TweetFollow Us on Twitter

Fast Square Root Calc

Volume Number: 14 (1998)
Issue Number: 1
Column Tag: Assembler Workshop

Fast Square Root Calculation

by Guillaume Bédard, Frédéric Leblanc, Yohan Plourde and Pierre Marchand, Québec, Canada

Optimizing PowerPC Assembler Code to beat the Toolbox

Introduction

The calculation of the square root of a floating-point number is a frequently encountered task. However, the PowerPC processors don't have a square root instruction. The implementation presented here performs the square root of a double-precision number over the full range of representation of the IEEE 754 standard for normalized numbers (from 2.22507385851E-308 to 1.79769313486E308) with an accuracy of 15 or more decimal digits. It is very fast, at least six times faster than the Toolbox ROM call.

Theory of Operation

A floating point number has three components: a sign, a mantissa and an exponential part. For example, the number +3.5 x 10^4 (35 000) has a plus sign, a mantissa of 3.5 and an exponential part of 104. The mantissa consists of an integer part and a fractional part f.

A double precision number in IEEE 754 format has the same components: a sign bit s, an 11-bit exponent e and a 52 bit fraction f. The exponential part is expressed in powers of 2 and the exponent is biased by adding 1023 to the value of e. The mantissa is normalized to be of the form 1.f. Since the integer part of the normalized mantissa is always 1, it doesn't have to be included in the representation. The number is thus represented as follows: (-1)s x 1.f x 2^e+1023.

For example, the number 5.0 can be expressed in binary as 101.0, which means 101.0 x 2^0, which in turn is equal to 1.010 x 2^2, obtained by dividing the mantissa by 4 and multiplying 2^0 by 4. Therefore, the normalized mantissa is 1.010 and the exponent 2. Fraction f is then .01000000.... The biased exponent is obtained by adding 1023 to e and is 1025, or 10000000001 in binary. The double precision IEEE representation of 5.0 is finally:

-----------------------------------------------------------------------------
|  0 | 10000000001 | 01000000000000000000000000000000000000000000000000000  |
-----------------------------------------------------------------------------

or 4014000000000000 in hexadecimal notation for short.

First Approximation

Given this representation, a first approximation to the square root of a number is obtained by dividing the exponent by 2. If the number is an even power of 2 such as 16 or 64, the exact root is obtained. If the number is an odd power of 2 such as 8 or 32, 1/SQRT(2) times the square root is obtained. In general, the result will be within a factor SQRT(2) of the true value.

Refining the Approximation

The Newton-Raphson method is often used to obtain a more accurate value for the root x of a function f(x) once an initial approximation x0 is given:

[1]

This becomes, in the case of the square root of n, = x2 - n:where f(x)

[2]

An excellent approximation to the square root starting with the initial approximation given above is obtained within 5 iterations using equation [2]. This algorithm is already pretty fast, but its speed is limited by the fact that each iteration requires a double-precision division which is the slowest PowerPC floating-point instruction with 32 cycles on the MPC601 (Motorola, 1993).

Eliminating Divisions

Another approach is to use equation [1] with the function.

In this case, equation [1] becomes:

[3]

There is still a division by n, but since n is constant (it's the original number whose root we want to find), it can be replaced by multiplying by 1/n, which can be calculated once before the beginning of the iteration process. The five 32-cycle divisions are thus replaced by this single division followed by 5 much faster multiplications (5 cycles each). This approach is approximately three times faster than the preceding one. However, care must be taken for large numbers since the term in x02 can cause the operation to overflow.

Use of a table

Finally, an approach that is even faster consists in using a table to obtain a more accurate first approximation. In order to do so, the range of possible values of fraction f (0 to ~1) is divided into 16 sub-ranges by using the first 4 bits of f as an index into a table which contains the first two coefficients of the Taylor expansion of the square root of the mantissa (1.0 to ~2) over that sub-range.

The Taylor expansion is given in general by:

[4]

the first two terms of which yield, in the case where f(x) = SQRT(x):

[5]

The square root of x is thus approximated by 16 straight-line segments. The table therefore contains the values of

A =

and B =

for each of the 16 sub-ranges as shown in Figure 1. This first approximation gives an accuracy of about 1.5 %.

Figure 1. Approximation by straight line segment.

To reach the desired accuracy of 15 digits, equation [2] is applied twice to the result of equation [5]. To avoid having to perform two divisions by repeating the iteration, the two iterations are folded together as follows, which contains only one division:

and

[6]

In order to perform these calculation, the exponent of x and n is reduced to -1 (1022 biased), so that floating-point operations apply only to the values of the mantissa and don't overflow if the exponent is very large. The value of these numbers will therefore be in the range 0.5 to 1.0 since the mantissa is in the range 1.0 to 2.0. If the original exponent was odd, the mantissa is multiplied by SQRT(2) before applying equation [6].

Finally, the original exponent divided by two is restored at the end.

The Code

The SQRoot function shown in Listing 1 has been implemented in CodeWarrior C/C++ version 10.

Listing 1: SQRoot.c

// On entry, fp1 contains a positive number between 2.22507385851E-308
// and 1.79769313486E308. On exit, the result is in fp1.

asm long double SQRoot(long double num);   // prototype

float Table[35] = {
0.353553390593, 0.707106781187, 0.364434493428, 0.685994340570,
0.375000000000, 0.666666666667, 0.385275875186, 0.648885684523,
0.395284707521, 0.632455532034, 0.405046293650, 0.617213399848,
0.414578098794, 0.603022689156, 0.423895623945, 0.589767824620,
0.433012701892, 0.577350269190, 0.441941738242, 0.565685424949,
0.450693909433, 0.554700196225, 0.459279326772, 0.544331053952,
0.467707173347, 0.534522483825, 0.475985819116, 0.525225731439,
0.484122918276, 0.516397779494, 0.492125492126, 0.508000508001,
1.414213562373, 0.000000000000, 0.000000000000 };

asm long double Sqrt(long double num) {

   lwz   r3,Table(rtoc)      // address of Table[]
   lhz   r4,24(sp)           // load
                             // Sign(1)+Exponent(11)+Mantissa(4)
   andi.   r5,r4,0xF         // keep only Mantissa(4)
   ori   r5,r5,0x3FE0        // exponent = -1+BIAS = 1022
   sth   r5,24(sp)           // save reduced number

   rlwinm   r5,r5,3,25,28    // take 8*Mantissa(4) as index
   lfd   fp1,24(sp)          // load reduced number
   lfsux   fp4,r5,r3         // load coefficient A
   lfs   fp5,4(r5)           // load coefficient B
   lfs   fp3,128(r3)         // load SQRT(2)
   fmr   fp2,fp1             // copy reduced number
   rlwinm.   r5,r4,31,18,28  // divide exponent by 2
   beq   @@2                 // if (exponent == 0) then done

   fmadd   fp2,fp2,fp5,fp4   // approximation SQRT(x) = A + B*x
   andi.   r4,r4,0x10        // check if exponent even
   beq   @@1                 // if (exponent even) do iteration
   fmul   fp2,fp2,fp3        // multiply reduced number by SQRT(2)
   fadd   fp1,fp1,fp1        // adjust exponent of original number

@@1:   fadd   fp3,fp2,fp2    // 2*x
   fmul   fp5,fp2,fp1        // x*n
   fadd   fp3,fp3,fp3        // 4*x
   fmadd   fp4,fp2,fp2,fp1   // x*x + n
   fmul   fp5,fp3,fp5        // 4*x*x*n
   fmul   fp6,fp2,fp4        // denominator = x*(x*x + n)
   fmadd   fp5,fp4,fp4,fp5   // numerator = (x*x + n)*(x*x + n) +
                             // 4*x*x*n
   fdiv   fp1,fp5,fp6        // double precision division
   andi.   r5,r5,0x7FF0      // mask exponent 
   addi   r5,r5,0x1FE0       // rectify new exponent

@@2:   sth   r5,132(r3)      // save constant C (power of 2) 
   lfd   fp2,132(r3)         // load constant C
   fmul   fp1,fp1,fp2        // multiply by C to replace exponent
   blr                       // done, the result is in fp1
}

Performance

The code presented above runs in less than 100 cycles, which means less than 1 microsecond on a 7200/75 Power Macintosh and is more than six times faster than the ROM code. The code could be modified to make use of the floating reciprocal square root estimate instruction (frsqrte) that is available on the MPC603 and MPC604 processors, and which has an accuracy of 5 bits. It is not available on the MPC601, however. The method used here could also be used to evaluate other transcendental functions.

Performance was measured by running the code a thousand times and calling a simple timing routine found in (Motorola, 1993), that we called myGetTime(). It uses the real-time clock of the MPC 601 processor (RTCU and RTCL registers) and is shown in Listing 2. The routine would have to be modified to run on MPC603 or MPC604 processors, since they don't have the same real-time clock mechanism.

The code doesn't support denormalized numbers (below 2.22507385851E-308). This could easily be implemented albeit at the cost of a slight reduction in performance.

Listing 2: myGetTime.c

asm long myGetTime()
   {
lp:    mfspr   r4,4           // RTCU
   mfspr   r3,5               // RTCL
   mfspr   r5,4               // RTCU again
    cmpw      r4,r5           // if RTCU has changed, try again
    bne      lp
    rlwinm   r3,r3,25,7,31    // shift right since bits 25-31 are
                              // not used
    blr                       // the result is in r3. 1 unit is
                              // worth 128 ns.
   }

To run the code, a very simple interface using the SIOUX library is provided in Listing 3.

Listing 3: main.c

#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <fp.h>

void main()
   {
   long double   num, num2;
   long startTime, endTime, time;
   short i;


   do {
   printf("%2s","> ");           // caret
   scanf("%Lf",&num);           // read long double
   if (num < 0.0) num = 0.0;     // replace by 0.0 if negative
   startTime = myGetTime();
   for (i = 0; i < 1000; i++)    // repeat 1000 times
   num2 = SQRoot(num);              // call our function
   endTime = myGetTime();
   time = endTime - startTime;
   if (num > 1e-6 && num < 1e7)
      printf("%7s%Lf\n","root = ",num2);   // show result
   else
      printf("%7s%Le\n","root = ",num2);
   printf("%7s%d\n","time = ", time);      // show elapsed time
   }
   while (1);                              // repeat until Quit
   }

References

PowerPC 601 RISC Microprocessor User's Manual, Motorola MPC601UM/AD Rev 1, 1993.


The first three authors are undergraduate students in Computer Science at Université Laval in Québec, Canada. This work was done as an assignment in a course on Computer Architecture given by the fourth author.

 

Community Search:
MacTech Search:

Software Updates via MacUpdate

VueScan 9.5.75 - Scanner software with a...
VueScan is a scanning program that works with most high-quality flatbed and film scanners to produce scans that have excellent color fidelity and color balance. VueScan is easy to use, and has... Read more
Opera 44.0.2510.1449 - High-performance...
Opera is a fast and secure browser trusted by millions of users. With the intuitive interface, Speed Dial and visual bookmarks for organizing favorite sites, news feature with fresh, relevant content... Read more
Opera 44.0.2510.1449 - High-performance...
Opera is a fast and secure browser trusted by millions of users. With the intuitive interface, Speed Dial and visual bookmarks for organizing favorite sites, news feature with fresh, relevant content... Read more
Skim 1.4.29 - PDF reader and note-taker...
Skim is a PDF reader and note-taker for OS X. It is designed to help you read and annotate scientific papers in PDF, but is also great for viewing any PDF file. Skim includes many features and has a... Read more
FontExplorer X Pro 6.0.2 - Font manageme...
FontExplorer X Pro is optimized for professional use; it's the solution that gives you the power you need to manage all your fonts. Now you can more easily manage, activate and organize your... Read more
1Password 6.7.1 - Powerful password mana...
1Password is a password manager that uniquely brings you both security and convenience. It is the only program that provides anti-phishing protection and goes beyond password management by adding Web... Read more
Vivaldi 1.9.818.44 - An advanced browser...
Vivaldi is a browser for our friends. In 1994, two programmers started working on a web browser. Our idea was to make a really fast browser, capable of running on limited hardware, keeping in mind... Read more
Vivaldi 1.9.818.44 - An advanced browser...
Vivaldi is a browser for our friends. In 1994, two programmers started working on a web browser. Our idea was to make a really fast browser, capable of running on limited hardware, keeping in mind... Read more
Skim 1.4.29 - PDF reader and note-taker...
Skim is a PDF reader and note-taker for OS X. It is designed to help you read and annotate scientific papers in PDF, but is also great for viewing any PDF file. Skim includes many features and has a... Read more
1Password 6.7.1 - Powerful password mana...
1Password is a password manager that uniquely brings you both security and convenience. It is the only program that provides anti-phishing protection and goes beyond password management by adding Web... Read more

Latest Forum Discussions

See All

Fire Emblem Heroes event announces new m...
As reported yesterday, Nintendo was gearing up a live press event for their popular mobile game,Fire Emblem Heroes. While the stream revealed a lot of new things, the event was entirely in Japanese. Luckily we have a rundown of what was announced... | Read more »
Best games we played this week
Another week, another slate of new mobile games. Although there weren't as many big name releases as last week, there were plenty of unique video game titles that came out that's sure to keep you interested over the weekend. Everything from classic... | Read more »
Olli by Tinrocket (Photography)
Olli by Tinrocket 1.0 Device: iOS iPhone Category: Photography Price: $2.99, Version: 1.0 (iTunes) Description: Get drawn in with Olli by TinrocketOlli instantly turns your everyday moments into hand-drawn art and animations. • Watch... | Read more »
Penarium (Games)
Penarium 1.0 Device: iOS Universal Category: Games Price: $1.99, Version: 1.0 (iTunes) Description: | Read more »
Fire Emblem Heroes is way more profitabl...
Profits for Nintendo's mobile game Fire Emblem Heroes are apparently impressive enough to beat out other Nintendo titles likeSuper Mario Run, despite having 10 times fewer downloads. [Read more] | Read more »
Classic series Robot Unicorn Attack 3 no...
The classic Adult Swim browser game, Robot Unicorn Attack, branched off into a series of popular mobile games. Now, the latest entry into the series, Robot Unicorn Attack 3, is available for iOS and Android mobile devices. [Read more] | Read more »
Sudoku Sweeper (Games)
Sudoku Sweeper 1.0 Device: iOS Universal Category: Games Price: $2.99, Version: 1.0 (iTunes) Description: A minimalist mashup of Minesweeper and Sudoku. Logic puzzle perfection. Every row, column and zone contains a bomb and one of... | Read more »
Under Leaves (Games)
Under Leaves 1.0.0 Device: iOS Universal Category: Games Price: $1.99, Version: 1.0.0 (iTunes) Description: Journey into the forest, the jungle or the depths of the deep blue sea. Find chestnuts for the pigs, a caterpillar for the... | Read more »
Ninja Pizza Girl (Games)
Ninja Pizza Girl 1.0 Device: iOS Universal Category: Games Price: $2.99, Version: 1.0 (iTunes) Description: In the not-so-distant future, rampart traffic congestion has resulted in only one way to deliver pizzas across town in thirty... | Read more »
SCRAP (Games)
SCRAP 1.0 Device: iOS Universal Category: Games Price: $2.99, Version: 1.0 (iTunes) Description: That day, for no apparent reason, SCRAP decided to wake up and run. He had to, because his activation was a mistake the "Factory" could... | Read more »

Price Scanner via MacPrices.net

13-inch 2.7GHz Retina MacBook Pro, Apple refu...
Apple has Certified Refurbished 13″ 2.7GHz/128GB Retina MacBook Pros available for $200 off MSRP. An Apple one-year warranty is included with each model, and shipping is free: - 13″ 2.7GHz/128GB... Read more
13-inch Gray 2.9GHz/512GB Touch Bar MacBook P...
Amazon has the 13″ Space Gray 2.9GHz/512GB Touch Bar MacBook Pro (model MNQF2LL/A) in stock today and on sale for $150 off MSRP. Shipping is free: - 13″ 2.9GHz/512GB Touch Bar MacBook Pro Space Gray... Read more
15-inch 2.7GHz Space Gray Touch Bar MacBook P...
B&H Photo has the 15″ 2.7GHz Space Gray Touch Bar MacBook Pro in stock today and on sale for $2599…$200 off MSRP. Shipping is free, and B&H charges NY & NJ sales tax only: - 15″ 2.7GHz... Read more
13-inch 2.9GHz/256GB Space Gray Touch Bar Mac...
B&H Photo has the 13″ 2.9GHz/256GB Space Gray Touch Bar MacBook Pro in stock today and on sale for $150 off MSRP including free shipping plus NY & NJ sales tax only: - 13″ 2.9GHz/256GB Touch... Read more
21-inch iMacs on sale for up to $151 off MSRP
B&H Photo has 21″ iMacs on sale for up to $151 off MSRP, each including free shipping plus NY sales tax only: - 21″ 3.1GHz iMac 4K: $1348 $151 off MSRP - 21″ 2.8GHz iMac: $1199.99 $100 off MSRP... Read more
Weekend deal: Up to $420 off new MacBook Pros...
Apple has Certified Refurbished 2016 15″ and 13″ MacBook Pros available for $230 to $420 off original MSRP. An Apple one-year warranty is included with each model, and shipping is free: - 15″ 2.6GHz... Read more
Price drop: 15-inch 2.2GHz Retina MacBook Pro...
Amazon has dropped their price on 15″ 2.2GHz Retina MacBook Pros (MJLQ2LL/A) to $1709.99 including free shipping. Their price is $290 off MSRP for this model. Note that stock may sell out quickly at... Read more
2.8GHz Mac mini on sale for $899, save $100
B&H Photo has the 2.8GHz Mac mini (model number MGEQ2LL/A) on sale for $899 including free shipping plus NY & NJ sales tax only. Their price is $100 off MSRP. Read more
Check Apple prices on any device with the iTr...
MacPrices is proud to offer readers a free iOS app (iPhones, iPads, & iPod touch) and Android app (Google Play and Amazon App Store) called iTracx, which allows you to glance at today’s lowest... Read more
New System Clock for macOS by B-Eng Now Avail...
Fehraltorf, Switzerland based B-Eng has announced the release and immediate availability of System Clock, the company’s new system monitor and information app developed exclusively for macOS. System... Read more

Jobs Board

Product Manager, *Apple* Platforms - Viacom...
…Product Manager to drive the execution of its iOS and AppleTV experiences. The Apple Platform Product Manager will be a leader in our Agile/Scrum environment and Read more
*Apple* Mobile Master - Best Buy (United Sta...
**493714BR** **Job Title:** Apple Mobile Master **Location Number:** 001024-Weatherford-Store **Job Description:** **What does a Best Buy Apple Mobile Master Read more
*Apple* OS X Server Administrator (Active Se...
** Apple OS X Server Administrator \(Active Secret Clearance\)** **Description** Come be a part of a top notch team, apply today\!\! Tuva TUVA provides turnkey Read more
*Apple* Mac Computer Technician - GeekHampto...
…complex computer issues over the phone and in person? GeekHampton, Long Island's Apple Premium Service Provider, is looking for you! Come work with our crew Read more
Best Buy *Apple* Computing Master - Best Bu...
**501846BR** **Job Title:** Best Buy Apple Computing Master **Location Number:** 001126-South Bay Center-Store **Job Description:** **What does a Best Buy Apple Read more
All contents are Copyright 1984-2011 by Xplain Corporation. All rights reserved. Theme designed by Icreon.