0x20,   // E=0
   0x30,   // F
   0x31,   // G
   0x28,   // H=8
   0x26,   // I=6
   0x32,   // J
   0x33,   // K
   0x29,   // L=9
   0x2A,   // M=A
   0x24,   // N=4
   0x22,   // O=2
   0x2C,   // P=C
   0x34,   // Q
   0x25,   // R=5
   0x27,   // S=7
   0x21,   // T=1
   0x2B,   // U=B
   0x35,   // V
   0x36,   // W
   0x37,   // X
   0x38,   // Y
   0x39,   // Z   ASCII 0x5A
   
   kD,kD,kD,kD,kD,
   kD,      // ASCII 0x60
   
   0x03,   // a=3   etoanris hlmup are renumbered as most common
   0x0D,   // b   01234567 89ABC
   0x0E,   // c
   0x0F,   // d
   0x00,   // e=0
   0x10,   // f
   0x11,   // g
   0x08,   // h=8
   0x06,   // i=6
   0x12,   // j
   0x13,   // k
   0x09,   // l=9
   0x0A,   // m=A
   0x04,   // n=4
   0x02,   // o=2
   0x0C,   // p=C
   0x14,   // q
   0x05,   // r=5
   0x07,   // s=7
   0x01,   // t=1
   0x0B,   // u=B
   0x15,   // v
   0x16,   // w
   0x17,   // x
   0x18,   // y
   0x19,   // z   ASCII 0x7A
   
   kD,kD,kD,kD,   // ASCII 0x7E is last legal delimiter
   kX      // ASCII 0x7F
#if DEBUG
   ,
   /* these aren't legal input! 0x80 - 0xFF */
   kX,kX,kX,kX,kX,kX,kX,kX, kX,kX,kX,kX,kX,kX,kX,kX,
   kX,kX,kX,kX,kX,kX,kX,kX, kX,kX,kX,kX,kX,kX,kX,kX,
   kX,kX,kX,kX,kX,kX,kX,kX, kX,kX,kX,kX,kX,kX,kX,kX,
   kX,kX,kX,kX,kX,kX,kX,kX, kX,kX,kX,kX,kX,kX,kX,kX,
   kX,kX,kX,kX,kX,kX,kX,kX, kX,kX,kX,kX,kX,kX,kX,kX,
   kX,kX,kX,kX,kX,kX,kX,kX, kX,kX,kX,kX,kX,kX,kX,kX,
   kX,kX,kX,kX,kX,kX,kX,kX, kX,kX,kX,kX,kX,kX,kX,kX,
   kX,kX,kX,kX,kX,kX,kX,kX, kX,kX,kX,kX,kX,kX,kX,kX
#endif
   };

static StackElem gStack[MAXSTACK];

#if DEBUG
static long gUniqueHashEntries;

static int alreadyAllocated = true;   // ensures we init it at first
#endif

//----//----//----//----//----//----
static void
FreeStack(Stack *ioStack)
{
#if DEBUG
   *ioStack = nil;
   alreadyAllocated = false;
#else
#pragma unused (ioStack)
#endif
}

//----//----//----//----//----//----
static Stack
NewStack(void)
{
#if DEBUG
   if (alreadyAllocated)
      DebugStr("\p already allocated!");
   else
      alreadyAllocated = true;
#endif
   return gStack;   // only works once, of course
}

//----//----//----//----//----//----
static void
InitStack(void)
{
#if DEBUG
   alreadyAllocated = false;
#endif
}

//----//----//----//----//----//----
static /* inline */ void
StackPush(Stack *ioStack, StackElem e)
{
#if DEBUG
   if ((*ioStack - gStack) >= MAXSTACK)
      DebugStr("\p blew stack up!");
   else
#endif
//   *ioStack++ = e;
   **ioStack = e;
   (*ioStack)++;
}

//----//----//----//----//----//----
// Return the element at the top of the stack and pop it off
static /* inline */ StackElem
StackPopTop(Stack *ioStack)
{
#if DEBUG
   if (*ioStack <= gStack)
      {
      DebugStr("\p poked bottom of stack!");
      return **ioStack;   // no good choice here
      }
   else
#endif
   return *(-*ioStack);
}

//----//----//----//----//----//----
static /* inline */ int
StackIsEmpty(const Stack inStack)
{
   return (inStack == gStack);
}

//----//----//----//----//----//----
static /* inline */ int
SetIsSizeOne(const Set inSet)
{
   return (inSet == gStack + 1);
}

//----//----//----//----//----//----
#define SetAdd(s,w)   StackPush(s,w)

//----//----//----//----//----//----
static void
SetRemove(Set *ioSet, Inst *toRemove)
{
   // remove top element, and overwrite toRemove element
   *toRemove = StackPopTop(ioSet);
}

Hash
// Generate a case-insensitive hash from the characters of 
//   the null-terminated string
//   h1 is sum of w[i-1] * w[i] where w[-1] = 1
//   h2 is simple sum of w[i]
//   result puts h2 in upper 6 bits of a 13 bit word
static long
Hash(char *w, char **outDelim)
{
   long h1 = 0, h2 = 0, lastNum = 1, thisNum;
   char cw = *w;   // assumes first char not null
   do   {
      if (cw >= 'a')      // is lowercase
         thisNum = cw - ('a' - 1);
      else if (cw >= 'A')   // is uppercase
         thisNum = cw - ('A' - 1);
      else            // is digit
         thisNum = cw;
      cw = *++w;   // the next char
      h1 += lastNum * thisNum;
      h2 += thisNum;
      lastNum = thisNum;
      } while (cw);
   *outDelim = w;
   return (h1 + (h2 << 7)) & 0x00001FFF;
}

//----//----//----//----//----//----
// Returns whether the hash table entry at h is valid
static /* inline */ int
ValidHashEntry(long h)
{
   return (gHashTable[h] != nil);
}

//----//----//----//----//----//----
static void
HashAdd(US *inUSp, long h)
{
   if (ValidHashEntry(h))
      {   // append to existing hash table list
      inUSp->next = gHashTable[h];
      gHashTable[h] = inUSp;
      }
   else {   // add new hash table entry
      gHashTable[h] = inUSp;
#if DEBUG
      gUniqueHashEntries++;
#endif
      }
}

//----//----//----//----//----//----
static void
InitHash(void)
{
   double fr0 = 0.0, fr1 = 0.0, fr2 = 0.0, fr3 = 0.0;
   long count = sizeof(gHashTable) >> 5;
   double *p = (double *) gHashTable;
   do   {
      -count;
      *p = fr0;
      *(p + 1) = fr1;
      *(p + 2) = fr2;
      *(p + 3) = fr3;
      p += 4;
      } while (count);
#if DEBUG
   gUniqueHashEntries = 0;
#endif
}

#if DEBUG
static void
PrintHashTable(void)
{
   long i;
   for (i = 0; i < MAXHASH; i++)
      if (ValidHashEntry(i))
         {
         cout << "h = " << i;
         HashList e = gHashTable[i];
         long ct = 0;
         do   {
            cout << ", " << e->word;
            e = e->next;
            ++ct;
            } while (e);
         cout << endl << "  ct = " << ct << endl;
         }
}
#endif

EqualStrings
// Return true if the strings are exactly equal
// This is like strcmp (ignoring less or greater)
// Assumes first char of w is not null
static int
EqualStrings(char *w, char *u)
{
   char cw = *w, cu = *u;
   do   {
      if (cw != cu)
         return 0;
      cw = *++w;
      cu = *++u;
      } while (cw);
   return 1;
}

EqualStringsNCS
// Return true if the strings are equal, ignoring case
// Assumes first char of w is not null
static int
EqualStringsNCS(char *w, char *u)
{
   char cw = *w, cu = *u;
   do   {
      if (cw >= 'a')       // cw is lowercase
         cw -= ('a' - 'A');   // uppercase it
      if (cu >= 'a')       // cu is lowercase
         cu -= ('a' - 'A');   // uppercase it
      if (cw != cu)
         return 0;
      cw = *++w;
      cu = *++u;
      } while (cw);
   return 1;
}

CreateSummary
// Record the presence of each kind of alphanumeric char in
//   the word
// And point to the actual word for final exact check
static void
CreateSummary(char *w, US *usp)
{
   long lowN = 0, lowL = 0, upN = 0, upL = 0;
   short cwtype;
   char cw = *w;
   cwtype = gCharType[cw];
   usp->word = w;
   do   {
      long presenceBit;
      int isUpper, isNumber;   // NOT mutually exclusive
      cw = *++w;
      presenceBit = 0x0001 << (cwtype & kM);
      isUpper = cwtype & kU;
      isNumber = cwtype & kN;
      cwtype = gCharType[cw];
      if (isUpper)   // upper case letter or high number
         if (isNumber)   // number
            upN |= presenceBit;
         else
            upL |= presenceBit;
      else if (isNumber)
         lowN |= presenceBit;
      else
         lowL |= presenceBit;
      } while (NotDelimType(cwtype));
   
   usp->unused = 0;
   usp->upperNumbers = upN;
   usp->upperLetters = upL;
   usp->unused2 = 0;
   usp->lowerNumbers = lowN;
   usp->lowerLetters = lowL;
   usp->next = nil;
}

FindUniqueWord
// Return the UniqueWordSummary for the word, w, if any
static US *
FindUniqueWord(char *w, long *outHash, char **outDelim)
{
   unsigned short h = Hash(w, outDelim);
   US *usp = gHashTable[h];
   *outHash = h;
   if (!ValidHashEntry(h))
      return nil;
   while (usp && !EqualStrings(w, usp->word))
      usp = usp->next;
   return usp;
}

AddWord
// Find word w in hash table (or add it, if unique) and 
// Build instance pointer and add it
// Return ptr to next char after word ends (its delimiter)
static char *   // next character after word
AddWord(char *w)
{
   long h;
   char *afterWord;
   US *theUSp = FindUniqueWord(w, &h, &afterWord);
   if (!theUSp)   // new unique word, add it
      {
      theUSp = gUSLast;
      -gUSLast;
#if DEBUG
      if ((Ptr)theUSp < (Ptr)gInstpLast)
         DebugStr("\p dictionary ran into the index!");
#endif
      CreateSummary(w, theUSp);
      HashAdd(theUSp, h);
      }
   Inst theInst;
   theInst.mark = 0;
   theInst.usi = USIndex(theUSp);
   theInst.hint = (theUSp->upperLetters | theUSp->lowerLetters)
         & kHintMask;
#if JRB_CORRECTION
   theInst.word = w;
#endif
   *gInstpLast++ = theInst;
   return afterWord;
}

InitText
// Index each word in the text
static void
InitText(char *text, long length)
{
   char *stop = text + length;
   // skip illegals and delimiters
   while (IsDelim(*text))
      ++text;
   while (text < stop)
      {
      text = AddWord(text);
      while (IsDelim(*text) && text < stop)
         ++text;
      }
}

FixTextAndCountInsts
// Return count of word instances and length of input text
// Null-terminate each word instance in the text
//   Allowed since 'text' is not const char *
//   Helpful since it simplifies all word ending detection
static long
FixTextAndCountInsts(char *text, long *outLength)
{
   long ct = 0;
   char *textStart = text;
                  // find beginning of first word
   while (IsDelim(*text))
      ++text;
   while (*text)
      {
                  // find end of word
      while (NotDelim(*text))
         ++text;
      ++ct;         // count the word
      if (*text == 0)
         break;
      *text++ = 0;   // null-terminate the word
                  // find beginning of next word
      while (*text && IsDelim(*text))
         ++text;
      }
   *outLength = text - textStart;
   return ct;
}

//----//----//----//----//----//----
// A Set is implemented as a Stack (for now)
#define FillSet(s,w,n)   FillStackBackwards(s,w,n)
#define NewSet()      NewStack()
#define FreeSet(s)      FreeStack(s)

Initialize
pascal void Initialize(
   char *text,                /* NULL terminated text to be searched */
   long distance,             /* max distance between nearby words */
   void *privateStorage,      /* private storage for your use */
   long storageBytes          /* number of bytes in privateStorage */
   )
{
   InitHash();
   InitStack();
   gTotalInstances = FixTextAndCountInsts(text, &gTextLength);
   
   /* from gTotalInstances we can guess what strategy to use */
   
   // InitInstances (left to right from beginning, 
postincrementing)
   gInstpLast = (Inst *) privateStorage;
   gInstp = gInstpLast;
   // InitUniqueSummaries (right to left from end, postdecrementing)
   // masking with 0xFFFFFFFC gives us 4-Byte alignment
   gUS = ((US *) (((unsigned long) privateStorage + storageBytes) & 0xFFFFFFFC)) - 1;
   gUSLast = gUS;
   InitText(text, gTextLength);
   gText = text;
   gDist = distance + 1;   // distance allowed is 0 through distance
#if DEBUG
   if (gTotalInstances != gInstpLast - gInstp)
      DebugStr("\p gTotalInstances != gInstpLast - gInstp");
   PrintHashTable();
   cout << "# of words total in input text:
                             " << gTotalInstances << endl;
   cout << "# of unique words in input text:
                             " << gUS - gUSLast << endl;
   cout << "# of hash table entries used:   
                             = " << gUniqueHashEntries << endl;
#endif
}

FillStackBackwards
static void
FillStackBackwards(Stack *ioStack, char *words[], long numWords)
{
   for (int i = numWords - 1; i >= 0; -i)
      {
      long dummy;   // we don't need the returned hash value
      char *dummy2;
      Inst elem;
      US *wUSp;
      wUSp = FindUniqueWord(words[i], &dummy, &dummy2);
#if DEBUG
      if (nil == wUSp)
         {
         DebugStr("\p find word not in text!");
         continue;
         }
#endif
      elem.mark = 0;
      elem.usi = USIndex(wUSp);
      elem.hint = (wUSp->upperLetters | wUSp->lowerLetters)
         & kHintMask;
      StackPush(ioStack, elem);
      }
}

WordsAreEqualExceptCase
// Return true if the words are same except for case
//   1. hints of Inst will be same if words same 
//   2. summaries will have same bitfields of char presence
//      but for case (OR upper and lower fields before compare)
//   3. words will be letter-for-letter the same (ignoring case)
static int
WordsAreEqualExceptCase(Inst w1, Inst w2)
{
   if (w1.hint != w2.hint)
      return 0;   // they have different common letters
   US *u1 = USfromIndex(w1.usi), *u2 = USfromIndex(w2.usi);
   unsigned long u1letters = u1->lowerLetters | u1-
                                >upperLetters;
   unsigned long u2letters = u2->lowerLetters | u2-
                                >upperLetters;
   if (u1letters != u2letters)
      return 0;
   if ((u1->lowerLetters | u1->upperLetters)
      != (u2->lowerLetters | u2->upperLetters))
      return 0;
   if (u1->lowerNumbers != u2->lowerNumbers)
      return 0;
   if (u1->upperNumbers != u2->upperNumbers)
      return 0;
   return (EqualStringsNCS(u1->word, u2->word));
}

FindInSetCS
// Find the set element (a search word modelled as an Inst)
//   that is the same as inst, case-sensitive
static Inst *
FindInSetCS(Set inSet, Inst inst)
{
   -inSet;
   do   {
      if (WordsAreExactlyEqual(*inSet, inst))
         return inSet;
      } while (inSet->gStack);
   return nil;
}

FindInSetNCS
// Find the set element (a search word modelled as an Inst)
//   that is the same as inst, ignoring case
static Inst *
FindInSetNCS(Set inSet, Inst inst)
{
   -inSet;
   do   {
      if (WordsAreExactlyEqual(*inSet, inst) ||
            WordsAreEqualExceptCase(*inSet, inst))
         return inSet;
      } while (inSet->gStack);
   return nil;
}

FindNextIOMatchCS
static int
FindNextIOMatchCS(Inst *currInstp, Stack st, long maxDist)
{
   long currDist = maxDist;
   Inst w = StackPopTop(&st);
   int atBottom = StackIsEmpty(st);
   
   do   {
      Inst currW = *currInstp;
      if (isMarked(currW))
         goto nextInst;
      if (WordsAreExactlyEqual(currW, w)) // this word matches!
         if (atBottom)
            {   // we found a set!
            Mark(currInstp);
            StackPush(&st, w);   // restore our stack item
            return 1;
            }
         else // recurse to see if we can finish finding a set
         if (FindNextIOMatchCS(currInstp + 1, st, maxDist))
            {   // set found by recursion
            Mark(currInstp);
            StackPush(&st, w);   // restore our stack item
            return 1;
            }
         else {   // no set found by recursion
            StackPush(&st, w);   // restore our stack item
            return 0;
            }
   nextInst:
      -currDist;
      ++currInstp;
      } while (currDist);
   
   // no matching word found within max distance
   StackPush(&st, w);   // restore our stack item
   return 0;
}

FindIOMatchesCS
static long
FindIOMatchesCS(Stack st, long maxToFind, long matchPositions[])
{
   Inst *currInstp;
   Inst *lastInstp = gInstpLast;
   Inst w = StackPopTop(&st);
   long count = 0;
#if SINGLEWORDALLOWED
   int atBottom = StackIsEmpty(st);
#endif
   
   for (currInstp = gInstp; currInstp < lastInstp; ++currInstp)
      if (isMarked(*currInstp))   // already used in a found set
         UnMark(currInstp);
      else {
         if (WordsAreExactlyEqual(*currInstp, w))
            {
#if SINGLEWORDALLOWED
            if (atBottom) // only one search word!
               matchPositions[count++] = TextPosition(currInstp);
            else // recurse
#endif
            if (FindNextIOMatchCS(currInstp + 1, st, gDist))
               matchPositions[count++] = TextPosition(currInstp);
            if (count == maxToFind)
               break;
            }
         }
   return count;
}

FindNextIOMatchNCS
static int
FindNextIOMatchNCS(Inst *currInstp, Stack st, long maxDist)
{
   long currDist = maxDist;
   Inst w = StackPopTop(&st);
   int atBottom = StackIsEmpty(st);
   
   do   {
      Inst currW = *currInstp;
      if (isMarked(currW))
         goto nextInst;
      if (WordsAreExactlyEqual(currW, w) ||
            WordsAreEqualExceptCase(currW, w))
            // this word matches!
         if (atBottom)
            {   // we found a set!
            Mark(currInstp);
            StackPush(&st, w);   // restore our stack item
            return 1;
            }
         else // recurse to see if we can finish finding a set
         if (FindNextIOMatchCS(currInstp + 1, st, maxDist))
            {   // set found by recursion
            Mark(currInstp);
            StackPush(&st, w);   // restore our stack item
            return 1;
            }
         else {   // no set found by recursion
            StackPush(&st, w);   // restore our stack item
            return 0;
            }
   nextInst:
      -currDist;
      ++currInstp;
      } while (currDist);
   
   // no matching word found within max distance
   StackPush(&st, w);   // restore our stack item
   return 0;
}

FindIOMatchesNCS
static long
FindIOMatchesNCS(Stack st, long maxToFind, long matchPositions[])
{
   Inst *currInstp;
   Inst *lastInstp = gInstpLast;
   Inst w = StackPopTop(&st);
   long count = 0;
#if SINGLEWORDALLOWED
   int atBottom = StackIsEmpty(st);
#endif
   
   for (currInstp = gInstp; currInstp < lastInstp; ++currInstp)
      if (isMarked(*currInstp))   // already used in a found set
         UnMark(currInstp);
      else {
         if (WordsAreExactlyEqual(*currInstp, w) ||
            WordsAreEqualExceptCase(*currInstp, w))
            {
#if SINGLEWORDALLOWED
            if (atBottom) // only one search word!
               matchPositions[count++] = TextPosition(currInstp);
            else // recurse
#endif
            if (FindNextIOMatchNCS(currInstp + 1, st, gDist))
               matchPositions[count++] = TextPosition(currInstp);
            if (count == maxToFind)
               break;
            }
         }
   return count;
}

FindNearbyInOrder
static long
FindNearbyInOrder(            /* return number of matches found */
   char *words[],             /* words to find in text */
   long numWords,             /* number of words */
   Boolean caseSensitive,     /* true if match is case sensitive */
   long matchPositions[],     /* position in text of first word in match */
   long maxMatches            /* max number of matches to return */
   )
{
   Stack st = NewStack();
   long found = 0;
   FillStackBackwards(&st, words, numWords);
   if (caseSensitive)
      found = FindIOMatchesCS(st, maxMatches, matchPositions);
   else
      found = FindIOMatchesNCS(st, maxMatches, matchPositions);
   FreeStack(&st);
   return found;
}

FindNextAOMatchCS
static int
FindNextAOMatchCS(Inst *currInstp, Set st, long maxDist)
{
   long currDist = maxDist;
   int atBottom = SetIsSizeOne(st);
   
   do   {
      Inst currW = *currInstp;
      if (isMarked(currW))
         goto nextInst;
      Inst *saveInstp = FindInSetCS(st, currW);
      if (saveInstp != nil)   // found a match
         {
         Inst saveInst = *saveInstp;   // only needed in NCS
         SetRemove(&st, saveInstp);
         if (atBottom) // last search word
            {   // we found a set!
            Mark(currInstp);
            SetAdd(&st, saveInst);   // restore our set item
            return 1;
            }
         else // recurse to see if we can finish finding a set
         if (FindNextAOMatchCS(currInstp + 1, st, maxDist))
            {   // set found by recursion
            Mark(currInstp);
            SetAdd(&st, saveInst);   // restore our set item
            return 1;
            }
         //else    // no set found by recursion
         SetAdd(&st, saveInst);
         }
   nextInst:
      -currDist;
      ++currInstp;
      } while (currDist);
   
   // no matching word found within max distance
   return 0;
}

FindAOMatchesCS
static long
FindAOMatchesCS(Set st, long maxToFind, long matchPositions[])
{
   long count = 0;
   Inst *currInstp;
   Inst *lastInstp = gInstpLast;
#if SINGLEWORDALLOWED
   int atBottom = SetIsSizeOne(st);
#endif
   for (currInstp = gInstp; currInstp < lastInstp; ++currInstp)
      if (isMarked(*currInstp))   // already used in a found set
         UnMark(currInstp);
      else {
         Inst *saveInstp = FindInSetCS(st, *currInstp);
         if (saveInstp != nil)   // found a match
            {
            Inst saveInst = *saveInstp;
            SetRemove(&st, saveInstp);
#if SINGLEWORDALLOWED
            if (atBottom) // only one search word!
               matchPositions[count++] = TextPosition(currInstp);
            else // recurse
#endif
            if (FindNextAOMatchCS(currInstp + 1, st, gDist))
               matchPositions[count++] = TextPosition(currInstp);
            SetAdd(&st, saveInst);
            if (count == maxToFind)
               break;
            }
         }
   return count;
}

FindNextAOMatchNCS
static int
FindNextAOMatchNCS(Inst *currInstp, Stack st, 
      long maxDist)
{
   long currDist = maxDist;
   int atBottom = SetIsSizeOne(st);
   
   do   {
      Inst currW = *currInstp;
      if (isMarked(currW))
         goto nextInst;
      Inst *saveInstp = FindInSetNCS(st, currW);
      if (saveInstp != nil)   // found a match
         {
         Inst saveInst = *saveInstp;   // only needed in NCS
         SetRemove(&st, saveInstp);
         if (atBottom) // last search word
            {   // we found a set!
            Mark(currInstp);
            SetAdd(&st, saveInst);   // restore our set item
            return 1;
            }
         else // recurse to see if we can finish finding a set
         if (FindNextAOMatchNCS(currInstp + 1, st, maxDist))
            {   // set found by recursion
            Mark(currInstp);
            SetAdd(&st, saveInst);   // restore our set item
            return 1;
            }
         //else    // no set found by recursion
         SetAdd(&st, saveInst);
         }
   nextInst:
      -currDist;
      ++currInstp;
      } while (currDist);
   
   // no matching word found within max distance
   return 0;
}

FindAOMatchesNCS
static long
FindAOMatchesNCS(Set st, long maxToFind, long matchPositions[])
{
   long count = 0;
   Inst *currInstp;
   Inst *lastInstp = gInstpLast;
#if SINGLEWORDALLOWED
   int atBottom = SetIsSizeOne(st);
#endif
   for (currInstp = gInstp; currInstp < lastInstp; ++currInstp)
      if (isMarked(*currInstp))   // already used in a found set
         UnMark(currInstp);
      else {
         Inst *saveInstp = FindInSetNCS(st, *currInstp);
         if (saveInstp != nil)   // found a match
            {
            Inst saveInst = *saveInstp;
            SetRemove(&st, saveInstp);
#if SINGLEWORDALLOWED
            if (atBottom) // only one search word!
               matchPositions[count++] = TextPosition(currInstp);
            else // recurse
#endif
            if (FindNextAOMatchNCS(currInstp + 1, st, gDist))
               matchPositions[count++] = TextPosition(currInstp);
            SetAdd(&st, saveInst);
            if (count == maxToFind)
               break;
            }
         }
   return count;
}

FindNearbyAnyOrder
static long
FindNearbyAnyOrder(            /* return number of matches found */
   char *words[],              /* words to find in text */
   long numWords,              /* number of words */
   Boolean caseSensitive,      /* true if match is case sensitive */
   long matchPositions[],      /* position in text of first word in match */
   long maxMatches             /* max number of matches to return */
   )
{
   Set st = NewSet();
   long found = 0;
   FillSet(&st, words, numWords);
   if (caseSensitive)
      found =  FindAOMatchesCS(st, maxMatches, matchPositions);
   else
      found =  FindAOMatchesNCS(st, maxMatches, matchPositions);
   FreeSet(&st);
   return found;
}

FindNearby
pascal long FindNearby(      /* return number of matches found */
   char *words[],            /* words to find in text */
   long numWords,            /* number of words */
   Boolean caseSensitive,    /* true if match is case sensitive */
   Boolean preserveOrder,    /* true if words must be found in order */
   long matchPositions[],    /* position in text of first word in match */
   long maxMatches           /* max number of matches to return */
   )
{
   if (preserveOrder)
      return FindNearbyInOrder(words, numWords, caseSensitive, 
            matchPositions, maxMatches);
   else
      return FindNearbyAnyOrder(words, numWords, caseSensitive, 
            matchPositions, maxMatches);
}
 

Community Search:
MacTech Search:

Software Updates via MacUpdate

Together 3.6.1 - Store and organize all...
Together helps you organize your Mac, giving you the ability to store, edit and preview your files in a single clean, uncluttered interface. Features Smart storage. With simple drag-and-drop... Read more
Cloud 4.1.1 - File sharing from your men...
Cloud is simple file sharing for the Mac. Drag a file from your Mac to the CloudApp icon in the menubar and we take care of the rest. A link to the file will automatically be copied to your clipboard... Read more
OmniFocus 2.7.1 - GTD task manager with...
OmniFocus helps you manage your tasks the way that you want, freeing you to focus your attention on the things that matter to you most. Capturing tasks and ideas is always a keyboard shortcut away in... Read more
CleanApp 5.1.1 - Application deinstaller...
CleanApp is an application deinstaller and archiver.... Your hard drive gets fuller day by day, but do you know why? CleanApp 5 provides you with insights how to reclaim disk space. There are... Read more
ForkLift 3.0 Beta 2 - Powerful file mana...
ForkLift is a powerful file manager and ferociously fast FTP client clothed in a clean and versatile UI that offers the combination of absolute simplicity and raw power expected from a well-executed... Read more
Sublime Text 3126 - Sophisticated text e...
Sublime Text is a sophisticated text editor for code, markup, and prose. You'll love the slick user interface, extraordinary features, and amazing performance. Features Goto Anything. Use Goto... Read more
1Password 6.3.3 - Powerful password mana...
1Password is a password manager that uniquely brings you both security and convenience. It is the only program that provides anti-phishing protection and goes beyond password management by adding Web... Read more
WhatsApp 0.2.1880 - Desktop client for W...
WhatsApp is the desktop client for WhatsApp Messenger, a cross-platform mobile messaging app which allows you to exchange messages without having to pay for SMS. WhatsApp Messenger is available for... Read more
NeoFinder 6.9.3 - Catalog your external...
NeoFinder (formerly CDFinder) rapidly organizes your data, either on external or internal disks, or any other volumes. It catalogs all your data, so you stay in control of your data archive or disk... Read more
Amadeus Pro 2.3.1 - Multitrack sound rec...
Amadeus Pro lets you use your Mac computer for any audio-related task, such as live audio recording, digitizing tapes and records, converting between a variety of sound formats, etc. Thanks to its... Read more

Zip—Zap (Games)
Zip—Zap 1.01 Device: iOS Universal Category: Games Price: $1.99, Version: 1.01 (iTunes) Description: Touch to contract.Release to let go.Bring the clumsy mechanical beings home. · · · over 100 levelsno adsno in-app-purchases Zip—... | Read more »
Paperback: The Game (Games)
Paperback: The Game 1.0 Device: iOS Universal Category: Games Price: $3.99, Version: 1.0 (iTunes) Description: You are an author trying to finish kitschy paperback novels. Complete Westerns, Science Fiction, Romance or even a Crime... | Read more »
How to Rule With a Firm Hand in My Majes...
My Majesty is a kingdom management sim not unlike August’s magisterial hit, Reigns. It’s essentially a reskin of developer Tigrido’s previous management sim, Dictator. As supreme ruler of the land, you must consult with a number of subjects to... | Read more »
Our 5 Favorite iMessage Sticker Packs
At long last, iMessage joins the ranks of messaging apps the likes of LINE and Whatsapp, adding an impressive collection of stickers. They’re a great way to add a little something extra to your daily conversations. [Read more] | Read more »
How to get past Vulture Island's tr...
Vulture Island is a colorful and quirky mish-mash of platforming and puzzles. It’s creative and fresh, but sometimes the game can throw a curveball at you, leaving you stuck as to how you should progress. These tips will help you explore smoothly... | Read more »
The new Clash of Kings is just for Weste...
If you’ve played the original Clash of Kings, you’ll probably recognise the city building, alliance forging and strategic battles in Clash of Kings: The West. What sets this version apart is that it’s tailor made for a Western audience and the... | Read more »
Frost - Survival card game (Games)
Frost - Survival card game 1.12.1 Device: iOS Universal Category: Games Price: $3.99, Version: 1.12.1 (iTunes) Description: *Warning: the game will work on iPhone 5C and above and iPad Pro / 4. Other devices are not supported* | Read more »
How to build and care for your team in D...
Before you hit the trail and become a dog sledding legend, there’s actually a fair bit of prep work to be done. In Dog Sled Saga, you’re not only racing, you’re also building and caring for a team of furry friends. There’s a lot to consider—... | Read more »
How to win every race in Dog Sled Saga
If I had to guess, I’d say Dog Sled Saga is the most adorable racing game on the App Store right now. It’s a dog sled racing sim full of adorable, loyal puppies. Just look at those fluffy little tails wagging. Behind that cute, pixelated facade is... | Read more »
Let the war games commence in Gunship Ba...
Buzz Lightyear famously said, “This isn’t flying, this is falling – with style!” In the case of Gunship Battle: Second War, though, this really is flying - with style! The flight simulator app from Joycity puts you in control of 20 faithfully... | Read more »

Price Scanner via MacPrices.net

15-inch 2.2GHz Retina MacBook Pro on sale for...
B&H Photo has the 2015 15″ 2.2GHz Retina MacBook Pro (MJLQ2LL/A) on sale for $1799, including free shipping plus NY sales tax only. Amazon also has the 2015 15″ 2.2GHz Retina MacBook Pro (... Read more
Toughbook Celebrates 20 Years of Ruggedized M...
Panasonic System Communications Company of North America, Division of Panasonic Corporation of North America (Panasonic) today celebrates the 20th anniversary of its industry-leading Toughbook mobile... Read more
12-inch 1.1GHz Gray Retina MacBook on sale fo...
B&H Photo has the 2016 12″ 1.1GHz Gray Retina MacBook on sale for $1199.99 including free shipping plus NY sales tax only. Their price is $100 off MSRP. Read more
13-inch 2.5GHz MacBook Pro (Apple refurbished...
Apple has Certified Refurbished 13″ 2.5GHz MacBook Pros available for $829, or $270 off the cost of new models. Apple’s one-year warranty is standard, and shipping is free: - 13″ 2.5GHz MacBook Pros... Read more
Save 30% on Camera Guard’s Secure Protection...
To celebrate the release of macOS Sierra, Miami-based security solutions company, ProtectStar has announced a special 30% discount on Camera Guard Professional for Mac 2016. This innovative security... Read more
DVDFab Special Deal – Get a 1-Year Free Licen...
Beijing, China based specialist in the field of DVD, Blu-ray and video backup solutions, Fengtao Software has launched its Autumn Special Deals 2016, giving a 1-year free license of a randomly picked... Read more
21-inch iMacs on sale for up to $120 off MSRP
B&H Photo has 21″ iMacs on sale for up to $120 off MSRP including free shipping plus NY sales tax only: - 21″ 3.1GHz iMac 4K: $1379 $120 off MSRP - 21″ 2.8GHz iMac: $1199.99 $100 off MSRP - 21″ 1... Read more
13-inch 2.7GHz/256GB Retina MacBook Pro on sa...
Amazon.com has the 13″ 2.7GHz/256GB Retina Apple MacBook Pro on sale for $151 off MSRP including free shipping: - 13″ 2.7GHz/256GB Retina MacBook Pro (sku MF840LL/A): $1348 $151 off MSRP Read more
Apple TVs on sale for up to $50 off MSRP
Best Buy has 32GB and 64GB Apple TVs on sale for $40-$50 off MSRP on their online store. Choose free shipping or free local store pickup (if available). Sale prices for online orders only, in-store... Read more
Apple refurbished 13-inch Retina MacBook Pros...
Apple has Certified Refurbished 13″ Retina MacBook Pros available for up to $270 off the cost of new models. An Apple one-year warranty is included with each model, and shipping is free: - 13″ 2.7GHz... Read more

Jobs Board

*Apple* Retail - Multiple Positions (US) - A...
Sales Specialist - Retail Customer Service and Sales Transform Apple Store visitors into loyal Apple customers. When customers enter the store, you're also the Read more
Restaurant Manager (Neighborhood Captain) - A...
…in every aspect of daily operation. WHY YOU'LL LIKE IT: You'll be the Big Apple . You'll solve problems. You'll get to show your ability to handle the stress and Read more
Sr. *Apple* Mac Engineer - Net2Source Inc....
…staffing, training and technology. We have following position open with our client. Sr. Apple Mac Engineer6+ Months CTH Start date : 19th Sept Travelling Job If Read more
*Apple* Retail - Multiple Positions-Norfolk,...
Job Description: Sales Specialist - Retail Customer Service and Sales Transform Apple Store visitors into loyal Apple customers. When customers enter the store, Read more
Restaurant Manager (Neighborhood Captain) - A...
…in every aspect of daily operation. WHY YOU'LL LIKE IT: You'll be the Big Apple . You'll solve problems. You'll get to show your ability to handle the stress and Read more
All contents are Copyright 1984-2011 by Xplain Corporation. All rights reserved. Theme designed by Icreon.