TweetFollow Us on Twitter

Calling CFM Code

Volume Number: 13 (1997)
Issue Number: 8
Column Tag: develop

Calling CFM Code From Classic 68K Code

or There and Back Again, A Mixed Mode Magic Adventure

by George Warner, Apple Developer Technical Support (DTS)

There are specific instances when you must call Code Fragment Manager (CFM) code from classic 68K code -- for example, if your application cannot be converted to CFM, but you want to be able to use CFM libraries. Or, you want to add plug-in support to an existing classic 68K application without having to convert it to CFM68K. In addition, you may want to use CFM68K to develop an application to run on both 68K and PowerPC computers and use a single fat library for both environments.

Another instance would be developing for OpenDoc, which requires shared library support. Prior to this article, only CFM applications could take advantage of OpenDoc. This article explains how to add library support to classic code.

Calling CFM From Classic Code

The basic steps for calling CFM from classic code are as follows:

  1. Determine the address of the CFM routines you want to call.
  2. Create a routine descriptor for the CFM routine.
  3. Call the routine descriptor.
  4. Clean-up after yourself.

Determining the Address of the CFM Routines

The most common way to determine the address of a CFM routine is to use FindSymbol against a shared library.

 OSErr FindSymbol (ConnectionID connID, Str255 symName, 
  Ptr* symAddr, SymClass *symClass);

The first parameter is a connection ID to a fragment. This can be obtained from a call to GetSharedLibrary, GetDiskFragment or GetMemoryFragment. The second parameter is the name of the symbol, in this case the name of the routine we want to call. The address of the symbol is returned in the third parameter and the last parameter returns the symbols class.

Creating a Routine Descriptor

In CFM code, you normally use the NewRoutineDescriptor routine to create routine descriptors. The non-CFM version of this is the NewRoutineDescriptorTrap() routine. See the notes on using New[Fat]RoutineDescriptor[Trap] at the end of this article.

 pascal UniversalProcPtr NewRoutineDescriptorTrap(
 ProcPtr theProc,
 ProcInfoType theProcInfo,
 ISAType theISA);

To create a routine descriptor, you need the address, the procedure information and the architecture of the routine being described. The address was obtained in the first step. The procedure information is based on the calling conventions for the parameters passed to and returned from the routine. The last parameter is the architecture of the routine being called. In the headers, this is defined as the ISAType, which is a combination of two separate 4 bit values, the Instruction Set Architecture (ISA) and Runtime Architecture (RTA).

Determining the Procedure Information

The Mixed Mode Manager supports many calling conventions. The most common are stack based for Pascal and C, register based for operating system traps and register dispatched for selector based Toolbox traps. The easiest way to define the procedure information is via a enum: for example, if your routine was defined like this:

pascal Ptr Get_Message(short pResID, short pIndex);

Its procedure information would then be defined like this:

enum {
  kGet_MessageProcInfo = kPascalStackBased
 | RESULT_SIZE(SIZE_CODE(sizeof(Ptr)))
    | STACK_ROUTINE_PARAMETER(1, SIZE_CODE(sizeof(short)))
 | STACK_ROUTINE_PARAMETER(2, SIZE_CODE(sizeof(short)))
};

Note: The RESULT_SIZE, SIZE_CODE & STACK_ROUTINE_PARAMETER macros are defined in MixedMode.h. ProcInfo is documented in Chapter Two, Inside Macintosh: PowerPC System Software.

Determining the Architecture

Everyone seems to be tempted to use GetCurrentArchitecture here; JUST SAY NO! GetCurrentArchitecture is a macro that returns the architecture of the currently compiling code, in our case, classic. What we want is the architecture of the CFM code that we are calling from our classic code. Remember: the architecture includes the ISA and the RTA. The correct thing to do is to call Gestalt to find out what kind of CPU the code is running on (68K or PPC) and use this to create the routine descriptor with the correct architecture:

static pascal OSErr GetSystemArchitecture(OSType *archType)
{
 // static so we only Gestalt once
 static long sSysArchitecture = 0;
 OSErr tOSErr = noErr;

 // assume wild architecture
 *archType = kAnyCFragArch;

 // If we don't know the system architecture yet...
 // Ask Gestalt what kind of machine we are running on.
 if (sSysArchitecture == 0)
  tOSErr = Gestalt(gestaltSysArchitecture,
   &sSysArchitecture);

 if (tOSErr == noErr) // if no errors
 {
  if (sSysArchitecture == gestalt68k) // 68k?
  *archType = kMotorola68KArch;
  else if (sSysArchitecture == gestaltPowerPC) // PPC?
  *archType = kPowerPCArch;
  else
  tOSErr = gestaltUnknownErr;
  // who knows what might be next?
 }
 return tOSErr;
}

Note: Don't confuse the OSType architecture used to specify fragment architecture with the SInt8 ISA/RTA architecture used to specify routine descriptors. This routine determines the OSType architecture. I did it this way because I use it to open the connection to my shared library, which requires the OSType. When I create my routine descriptors, I use this value to conditionally execute the NewRoutineDescriptorTrap routine with the correct ISA/RTA type parameter:

 static OSType sArchType = kAnyCFragArch;
 ISAType tISAType;
 if (sArchType == kAnyCFragArch)   // if architecture is still undefined...
 {
 // & determine current atchitecture.
 sOSErr = GetSystemArchitecture(&sArchType);
 if (sOSErr != noErr)
  return sOSErr;
 }
 if (sArchType == kMotorola68KArch)   // ...for CFM68K
    tISAType = kM68kISA | kCFM68kRTA;
 else if (sArchType == kPowerPCArch) // ...for PPC CFM
    tISAType = kPowerPCISA | kPowerPCRTA;
 else
 sOSErr = gestaltUnknownErr; // who knows what might be next?
  if (sOSErr == noErr)
 myUPP = NewRoutineDescriptorTrap((ProcPtr) * pSymAddr,
  pProcInfo,tISAType);
 return sOSErr;

Calling the Routine Descriptor

From CFM code you normally use CallUniversalProc to call the routine associated with a routine descriptor. (A Universal Procedure Pointer (UPP) is a pointer to a routine descriptor.) However, CallUniversalProc is only implemented in shared libraries. For compatabality reasons, in classic code UPP's can be treated like ProcPtr's, i.e., they are pointers to executable code. This is because the first two bytes of a routine descriptor is the 68K mixed mode magic ATrap. When we jump here from 68K code, the trap is executed and the Mixed Mode Manager takes over, setting up passed parameters in registers or on the stack, based on the ProcInfo in the routine descriptor: switching the architecture and then jumping to the CFM code. This is how you would call your routine:

// define a ProcPtr of our type
typedef pascal Ptr (*Get_Message_ProcPtr)(short pResID,
 short pIndex);

// call it.
 myPtr = ((Get_Message_ProcPtr)myUPP)(128,3);

Cleaning Up After Yourself

DisposeRoutineDescriptorTrap is used to release the memory allocated for routine descriptors by the NewRoutineDescriptorTrap.

Shortcuts, Detours & Dead-Ends

You may be tempted to use the macro BUILD_ROUTINE_DESCRIPTOR, so that you can build your routine descriptors staticly. Unfortunately, this macro expands to include the macro GetCurrentArchitecture whose problem was described in the section above. Another problem with this approach is that the ProcPtr passed to the macro is expected to be a constant at compile-time. One solution to both of these problems is to build your routine descriptors in your CFM library and export them. This way the GetCurrentArchitecture macro returns the correct architecture for the library and the ProcPtr is a compile-time constant. And since these routine descriptors are staticly allocated at compile time, you don't have to worry about disposing them: their memory is released when the library is unloaded. Unfortunately, this only works if you have source to the library you want to connect to.

Using BUILD_ROUTINE_DESCRIPTOR to dynamically initialize a routine descriptor is not a good idea. From the classic 68K perspective, the routine descriptor is code being assembled out of data. This can cause problems due to the split caches on 68040 CPUs and some 68K emulator optimizations on PowerPCs. You're trying to execute data but instead are executing old values from the instruction cache. Using NewRoutineDescriptorTrap insures that the instruction cache is flushed for the executable range of the routine descriptor - two bytes.

In order to make the connection between classic code and the CFM code as transparent as possible, I like to put all my CFM glue code in its own separate file and use the same API in it as defined for my library (usually by using the library's header file). Each entry point into the library has its own glue routine that declares a static UPP variable initialized to kUnresolvedSymbolAddress. By checking for this initial value, the routine knows when it needs to look up its address in the library and create a routined descriptor. Here's the glue code for the library:

Source Code for CFM Library Glue

#include <CodeFragments.h>
#include "DemoLib.h"

// Private function prototypes

static OSErr Find_Symbol(Ptr* pSymAddr,
    Str255 pSymName,
    ProcInfoType pProcInfo);

static pascal OSErr GetSystemArchitecture(OSType *archType);
// Private functions
static pascal OSErr GetSystemArchitecture(OSType *archType)
{
 static long sSysArchitecture = 0; // static so we only Gestalt once.
 OSErr tOSErr = noErr;

 *archType = kAnyCFragArch;  // assume wild architecture
 // If we don't know the system architecture yet...
 if (sSysArchitecture == 0)
 // ...Ask Gestalt what kind of machine we are running on.
 tOSErr = Gestalt(gestaltSysArchitecture, &sSysArchitecture);

 if (tOSErr == noErr) // if no errors
 {
 if (sSysArchitecture == gestalt68k)  // 68k?
  *archType = kMotorola68KCFragArch;  
 else if (sSysArchitecture == gestaltPowerPC) // PPC?
  *archType = kPowerPCCFragArch;  
 else
  tOSErr = gestaltUnknownErr; // who knows what might be next?
 }
 return tOSErr;
}

static OSErr Find_Symbol(Ptr* pSymAddr,
    Str255 pSymName,
    ProcInfoType pProcInfo)
{
 static ConnectionID sCID = 0;
 static OSType sArchType = kAnyCFragArch;
 static OSErr sOSErr = noErr;

 Str255 errMessage;
 Ptr mainAddr;
 SymClass symClass;
  ISAType  tISAType;
 if (sArchType == kAnyCFragArch) // if architecture is undefined...
 {
 sCID = 0;   // ...force (re)connect to library
 sOSErr = GetSystemArchitecture(&sArchType); // determine architecture
 if (sOSErr != noErr)
  return sOSErr; // OOPS!
 }

 if (sArchType == kMotorola68KArch) // ...for CFM68K
  tISAType = kM68kISA | kCFM68kRTA;
 else if (sArchType == kPowerPCArch) // ...for PPC CFM
    tISAType = kPowerPCISA | kPowerPCRTA;
 else
 sOSErr = gestaltUnknownErr; // who knows what might be next?

 if (sCID == 0) // If we haven't connected to the library yet...
 {
 // NOTE: The library name is hard coded here.
 // I try to isolate the glue code, one file per library.
 // I have had developers pass in the Library name to allow
 // plug-in type support. Additional code has to be added to
 // each entry points glue routine to support multiple or
 // switching connection IDs.
 sOSErr = GetSharedLibrary("\pDemoLibrary", sArchType, kLoadCFrag,
   &sCID, &mainAddr, errMessage);
 if (sOSErr != noErr)
  return sOSErr; // OOPS!
 }
 // If we haven't looked up this symbol yet...
 if ((Ptr) *pSymAddr == (Ptr) kUnresolvedCFragSymbolAddress)  
 {
 // ...look it up now
 sOSErr = FindSymbol(sCID,pSymName,pSymAddr,&symClass);
 if (sOSErr != noErr) // in case of error...
  // ...clear the procedure pointer
  *(Ptr*) &pSymAddr = (Ptr) kUnresolvedSymbolAddress;
#if !GENERATINGCFM // if this is classic 68k code...
  *pSymAddr = (Ptr)NewRoutineDescriptorTrap((ProcPtr) *pSymAddr,
    pProcInfo, tISAType); // ...create a routine descriptor...
#endif
 }
 return sOSErr;
}
/* Public functions & globals */
pascal void Do_Demo(void)
{
 static Do_DemoProcPtr sDo_DemoProcPtr = kUnresolvedSymbolAddress;
 // if this symbol has not been setup yet...
 if ((Ptr) sDo_DemoProcPtr == (Ptr) kUnresolvedSymbolAddress)  
 Find_Symbol((Ptr*) &sDo_DemoProcPtr,"\pDo_Demo",kDo_DemoProcInfo);
 if ((Ptr) sDo_DemoProcPtr != (Ptr) kUnresolvedSymbolAddress)
 sDo_DemoProcPtr();
}

pascal void Set_DemoValue(long pLong)
{
 static Set_DemoValueProcPtr sSet_DemoValueProcPtr =
 kUnresolvedSymbolAddress;
 // if this symbol has not been setup yet...
 if ((Ptr) sSet_DemoValueProcPtr == (Ptr) kUnresolvedSymbolAddress)
 Find_Symbol((Ptr*) &sSet_DemoValueProcPtr, 
  "\pSet_DemoValue", kSet_DemoValueProcInfo);
 if ((Ptr) sSet_DemoValueProcPtr != (Ptr) kUnresolvedSymbolAddress)
 sSet_DemoValueProcPtr(pLong);
}

pascal long Get_DemoValue(void)
{
 static Get_DemoValueProcPtr sGet_DemoValueProcPtr = 
 kUnresolvedSymbolAddress;
 // if this symbol has not been setup yet...
 if ((Ptr) sGet_DemoValueProcPtr == (Ptr) kUnresolvedSymbolAddress)
 Find_Symbol((Ptr*) &sGet_DemoValueProcPtr,
  "\pGet_DemoValue",kGet_DemoValueProcInfo);
 if ((Ptr) sGet_DemoValueProcPtr != (Ptr) kUnresolvedSymbolAddress)
 return sGet_DemoValueProcPtr();
 else
 return 0L;
}
pascal Ptr Get_DemoString(void)
{
 static Get_DemoStringProcPtr sGet_DemoStringProcPtr =
 kUnresolvedSymbolAddress;
 // if this symbol has not been setup yet...
 if ((Ptr) sGet_DemoStringProcPtr == (Ptr) kUnresolvedSymbolAddress)
 Find_Symbol((Ptr*) &sGet_DemoStringProcPtr,
  "\pGet_DemoString",kGet_DemoStringProcInfo);
 if ((Ptr) sGet_DemoStringProcPtr != (Ptr) kUnresolvedSymbolAddress)
 return sGet_DemoStringProcPtr();
 else
 return 0L;
}

Note: The above routines will silently do nothing if their Find_Symbol call fails. Routines that do this sort of load/resolve on the fly should always have a means to bail out in case there are any errors. For example, return OSErr, use some kind of exception mechanism, etc. At the least, have Find_Symbol put up a fatal alert. This is left as an exercise for the programmer.

Notes on Using the New [Fat] RoutineDescriptor [Trap]

When calling NewRoutineDescriptor from classic 68K code, there are two possible intentions. The first is source compatibility with code ported to CFM (either Power PC or 68K CFM). When the code is compiled for CFM, the functions create routine descriptors that can be used by the mixed mode manager operating on that machine. When the code is compiled for classic 68K, these functions do nothing so that the code will run on Macintoshes that do not have a Mixed mode manager. The dual nature of these functions is achieved by turning the CFM calls into "no-op" macros for classic 68K: You can put "NewRoutineDescriptor" in your source, compile it for any architecture, and it will run correctly on the intended platform. All without source changes and/or conditional source.

The other intention is for code that "knows" that it is executing as classic 68K and is specifically trying to call code of another architecture using mixed mode. Since the routines were designed with classic <-> CFM source compatibility in mind, this second case is treated special. For classic 68k code to create routines descriptors for use by mixed mode, it must call the "Trap" versions of the routines (NewRoutineDescriptorTrap). These versions are only available to classic 68K callers: rigging the interfaces to allow calling them from CFM code will result in runtime failure because no shared library implements or exports these functions.

This almost appears seamless until you consider "fat" routine descriptors and the advent of CFM-68K. What does "fat" mean? CFM-68K is not emulated on Power PC and Power PC is not emulated on CFM-68K. It makes no sense to create a routine descriptor having both a CFM-68K routine and a Power PC native routine pointer. Therefore "fat" is defined to be a mix of classic and CFM for the hardware's native instruction set: on Power PC fat is classic and Power PC native, on a 68k machine with CFM-68K installed fat is classic and CFM-68K.

By definition fat routine descriptors are only constructed by code that is aware of the architecture it is executing as and that another architecture exists. Source compatibility between code intended as pure classic and pure CFM is not an issue and so NewFatRoutineDescriptor is not available when building pure classic code.

NewFatRoutineDescriptorTrap is available to classic code on both Power PC and CFM-68K. The classic code can use the code fragment manager routine "FindSymbol" to obtain the address of a routine in a shared library and then construct a routine descriptor with both the CFM routine and classic routine.

About Mixed Mode and Routine Descriptors

In the beginning (1984), there was the classic Macintosh programming model, based on the Motorola 680x0 processor and code segments. Then in 1991, the PowerPC processor was introduced. There was concern about compatibility with existing 68K applications (including the Finder), and the first step in addressing this concern was writing a 68LC040 emulator which allowed 68K code to run unmodified in the new environment. As part of this effort, a method had to be devised to switch between the native PPC and the emulated 68K modes -- thus, the Mixed Mode Manager was born.

The Mixed Mode Manager is system software that manages mode switches between code in different instruction set architectures (ISA's). An ISA is the set of instructions recognized by a particular processor or family of processors. You indicate the ISA of a particular routine by creating a routine descriptor for that routine.

Note: For more information about the Mixed Mode Manager, read its chapter in Inside Macintosh: PowerPC System Software. The documentation also applies to CFM68K -- just consider "native" code to be either PowerPC or CFM68K.

Code Fragment Manager

CFM was developed initially for PowerPC-based Macintosh computers to prepare code fragments for execution. A fragment is a block of executable code and its associated data. On PowerPC-based Macintosh computers, native programs, applications, libraries, and standalone code are packaged as fragments.

In 1994, CFM was ported back to 68K. The Mixed Mode Manager was again used to handle transitions between classic 68K and the CFM conventions for the CPU it is running on, i.e., on PowerPC it can handle classic to PowerPC transitions, and on 68K it can handle classic to CFM68K transitions. Classic 68K code is generally ignorant of mode switches while CFM code must be aware of them. Classic 68K code can treat a routine descriptor pointer as a classic 68K proc pointer, but CFM code cannot treat a routine descriptor as a proc pointer.

Summary

Calling CFM from classic code may be necessary for a number of reasons, particularly if you want to take advantage of both the classic and CFM libraries. It may also be the simplest and easiest method of adding plug-in support to an existing 68K or fat application without having to port the 68K code to CFM68K.

This article discusses some straightforward methods you can use to call CFM code from classic code. There are problems, however, that you ought to consider when trying to build routine descriptors for C routines in a shared library.

Further Reference

  • Inside Macintosh: PowerPC System Software.
  • Fragments of Your Imagination by Joe Zobkiw, Addison-Wesley, ISBN 0-201-48358-0.

Acknowledgments

Thanks to Andy Bachorski, Alan Lillich, Dave Peterson and Bob Wambaugh.

 

Community Search:
MacTech Search:

Software Updates via MacUpdate

BetterTouchTool 2.332 - Customize multi-...
BetterTouchTool adds many new, fully customizable gestures to the Magic Mouse, Multi-Touch MacBook trackpad, and Magic Trackpad. These gestures are customizable: Magic Mouse: Pinch in / out (zoom... Read more
Capture One 11.0.1.40 - RAW workflow sof...
Capture One is a professional RAW converter offering you ultimate image quality with accurate colors and incredible detail from more than 400 high-end cameras -- straight out of the box. It offers... Read more
Capture One 11.0.1.40 - RAW workflow sof...
Capture One is a professional RAW converter offering you ultimate image quality with accurate colors and incredible detail from more than 400 high-end cameras -- straight out of the box. It offers... Read more
GraphicConverter 10.5.4 - $39.95
GraphicConverter is an all-purpose image-editing program that can import 200 different graphic-based formats, edit the image, and export it to any of 80 available file formats. The high-end editing... Read more
Dash 4.1.3 - Instant search and offline...
Dash is an API documentation browser and code snippet manager. Dash helps you store snippets of code, as well as instantly search and browse documentation for almost any API you might use (for a full... Read more
Microsoft OneNote 16.9 - Free digital no...
OneNote is your very own digital notebook. With OneNote, you can capture that flash of genius, that moment of inspiration, or that list of errands that's too important to forget. Whether you're at... Read more
DEVONthink Pro 2.9.17 - Knowledge base,...
Save 10% with our exclusive coupon code: MACUPDATE10 DEVONthink Pro is your essential assistant for today's world, where almost everything is digital. From shopping receipts to important research... Read more
OmniGraffle 7.6 - Create diagrams, flow...
OmniGraffle helps you draw beautiful diagrams, family trees, flow charts, org charts, layouts, and (mathematically speaking) any other directed or non-directed graphs. We've had people use Graffle to... Read more
iFinance 4.3.7 - Comprehensively manage...
iFinance allows you to keep track of your income and spending -- from your lunchbreak coffee to your new car -- in the most convenient and fastest way. Clearly arranged transaction lists of all your... Read more
Opera 50.0.2762.58 - High-performance We...
Opera is a fast and secure browser trusted by millions of users. With the intuitive interface, Speed Dial and visual bookmarks for organizing favorite sites, news feature with fresh, relevant content... Read more

Latest Forum Discussions

See All

Around the Empire: What have you missed...
Around this time every week we're going to have a look at the comings and goings on the other sites in Steel Media's pocket-gaming empire. We'll round up the very best content you might have missed, so you're always going to be up to date with the... | Read more »
Everything about Hero Academy 2: Part 4...
In this part of our Hero Academy 2 guide, we're going to have a look at some of the tactics you're going to need to learn if you want to rise up the ranks. We're going to start off slow, then get more advanced in the next section. [Read more] | Read more »
All the best games on sale for iPhone an...
Another week has flown by. Sometimes it feels like the only truly unstoppable thing is time. Time will make dust of us all. But before it does, we should probably play as many awesome mobile videogames as we can. Am I right, or am I right? [Read... | Read more »
The 7 best games that came out for iPhon...
Well, it's that time of the week. You know what I mean. You know exactly what I mean. It's the time of the week when we take a look at the best games that have landed on the App Store over the past seven days. And there are some real doozies here... | Read more »
Popular MMO Strategy game Lords Mobile i...
Delve into the crowded halls of the Play Store and you’ll find mobile fantasy strategy MMOs-a-plenty. One that’s kicking off the new year in style however is IGG’s Lords Mobile, which has beaten out the fierce competition to receive Google Play’s... | Read more »
Blocky Racing is a funky and fresh new k...
Blocky Racing has zoomed onto the App Store and Google Play this week, bringing with it plenty of classic kart racing shenanigans that will take you straight back to your childhood. If you’ve found yourself hooked on games like Mario Kart or Crash... | Read more »
Cytus II (Games)
Cytus II 1.0.1 Device: iOS Universal Category: Games Price: $1.99, Version: 1.0.1 (iTunes) Description: "Cytus II" is a music rhythm game created by Rayark Games. It's our fourth rhythm game title, following the footsteps of three... | Read more »
JYDGE (Games)
JYDGE 1.0.0 Device: iOS Universal Category: Games Price: $4.99, Version: 1.0.0 (iTunes) Description: Build your JYDGE. Enter Edenbyrg. Get out alive. JYDGE is a lawful but awful roguehate top-down shooter where you get to build your... | Read more »
Tako Bubble guide - Tips and Tricks to S...
Tako Bubble is a pretty simple and fun puzzler, but the game can get downright devious with its puzzle design. If you insist on not paying for the game and want to manage your lives appropriately, check out these tips so you can avoid getting... | Read more »
Everything about Hero Academy 2 - The co...
It's fair to say we've spent a good deal of time on Hero Academy 2. So much so, that we think we're probably in a really good place to give you some advice about how to get the most out of the game. And in this guide, that's exactly what you're... | Read more »

Price Scanner via MacPrices.net

Deals on clearance 15″ Apple MacBook Pros wit...
B&H Photo has clearance 2016 15″ MacBook Pros available for up to $800 off original MSRP. Shipping is free, and B&H charges NY & NJ sales tax only: – 15″ 2.7GHz Touch Bar MacBook Pro... Read more
Apple restocked Certified Refurbished 13″ Mac...
Apple has restocked a full line of Certified Refurbished 2017 13″ MacBook Airs starting at $849. An Apple one-year warranty is included with each MacBook, and shipping is free: – 13″ 1.8GHz/8GB/128GB... Read more
How to find the lowest prices on 2017 Apple M...
Apple has Certified Refurbished 13″ and 15″ 2017 MacBook Pros available for $200 to $420 off the cost of new models. Apple’s refurbished prices are the lowest available for each model from any... Read more
The lowest prices anywhere on Apple 12″ MacBo...
Apple has Certified Refurbished 2017 12″ Retina MacBooks available for $200-$240 off the cost of new models. Apple will include a standard one-year warranty with each MacBook, and shipping is free.... Read more
Apple now offering a full line of Certified R...
Apple is now offering Certified Refurbished 2017 10″ and 12″ iPad Pros for $100-$190 off MSRP, depending on the model. An Apple one-year warranty is included with each model, and shipping is free: –... Read more
27″ iMacs on sale for $100-$130 off MSRP, pay...
B&H Photo has 27″ iMacs on sale for $100-$130 off MSRP. Shipping is free, and B&H charges sales tax for NY & NJ residents only: – 27″ 3.8GHz iMac (MNED2LL/A): $2199 $100 off MSRP – 27″ 3.... Read more
2.8GHz Mac mini on sale for $899, $100 off MS...
B&H Photo has the 2.8GHz Mac mini (model number MGEQ2LL/A) on sale for $899 including free shipping plus NY & NJ sales tax only. Their price is $100 off MSRP. Read more
Apple offers Certified Refurbished iPad minis...
Apple has Certified Refurbished 128GB iPad minis available today for $339 including free shipping. Apple’s standard one-year warranty is included. Their price is $60 off MSRP. Read more
Amazon offers 13″ 256GB MacBook Air for $1049...
Amazon has the 13″ 1.8GHz/256B #Apple #MacBook Air on sale today for $150 off MSRP including free shipping: – 13″ 1.8GHz/256GB MacBook Air (MQD42LL/A): $1049.99, $150 off MSRP Read more
9.7-inch 2017 WiFi iPads on sale starting at...
B&H Photo has 9.7″ 2017 WiFi #Apple #iPads on sale for $30 off MSRP for a limited time. Shipping is free, and pay sales tax in NY & NJ only: – 32GB iPad WiFi: $299, $30 off – 128GB iPad WiFi... Read more

Jobs Board

AppleCare Support Engineer for *Apple* Medi...
# AppleCare Support Engineer for Apple Media Products Job Number: 113222855 Santa Clara Valley, California, United States Posted: 14-Nov-2017 Weekly Hours: 40.00 Read more
QA Automation Engineer, *Apple* Pay - Apple...
# QA Automation Engineer, Apple Pay Job Number: 113202642 Santa Clara Valley, California, United States Posted: 11-Dec-2017 Weekly Hours: 40.00 **Job Summary** At Read more
*Apple* Video Partnerships - Apple (United S...
# Apple Video Partnerships Job Number: 113059126 Santa Clara Valley, California, United States Posted: 15-Nov-2017 Weekly Hours: 40.00 **Job Summary** Partnerships Read more
Sr. Engineering Manager- *Apple* Media Produ...
# Sr. Engineering Manager- Apple Media Products Job Number: 113335268 Santa Clara Valley, California, United States Posted: 17-Jan-2018 Weekly Hours: 40.00 **Job Read more
*Apple* Retail - Multiple Positions - Apple,...
Job Description:SalesSpecialist - Retail Customer Service and SalesTransform Apple Store visitors into loyal Apple customers. When customers enter the store, Read more
All contents are Copyright 1984-2011 by Xplain Corporation. All rights reserved. Theme designed by Icreon.