TweetFollow Us on Twitter

Jul 97 Challenge

Volume Number: 13 (1997)
Issue Number: 7
Column Tag: Programmer's Challenge

Jul 97 - Programmer's Challenge

by Bob Boonstra, Westford, MA


The Challenge this month is to write a string completion routine loosely patterned after the keyword lookup facility in the QuickView utility. QuickView will suggest a completion of the keyword as you begin to type it, and update that suggested completion as you continue to type. In the Toolbox Assistant, for example, if you are looking for documentation on InitGraf and type "i", the suggested completion is "iconIDToRgn". As you continue by typing "n", the suggestion becomes "index2Color". Adding "i" yields "initAllPacks"; adding "t" leaves the suggestion intact; adding "g" changes it to "initGDevice". Finally, typing "r" gives the desired "initgraf".

For our disambiguator, you will be given an unsorted list of words and an opportunity to preprocess them. Then you will be given a string to match and asked to return a list of words matching findString. To make the problem more interesting, the match string can contain wild card characters, as described below.

The prototype for the code you should write is:

typedef unsigned long ulong;

void InitDisambiguator(
   const char *const wordList[],   /* words to match against */
   ulong numWords,                 /* number of words in wordList */
   void *privStorage,              /* private storage preinitialized to zero */
   ulong storageSize               /* number of bytes of privStorage */

ulong /*numMatch*/ Disambiguator(
   const char *const wordList[],   /* words to match against */
   ulong numWords,                 /* number of words in wordList */
   void *privStorage,              /* private storage */
   ulong storageSize,              /* number of bytes of privStorage */
   char *findString,               /* string to match, includes wild cards */
   char *matchList[]               /* return matched words here */

Your InitDisambiguator routine will be called with an unsorted list wordList of numWords null-terminated words to match. The wordList words will include alphanumeric characters, spaces, and underscores. You will also be provided with a pointer privStorage to storageSize bytes of preallocated memory initialized to zero. The amount of storage provided will be at least 20 bytes for each word in wordList, plus one byte for each character in the wordList (including the null byte, and rounded up to a multiple of 4). In other words, storageSize will be no smaller than minStorage, calculated as:

for (minStorage=0,i=0; i<numWords; i++)
   minStorage += 20 + 4*(1+strlen(wordList[i])/4);

InitDisambiguator is not allowed to modify the wordList, but you may store a sorted version of wordList, or pointers to the words in sorted order, in privStorage. The first four parameters provided to Disambiguator will be identical as those provided to InitDisambiguator. In addition, you will be provided with the null-terminated findString and a preallocated array matchList with numWords entries where you are to store pointers to the words that match findString. Your string matches should be case insensitive (i.e., "initgr" matches "InitGraf". The matchList should be returned with the strings ordered in case-insensitive ASCII order (i.e., space < [0..9] < [A-Za-z] < underscore).

The findString may also contain zero or more of the wildcard characters '?', '*', and '+'. The wildcard '?' matches any single character, '*' matches zero or more characters, and '+' matches one or more characters. So, for example, "*graf" matches any string ending in the (case-insensitive) string "graf", while "+1Ind+" matches any string containing "1Ind" between the first and last characters of a word.

For each call to InitDisambiguator, your Disambiguator routine will be called an average of 100 to 1000 times. The winner will be the solution that finds the correct matchList in the minimum amount of time, including the time taken by the initialization routine.

This will be a native PowerPC Challenge, using the latest CodeWarrior environment. Solutions may be coded in C, C++, or Pascal. The problem is based on a suggestion by Charles Kefauver, who pointed me to an April, 1995, AppleDirections article discussing the user interface for a disambiguator. Charles wins 2 Challenge points for his suggestion.

Three Months Ago Winner

Congratulations to ACC Murphy (Perth, Australia), for submitting the faster (and smaller) of the two entries I received for the Projection Challenge. This problem required contestants to calculate the image of a set of input polygons, including the shadows cast by one polygon on another, given an observation viewpoint and an illumination point.

Both of the submitted solutions used a ray-tracing technique. The winning solution calculates, for each point on the projection plane, the nearest polygon to the viewpoint among those intersecting the ray from the plane to the viewpoint. It then does another ray-trace to determine if there are any other polygons between the illumination point and the projected polygon, identifying the point as being in shadow if an intervening polygon is found.

I ran three test cases, moving the polygons 10 times for a given viewpoint in each case, using a GWorld bounds rectangle slightly smaller than my 1024x768 monitor. As you can see from the execution times, considerable refinement would be needed before this code could be used for animation.

A good discussion of the projection and hidden surface removal algorithms applicable to this problem can be found in the Black Art of Macintosh Game Programming, by Kevin Tieskoetter. In addition to discussing the z-buffer ray-tracing algorithm, it describes another technique for hidden surface removal called the Painter's algorithm. This approach breaks the polygons to be displayed into pieces such that each piece is entirely in front of or entirely behind any other piece, as seen from the viewpoint. The polygons can then be sorted and displayed without looking at each pixel in the image. For our application, two polygon decompositions would be required, one for the image, and one for the shadows.

The table below lists, for each entry, the execution time for each case and the code size. The number in parentheses after the entrant's name is the total number of Challenge points earned in all Challenges to date prior to this one.

                      Case 1   Case 2   Case 3    Total       Code
Name                   Time     Time     Time   Time (secs)   Size
A.C.C. Murphy (10)    29.02    23.64    81.61     134.27      4196
Ernst Munter (232)    20.87    58.11    89.76     168.74      7192

Top 20 Contestants

Here are the Top Contestants for the Programmer's Challenge. The numbers below include points awarded over the 24 most recent contests, including points earned by this month's entrants.

Rank    Name             Points   Rank     Name             Points
   1.   Munter, Ernst      194       11.   Beith, Gary         24
   2.   Gregg, Xan         114       12.   Cutts, Kevin        21
   3.   Cooper, Greg        54       13.   Nicolle, Ludovic    21
   4.   Larsson, Gustav     47       14.   Picao, Miguel Cruz  21
   5.   Lengyel, Eric       40       15.   Brown, Jorg         20
   6.   Boring, Randy       37       16.   Gundrum, Eric       20
   7.   Mallett, Jeff       37       17.   Higgins, Charles    20
   8.   Lewis, Peter        32       18.   Kasparian, Raffi    20
   9.   Murphy, ACC         30       19.   Slezak, Ken         20
   10.  Antoniewicz, Andy   24       20.   Studer, Thomas      20

There are three ways to earn points: (1) scoring in the top 5 of any Challenge, (2) being the first person to find a bug in a published winning solution or, (3) being the first person to suggest a Challenge that I use. The points you can win are:

1st place   20 points             5th place   2 points
2nd place   10 points           finding bug   2 points
3rd place   7 points   suggesting Challenge   2 points
4th place   4 points

Here is A.C.C. Murphy's winning solution:
A.C.C. Murphy

unit Challenge;


   Storage space must be big enough for 13 floats per polygon
   All points must be significantly smaller in magnitude than BIG_FLOAT = 
   Polygons are translucent (their colour based uplon lighting is independent 
      of the side of the polygon that is lit)
   50% attenuation of colour is used
   50% attenuation of black is black
   InitProjection is not used
   First we precalculate a small bounding sphere for the polygon points.
   Next we get the information about the GWorld to allow direct pixel access.
   Then for each point on the GWorld, we trace the ray from the point to the 
      eye, intersecting it with each polygon and finding the one closes to 
      the eye (furthest forward, since the eye is infront of all polygons).  
      That determines the colour.  We then trace the ray from that intersection 
      point to the light source to determine whether the point is in shadow, 
      and if so we halve the intensity. We set the colour of the pixel and 
      move on.
      Direct pixel access to the GWorld (known to be 32 bit)
      Bounding sphere used to optimize the ray/polygon intersection test.
      Time is approximately 2 microseconds per pixel per polygon on an 8500.


      Types, Quickdraw, QDOffscreen;
      kMAXPOINTS = 10;

      BIG_FLOAT = 1000000.0;
      float = real;
      My2DPoint = record (* point in z==0 plane*)
         x2D: float; (* x coordinate*)
         y2D: float; (* y coordinate*)
      My3DPoint = record
         x3D: float;                 (* x coordinate*)
         y3D: float;                 (* y coordinate*)
         z3D: float;                 (* z coordinate*)
      My3DDirection = record
         thetaX:float;              (* angle in radians*)
         thetaY:float;              (* angle in radians*)
         thetaZ:float;              (* angle in radians*)
      MyPlane = record
         planeNormal: My3DDirection; (* normal vector to plane*)
         planeOrigin: My3DPoint;     (* origin of plane in 3D space*)
      MyPolygon = record
         numPoints: longint;      (* number of points in polygon*)
         thePoint: array[0..kMAXPOINTS-1] of My2DPoint;
                                  (* polygon in z==0 plane*)
         polyPlane: MyPlane;      (* rotate/translate z==0 plane to this plane*)
         polyColor: RGBColor;     (* the color to draw this polygon*)
      MyPolygonArray = array[0..0] of MyPolygon;
   procedure InitProjection(
      const viewPoint: My3DPoint;(* viewpoint from which to project*)
      const illumPoint:My3DPoint;(* viewpoint from which to draw shadow*)
      storage: univ Ptr;         (* auxiliary storage preallocated for your use*)
      storageSize: longint       (* number of bytes of storage*)

   procedure CalcProjection(
      offScreen: GWorldPtr;          (* GWorld to draw projection *)
      const thePolys: MyPolygonArray;(* polygons to project *)
      numPolys: longint;             (* number of polygons to project *)
      const viewPoint: My3DPoint;    (* viewpoint from which to project *)
      const illumPoint: My3DPoint;
                               (* illumination point from which to draw shadow *)
      storage: univ Ptr;       (* auxiliary storage preallocated for your use*)
      storageSize: longint     (* number of bytes of storage*)


      Ray3D = record
         origin: My3DPoint;
         direction: My3DPoint;
      PolygonExtra = record
         normal, rotX, rotY, center: My3DPoint;
         radius2: float;
      PolygonExtraArray = array[0..0] of PolygonExtra;
      StorageRecord = record
         poly_extra: PolygonExtraArray;
                  { must be at the end, since it's an extensible array }
      StorageRecordPtr = ^StorageRecord;
   function DotProduct(const src1, src2 : My3DPoint) : float;
      DotProduct := src1.x3D*src2.x3D +  
                    src1.y3D*src2.y3D +  
   procedure CrossProduct(src1, src2 : My3DPoint; 
                    var dst : My3DPoint);
      dst.x3D := src1.y3D*src2.z3D - src1.z3D*src2.y3D;
      dst.y3D := src1.z3D*src2.x3D - src1.x3D*src2.z3D;
      dst.z3D := src1.x3D*src2.y3D - src1.y3D*src2.x3D;
   procedure AddVectors(const src1, src2 : My3DPoint; 
                     var dst : My3DPoint);
      dst.x3D := src1.x3D + src2.x3D;
      dst.y3D := src1.y3D + src2.y3D;
      dst.z3D := src1.z3D + src2.z3D;
   procedure SubtractVectors(const src1, src2 : My3DPoint; 
                      var dst : My3DPoint);
      dst.x3D := src1.x3D - src2.x3D;
      dst.y3D := src1.y3D - src2.y3D;
      dst.z3D := src1.z3D - src2.z3D;
   procedure MidPoint( const src1, src2 : My3DPoint; 
                      var dst : My3DPoint);
      dst.x3D := (src1.x3D + src2.x3D) / 2;
      dst.y3D := (src1.y3D + src2.y3D) / 2;
      dst.z3D := (src1.z3D + src2.z3D) / 2;
   function Distance2( const src1, src2 : My3DPoint) : float;
      Distance2 := sqr(src1.x3D - src2.x3D) + 
                      sqr(src1.y3D - src2.y3D) + 
                      sqr(src1.z3D - src2.z3D);
   procedure ScaleVector(const src : My3DPoint; scale : float; 
                      var dst : My3DPoint);
      dst.x3D := src.x3D * scale;
      dst.y3D := src.y3D * scale;
      dst.z3D := src.z3D * scale;
   procedure NormalizeVector(const src : My3DPoint;
                      var dst : My3DPoint);
         length : float;
      length := sqrt(DotProduct(src,src));   
      dst.x3D := src.x3D / length;
      dst.y3D := src.y3D / length;
      dst.z3D := src.z3D / length;
   procedure MakeViewRay(const eye : My3DPoint;
                      x, y, z: float; var ray : Ray3D);
      ray.origin.x3D := x;
      ray.origin.y3D := y;
      ray.origin.z3D := z;
      ray.direction.x3D := eye.x3D - x;
      ray.direction.y3D := eye.y3D - y;
      ray.direction.z3D := eye.z3D - z;
      NormalizeVector(ray.direction, ray.direction);
   procedure RotateX(src : My3DPoint; sinA, cosA : float; 
                      var dst : My3DPoint);
      dst.x3D := src.x3D;
      dst.y3D := cosA*src.y3D - sinA*src.z3D;
      dst.z3D := sinA*src.y3D + cosA*src.z3D;
   procedure RotateY( src : My3DPoint; sinA, cosA : float; 
                      var dst : My3DPoint);
      dst.x3D := cosA*src.x3D + sinA*src.z3D;
      dst.y3D := src.y3D;
      dst.z3D := -sinA*src.x3D + cosA*src.z3D;
   procedure RotateZ( src : My3DPoint; sinA, cosA : float; 
                      var dst : My3DPoint);
      dst.x3D := cosA*src.x3D - sinA*src.y3D;
      dst.y3D := sinA*src.x3D + cosA*src.y3D;
      dst.z3D := src.z3D;
   function PointInPlaneInPolygon( const pt: My2DPoint; const 
               poly: MyPolygon ): boolean;
      function Quadrant( const pt: My2DPoint; x, y: float ): 
         if pt.x2D > x then begin
            if pt.y2D > y then begin
               Quadrant := 0;
            end else begin
               Quadrant := 3;
         end else begin
            if pt.y2D > y then begin
               Quadrant := 1;
            end else begin
               Quadrant := 2;
      function x_intercept( const pt1, pt2: My2DPoint;
                      yy: float ): 
         x_intercept := pt2.x2D - 
                     ( (pt2.y2D - yy) * 
                        ((pt1.x2D - pt2.x2D)/(pt1.y2D - pt2.y2D)) );
         i, angle, quad, next_quad, delta: longint;
         last_vertex, next_vertex: My2DPoint;
      angle := 0;
      last_vertex := poly.thePoint[poly.numPoints-1];
      quad := Quadrant( last_vertex, pt.x2D, pt.y2D );
      for i := 1 to poly.numPoints do begin
         next_vertex := poly.thePoint[i-1];
         next_quad := Quadrant( next_vertex, pt.x2D, pt.y2D );
         delta := next_quad - quad;
         case delta of
            3: delta := -1;
            -3: delta := 1;
            2, -2: begin
               if x_intercept( last_vertex, next_vertex, pt.y2D ) > 
                           pt.x2D then begin
                  delta := -delta;
            otherwise begin
         angle := angle + delta;
         quad := next_quad;
         last_vertex := next_vertex;
      PointInPlaneInPolygon := (angle = 4) | (angle = -4);
   function Intersect(const ray: Ray3D; const poly: MyPolygon; 
         const poly_extra: PolygonExtra; var distance : float; 
         var intersectionPt: My3DPoint) : boolean;
         tempVector : My3DPoint;
         temp1, temp2 : float;
         intersectionPoint : My3DPoint;
         intersection2D : My2DPoint;
         Ib, Ic, Id: float;
      Intersect := false;

      { intersect ray with sphere }
      SubtractVectors( ray.origin,,
                            tempVector );
      Ib := 2 * DotProduct( ray.direction, tempVector );
      Ic := DotProduct( tempVector, tempVector ) - 
      Id := sqr(Ib) - 4.0*Ic;
      if Id >= 0 then begin { yes, ray intersects sphere }
         temp1 := DotProduct( poly.polyPlane.planeOrigin, 
                            poly_extra.normal ) - 
                     DotProduct( poly_extra.normal, ray.origin );
         temp2 := DotProduct(ray.direction, poly_extra.normal);
         if temp2 <> 0 then begin
            distance := temp1 / temp2;
            if distance > 0 then begin
               ScaleVector(ray.direction, distance, intersectionPoint);
               AddVectors(intersectionPoint, ray.origin, 
               if Distance2(intersectionPoint,
                                          poly_extra.radius2 then begin 
                  { intersection point is whithin sphere.  
                     Find out if it is actually in the polygon }
                  intersectionPt := intersectionPoint;
                  { First translate back to the origin }
                  intersection2D.x2D := DotProduct(
                        poly_extra.rotX );
                  intersection2D.y2D := DotProduct( 
                        poly_extra.rotY );
                  { Then check if it is whithin the polygon }
                  Intersect := PointInPlaneInPolygon

   procedure InitProjection(
      const viewPoint: My3DPoint;(* viewpoint from which to project *)
      const illumPoint:My3DPoint;
                                 (* viewpoint from which to draw shadow *)
      storage: univ Ptr;         (* auxiliary storage preallocated for your use *)
      storageSize: longint       (* number of bytes of storage *)
{$unused( viewPoint, illumPoint, storage, storageSize )}

   procedure PreparsePolygons( my_storage: StorageRecordPtr;
   numPolys: longint; const thePolys: MyPolygonArray );
         i, j: longint;
         pt: My3DPoint;
         pts: array[1..kMAXPOINTS] of My3DPoint;
         min_x, min_y, min_z, max_x, max_y, max_z: My3DPoint;
         dist_x, dist_y, dist_z, new_radius2: float;
         radius, new_radius, old_to_new: float;
         sinX, cosX, sinY, cosY, sinZ, cosZ: float;
      for i := 0 to numPolys-1 do begin
         with my_storage^.poly_extra[i], thePolys[i],
         polyPlane.planeNormal do begin
            sinX := sin(thetaX);
            cosX := cos(thetaX);
            sinY := sin(thetaY);
            cosY := cos(thetaY);
            sinZ := sin(thetaZ);
            cosZ := cos(thetaZ);
            normal.x3d := sinY*cosX;
            normal.y3d := -sinX;
            normal.z3d := cosY*cosX;
            rotX.x3D := 1;
            rotX.y3D := 0;
            rotX.z3D := 0;
            RotateZ(rotX, sinZ, cosZ, rotX);
            RotateX(rotX, sinX, cosX, rotX);
            RotateY(rotX, sinY, cosY, rotX);
            rotY.x3D := 0;
            rotY.y3D := 1;
            rotY.z3D := 0;
            RotateZ(rotY, sinZ, cosZ, rotY);
            RotateX(rotY, sinX, cosX, rotY);
            RotateY(rotY, sinY, cosY, rotY);
            for j := 1 to numPoints do begin
               pt.x3D := thePoint[j-1].x2D;
               pt.y3D := thePoint[j-1].y2D;
               pt.z3D := 0;
               RotateZ(pt, sinZ, cosZ, pt);
               RotateX(pt, sinX, cosX, pt);
               RotateY(pt, sinY, cosY, pt);
               pts[j] := pt;
               if j = 1 then begin
                  min_x := pt; min_y := pt; min_z := pt;
                  max_x := pt; max_y := pt; max_z := pt;
               end else begin
                  if pt.x3D < min_x.x3D then begin
                     min_x := pt;
                  if pt.y3D < min_y.y3D then begin
                     min_y := pt;
                  if pt.z3D < min_z.z3D then begin
                     min_z := pt;
                  if pt.x3D > max_x.x3D then begin
                     max_x := pt;
                  if pt.y3D > max_y.y3D then begin
                     max_y := pt;
                  if pt.z3D > max_z.z3D then begin
                     max_z := pt;
            dist_x := Distance2( min_x, max_x );
            dist_y := Distance2( min_y, max_y );
            dist_z := Distance2( min_z, max_z );
            if dist_x > dist_y then begin
               if dist_x > dist_z then begin
                  radius2 := dist_x/4;
                  MidPoint( min_x, max_x, center );
               end else begin
                  radius2 := dist_z/4;
                  MidPoint( min_z, max_z, center );
            end else begin
               if dist_y > dist_z then begin
                  radius2 := dist_y/4;
                  MidPoint( min_y, max_y, center );
               end else begin
                  radius2 := dist_z/4;
                  MidPoint( min_z, max_z, center );
            for j := 1 to numPoints do begin
               new_radius2 := Distance2( center, pts[j] );
               if new_radius2 > radius2 then begin
                  radius := sqrt(radius2);
                  new_radius := sqrt(new_radius2);
                  radius2 := (radius + new_radius)/2;
                  old_to_new := radius2 - radius;
                  center.x3D := (radius2*center.x3D + 
                  center.y3D := (radius2*center.y3D + 
                  center.z3D := (radius2*center.z3D + 
                  radius2 := sqr(radius2);
            AddVectors( polyPlane.planeOrigin, center, center );

   procedure CalcProjection(
      offScreen: GWorldPtr;          (* GWorld to draw projection *)
      const thePolys: MyPolygonArray;(* polygons to project *)
      numPolys: longint;             (* number of polygons to project *)
      const viewPoint: My3DPoint;    (* viewpoint from which to project *)
      const illumPoint: My3DPoint;   (* illumination point from which to draw shadow *)
      storage: univ Ptr;         (* auxiliary storage preallocated for your use *)
      storageSize: longint      (* number of bytes of storage *)
         bounds: Rect;
         x, y : integer;
         colour : RGBColor;
         viewRay : Ray3D;
         lightRay : Ray3D;
         i : integer;
         closestDistance : float;
         closestIntersectionPt: My3DPoint;
         thisDistance : float;
         intersectionPt: My3DPoint;
         intersect_polygon: longint;
         pm: PixMapHandle;
         junk_boolean: boolean;
         pixels: Ptr;
         rowbytes_add: longint;
         my_storage: StorageRecordPtr;
{$unused( storage, storageSize )}
      my_storage := StorageRecordPtr(storage);

      PreparsePolygons( my_storage, numPolys, thePolys );

      SetGWorld( offScreen, nil );
      bounds := offScreen^.PortRect;
      pm := GetGWorldPixMap( offScreen );
      junk_boolean := LockPixels( pm );
      pixels := GetPixBaseAddr( pm );
      rowbytes_add := band( pm^^.rowBytes, $3FFF ) - 
                                    4 * (bounds.right - bounds.left);

      for y := to bounds.bottom-1 do begin
         for x := bounds.left to bounds.right-1 do begin
            MakeViewRay(viewPoint, x, y, 0, viewRay);
            closestDistance := 0.0;
            intersect_polygon := -1;
            for i:= 1 to numPolys do begin
               if Intersect(viewRay, thePolys[i-1], 
                           my_storage^.poly_extra[i-1], thisDistance, 
                           intersectionPt) then begin
                  if (thisDistance > closestDistance) then begin
                     intersect_polygon := i;
                     closestDistance := thisDistance;
                     closestIntersectionPt := intersectionPt;
            if intersect_polygon > 0 then begin
               colour := thePolys[intersect_polygon-1].polyColor;

               MakeViewRay(illumPoint, closestIntersectionPt.x3D, 
                                 closestIntersectionPt.z3D, lightRay);

               for i:= 1 to numPolys do begin
                  if (intersect_polygon <> i) & 
                     Intersect(lightRay, thePolys[i-1], 
                     thisDistance, intersectionPt) then begin
      := band(, $0FFFF) div 2;
      := band(, $0FFFF) div 2;
      := band(, $0FFFF) div 2;
      LongintPtr(pixels)^ := bsl( band(, $0FF00), 8 ) 
                     + band(, $0FF00) + 
                        bsr( band(, $0FF00), 8 );
            end else begin
               LongintPtr(pixels)^ := 0;
            longint(pixels) := longint(pixels) + 4;
         longint(pixels) := longint(pixels) + rowbytes_add;



Community Search:
MacTech Search:

Software Updates via MacUpdate

Bookends 12.8 - Reference management and...
Bookends is a full-featured bibliography/reference and information-management system for students and professionals. Bookends uses the cloud to sync reference libraries on all the Macs you use.... Read more
Adobe Creative Cloud - Access...
Adobe Creative Cloud costs $19.99/month for a single app, or $49.99/month for the entire suite. Introducing Adobe Creative Cloud desktop applications, including Adobe Photoshop CC and Illustrator CC... Read more
Default Folder X 5.1.4 - Enhances Open a...
Default Folder X attaches a toolbar to the right side of the Open and Save dialogs in any OS X-native application. The toolbar gives you fast access to various folders and commands. You just click on... Read more
Amazon Chime 4.1.5587 - Amazon-based com...
Amazon Chime is a communications service that transforms online meetings with a secure, easy-to-use application that you can trust. Amazon Chime works seamlessly across your devices so that you can... Read more
Persecond 1.0.9 - Timelapse video made e...
Persecond is the easy, fun way to create a beautiful timelapse video. Import an image sequence from any camera, trim the length of your video, adjust the speed and playback direction, and you’re done... Read more
CrossOver 16.2 - Run Windows apps on you...
CrossOver can get your Windows productivity applications and PC games up and running on your Mac quickly and easily. CrossOver runs the Windows software that you need on Mac at home, in the office,... Read more
MegaSeg 6.0.2 - Professional DJ and radi...
MegaSeg is a complete solution for pro audio/video DJ mixing, radio automation, and music scheduling with rock-solid performance and an easy-to-use design. Mix with visual waveforms and Magic... Read more
Apple iTunes 12.6 - Play Apple Music and...
Apple iTunes lets you organize and stream Apple Music, download and watch video and listen to Podcasts. It can automatically download new music, app, and book purchases across all your devices and... Read more
GraphicConverter 10.4 - $39.95
GraphicConverter is an all-purpose image-editing program that can import 200 different graphic-based formats, edit the image, and export it to any of 80 available file formats. The high-end editing... Read more
OpenEmu 2.0.5 - Open Source game-emulati...
OpenEmu is about to change the world of video game emulation, one console at a time... For the first time, the 'It just works' philosophy now extends to open source video game emulation on the Mac.... Read more

Orphan Black: The Game (Games)
Orphan Black: The Game 1.0 Device: iOS Universal Category: Games Price: $4.99, Version: 1.0 (iTunes) Description: Dive into a dark and twisted puzzle-adventure that retells the pivotal events of Orphan Black. | Read more »
The Elder Scrolls: Legends is now availa...
| Read more »
Ticket to Earth beginner's guide: H...
Robot Circus launched Ticket to Earth as part of the App Store's indie games event last week. If you're not quite digging the space operatics Mass Effect: Andromeda is serving up, you'll be pleased to know that there's a surprising alternative on... | Read more »
Leap to victory in Nexx Studios new plat...
You’re always a hop, skip, and a jump away from a fiery death in Temple Jump, a new platformer-cum-endless runner from Nexx Studio. It’s out now on both iOS and Android if you’re an adventurer seeking treasure in a crumbling, pixel-laden temple. | Read more »
Failbetter Games details changes coming...
Sunless Sea, Failbetter Games' dark and gloomy sea explorer, sets sail for the iPad tomorrow. Ahead of the game's launch, Failbetter took to Twitter to discuss what will be different in the mobile version of the game. Many of the changes make... | Read more »
Splish, splash! The Pokémon GO Water Fes...
Niantic is back with a new festival for dedicated Pokémon GO collectors. The Water Festival officially kicks off today at 1 P.M. PDT and runs through March 29. Magikarp, Squirtle, Totodile, and their assorted evolved forms will be appearing at... | Read more »
Death Road to Canada (Games)
Death Road to Canada 1.0 Device: iOS Universal Category: Games Price: $7.99, Version: 1.0 (iTunes) Description: Get it now at the low launch price! Price will go up a dollar every major update. Update news at the bottom of this... | Read more »
Bean's Quest Beginner's Guide:...
Bean's Quest is a new take on both the classic platformer and the endless runner, and it's free on the App Store for the time being. Instead of running constantly, you can't stop jumping. That adds a surprising new level of challenge to the game... | Read more »
How to rake in the cash in Bit City
Our last Bit City guide covered the basics. Now it's time to get into some of the more advanced techniques. In the later cities, cash flow becomes much more difficult, so you'll want to develop some strategies if you want to complete each level.... | Read more »
PixelTerra (Games)
PixelTerra 1.1.1 Device: iOS Universal Category: Games Price: $.99, Version: 1.1.1 (iTunes) Description: The world of PixelTerra is quite dangerous so you need to build a shelter, find some food supply and get ready to protect... | Read more »

Price Scanner via

SSD Speeder RAM Disk SSD Life Extender App Fo...
Fehraltorf, Switzerland based B-Eng has announced they are making their SSD Speeder app for macOS publicly available for purchase on their website. SSD Speeder is a RAM disk utility that prevents... Read more
iPhone Scores Highest Overall in Smartphone D...
Customer satisfaction is much higher among smartphone owners who use their device to operate other connected home services such as smart thermostats and smart appliances, according to the J.D. Power... Read more
Swipe CRM Free Photo-Centric CRM Sales DEal C...
Swipe CRM LLC has introduced Swipe CRM: Visual Sales 1.0 for iPad, an app for creating, managing, and sharing visually stunning sales deals. Swipe CRM is targeted to small-and-medium creative... Read more
13-inch 2.0GHz Apple MacBook Pros on sale for...
B&H has the non-Touch Bar 13″ 2.0GHz MacBook Pros in stock today and on sale for $150 off MSRP. Shipping is free, and B&H charges NY sales tax only: - 13″ 2.0GHz MacBook Pro Space Gray (... Read more
15-inch Touch Bar MacBook Pros on sale for up...
B&H Photo has the new 2016 15″ Apple Touch Bar MacBook Pros in stock today and on sale for up to $150 off MSRP. Shipping is free, and B&H charges NY sales tax only: - 15″ 2.7GHz Touch Bar... Read more
Apple’s iPhone 6s Tops Best-Selling Smartphon...
In terms of shipments, the iPhone 6s from Apple bested all competitors for sales in 2016, according to new analysis from IHS Markit, a world leader in critical information, analytics and solutions.... Read more
Logitech Rugged Combo Protective iPad Case an...
Logitech has announced its Logitech Rugged Combo, Logitech Rugged Case, and Logitech Add-on Keyboard for Rugged Case for Apple’s new, more affordable $329 9.7-inch iPad, a complete solution designed... Read more
T-Mobile To Offer iPhone 7 and iPhone 7 Plus...
T-Mobile has announced it will offer iPhone 7 and iPhone 7 Plus (PRODUCT)RED Special Edition in a vibrant red aluminum finish. The introduction of this special edition iPhone celebrates Apple’s 10... Read more
9-inch 128GB iPad Pros on sale for $50-$70 of...
B&H Photo has 9.7″ 128GB Apple WiFi iPad Pros on sale for up to $70 off MSRP, each including free shipping. B&H charges sales tax in NY only: - 9″ Space Gray 128GB WiFi iPad Pro: $649 $50... Read more
27-inch iMacs on sale for up to $200 off MSRP...
B&H Photo has 27″ Apple iMacs on sale for up to $200 off MSRP, each including free shipping plus NY sales tax only: - 27″ 3.3GHz iMac 5K: $2099 $200 off MSRP - 27″ 3.2GHz/1TB Fusion iMac 5K: $... Read more

Jobs Board

*Apple* Retail - Multiple Positions- Chicago...
SalesSpecialist - Retail Customer Service and SalesTransform Apple Store visitors into loyal Apple customers. When customers enter the store, you're also the Read more
Fulltime aan de slag als shopmanager in een h...
Ben jij helemaal gek van Apple -producten en vind je het helemaal super om fulltime shopmanager te zijn in een jonge en hippe elektronicazaak? Wil jij werken in Read more
Starte Dein Karriere-Abenteuer in den Hauptst...
…mehrsprachigen Teams betreust Du Kunden von bekannten globale Marken wie Apple , Mercedes, Facebook, Expedia, und vielen anderen! Funktion Du wolltest schon Read more
*Apple* macOS Systems Integration Administra...
…most exceptional support available in the industry. SCI is seeking an Junior Apple macOS systems integration administrator that will be responsible for providing Read more
*Apple* Retail - Multiple Positions - Apple,...
Job Description: Sales Specialist - Retail Customer Service and Sales Transform Apple Store visitors into loyal Apple customers. When customers enter the store, Read more
All contents are Copyright 1984-2011 by Xplain Corporation. All rights reserved. Theme designed by Icreon.