TweetFollow Us on Twitter

Mar 96 Challenge
Volume Number:12
Issue Number:3
Column Tag:Programmer’s Challenge

Programmer’s Challenge

By Bob Boonstra, Westford, Massachusetts

Note: Source code files accompanying article are located on MacTech CD-ROM or source code disks.

Words The Reverse

Text input, of Block given a in words of order the place (in reverse) will that routine a write to is challenge the month this. Oops, what I meant to say was: This month, the Challenge is to write a routine that will reverse (in place) the order of words in a given block of input text. The prototype for the code you should write is:

pascal void ReverseTheWords(
 const char *text, /* the words you should reverse */
 const long numCharsIn    /* length of inputText in chars */
);

Specifically, ReverseTheWords should exchange the first word in the input text with the last word, the second word with the next-to-last word, etc. For the purpose of this Challenge, a word is defined as a continuous sequence of alphanumeric characters [a..zA..Z0..9]. Any nonalphanumeric characters should remain in their original positions and in their original order with respect to the new words; that is, punctuation, white space, and other characters between the first and second input words should, on output, be located between the new first and second words. As an example, ReverseTheWords would convert:

 This, however, <-is-> a (difficult) test.

into

 Test, difficult, <-a-> is (however) this.

As you can see from the example, there is one additional requirement. Your code needs to adjust the capitalization of words so that the n-th word is capitalized on output only if the n-th word was capitalized in the input text.

There are no specific restrictions on the amount of auxiliary memory you may use (within reason), so you may allocate a few buffers of size numCharsIn should you need them. Remember, however, to deallocate any memory you allocate before returning, as I will be calling your code many times.

Note that the prototype specifies the use of Pascal calling conventions. That is because this month we are conducting

A Language Experiment

Over the past months, in response to suggestions from readers, we have made a number of changes to the Challenge, including migrating to PowerPC native code and expanding to other C compilers. Now we are experimenting with some additional changes. This month, for the first time, your solution to the Challenge can be coded in C, C++, or Pascal, using your choice among the MPW, Metrowerks, or Symantec compilers for these languages. Although either 68K or PowerPC code is permitted, I will be running your code on a PowerMac 8500, so native code is obviously recommended. The environment you choose must support linking your solution with test code written in C. Along with your solution, you should specify the intended environment, compiler and compiler options, or (better yet) provide a project file or make file that will generate a stand-alone application that calls your solution from C test code.

Two Months Ago Winner

Congratulations to Jorg “jbx” Brown and Eric Gundrum for submitting the fastest entry to the Sliding Tiles Challenge. Contestants were asked to unscramble an N¥M grid of interlocking tiles, where a tile could be moved horizontally or vertically into the empty tile location. Fourteen of the 16 entries submitted worked correctly. The table below presents selected results from the timing tests, which used puzzles ranging in size from 8¥8 to 100¥300. (Two of the entries worked too slowly to complete the entire test suite.)

The most common solution technique involved solving the puzzle row-by-row from the bottom, being careful not to disturb tiles that had already been moved into their correct positions. The top two rows were solved together, starting from the right column and working left. Several solutions, including the winners’ and the even more move-efficient second-place entry by Peter Lewis, refined this by using a “greedy” algorithm that solves the bottom row and right column first, then moves to the next row and column. Since the problem involved use of a given callback routine for each move, it was important to reduce the number of tile moves. Some solutions moved tiles primarily in horizontal and vertical directions; others (including the winners’) devised operators that moved a tile diagonally in fewer moves.

Thanks to Greg Linden for sending me a reference to an article on this subject in Information Processing Letters (Oct. 1995). In that article, Ian Parberry (University of North Texas) establishes some bounds on algorithms for the n2-1 puzzle (the square version of this Challenge). The article proves that the “greedy” algorithm requires at most 5n3 moves in the worst case, and that any algorithm must make at least n3 moves (ignoring lower-order terms for both bounds). While a better algorithm may exist, Ian speculates that the lower bound could be made tighter. Interested readers can contact the author at ian@cs.unt.edu, or browse his web page at http://hercule.csci.unt.edu/ian.

Here are the times for each of the correct entries. Numbers in parentheses after a person’s name indicate that person’s cumulative point total for all previous Challenges, not including this one.

Time Time Total # of Moves

Name 20x20 100x300 Time (Millions)

Jorg Brown (10)

& Eric Gundrum 183 175730 261694 249

Peter Lewis 195 197905 294931 228

Christopher Phillips 211 200368 302774 269

Ludovic Nicolle 252 220952 337386 300

Ernst Munter (110) 159 258165 365894 295

Randy Boring 386 309630 481609 307

Cathy Saxton 264 338127 496610 299

Rishi Khan (age 16) 284 350763 506952 320

Xan Gregg (88) 296 360735 531493 299

Tom Saxton (10) 333 404155 592967 339

Miguel Cruz Picão(7) 245 652588 912267 339

John Sweeney (4) 300 875362 1223956 321

A. K. * * * *

G. L. * * * *

Top Contestants Of All Time

Here are the Top Contestants for the Programmer’s Challenges to date, including everyone who has accumulated more than 20 points. The numbers below include points awarded for this month’s entrants.

Rank Name Points Rank Name Points

1. [Name deleted] 176 11. Mallett, Jeff 44

2. Munter, Ernst 112 12. Kasparian, Raffi 42

3. Gregg, Xan 88 13. Vineyard, Jeremy 42

4. Larsson, Gustav 87 14. Lengyel, Eric 40

5. Karsh, Bill 80 15. Darrah, Dave 31

6. Stenger, Allen 65 16. Brown, Jorg 30

7. Riha, Stepan 51 17. Landry, Larry 29

8. Cutts, Kevin 50 18. Elwertowski, Tom 24

9. Goebel, James 49 19. Lee, Johnny 22

10. Nepsund, Ronald 47 20. Noll, Robert 22

There are three ways to earn points: (1) scoring in the top 5 of any Challenge, (2) being the first person to find a bug in a published winning solution or, (3) being the first person to suggest a Challenge that I use. The points you can win are:

1st place 20 points 5th place 2 points

2nd place 10 points finding bug 2 points

3rd place 7 points suggesting Challenge 2 points

4th place 4 points

Here the winning solution by Jorg and Eric:

SlidingTiles.c

Written by Jorg Brown & Eric Gundrum

Thanks also to Brad Kollmyer

typedef Boolean (*MoveProc)(
  long tileToMoveRow, long tileToMoveCol);

static MoveProc gMakeMove;
static long *gTiles, gNumCols, *gPieceRow, *gPieceCol;
static long *gBlankSquare; // initialized by SolveTiles, updated by BlankXXX()

#define gBlankRow pieceRow[0]
#define gBlankCol pieceCol[0]

BlankUp
static void BlankUp() { // move the BLANK SQUARE up
   long   tile, *oldBlankSquare, *newBlankSquare;
   long   *pieceRow = gPieceRow;
   long   *pieceCol = gPieceCol;

   oldBlankSquare = gBlankSquare;
   gBlankSquare = newBlankSquare = oldBlankSquare - gNumCols;
   tile = *newBlankSquare;
   pieceRow[tile] = gBlankRow--;
   gMakeMove(gBlankRow, gBlankCol);
   *oldBlankSquare = tile;
   *newBlankSquare = 0;
}

BlankDown
static void BlankDown() { // move the BLANK SQUARE down
   long   tile, *oldBlankSquare, *newBlankSquare;
   long   *pieceRow = gPieceRow;
   long   *pieceCol = gPieceCol;

   oldBlankSquare = gBlankSquare;
   gBlankSquare = newBlankSquare = oldBlankSquare + gNumCols;
   tile = *newBlankSquare;
   pieceRow[tile] = gBlankRow++;
   gMakeMove(gBlankRow, gBlankCol);
   *oldBlankSquare = tile;
   *newBlankSquare = 0;
}

MoveBlankToRow
static void MoveBlankToRow(long destRow) {
   long   tile, *oldBlankSquare, *newBlankSquare;
   long   *pieceRow = gPieceRow;
   long   *pieceCol = gPieceCol;
   long   blankRow = gBlankRow;
   long   rowInc, BlankSquareInc;

   if (blankRow < destRow) { // move DOWN
      rowInc = 1;
      BlankSquareInc = gNumCols;
   } else if (blankRow > destRow) { // move UP
      rowInc = -1;
      BlankSquareInc = -gNumCols;
   } else return;

   oldBlankSquare = gBlankSquare;
   do {
      newBlankSquare = oldBlankSquare + BlankSquareInc;
      tile = *newBlankSquare;
      pieceRow[tile] = blankRow;
      blankRow += rowInc;
      gMakeMove(blankRow, gBlankCol);
      *oldBlankSquare = tile;
      *newBlankSquare = 0;
      oldBlankSquare = newBlankSquare;
   } while (blankRow != destRow);
   gBlankSquare = newBlankSquare;
   gBlankRow = blankRow;
}

BlankLeft
static void BlankLeft() { // move the BLANK SQUARE left
   long   tile, *oldBlankSquare, *newBlankSquare;
   long   *pieceRow = gPieceRow;
   long   *pieceCol = gPieceCol;

   oldBlankSquare = gBlankSquare;
   gBlankSquare = newBlankSquare = oldBlankSquare - 1;
   tile = *newBlankSquare;
   pieceCol[tile] = gBlankCol--;
   gMakeMove(gBlankRow, gBlankCol);
   *oldBlankSquare = tile;
   *newBlankSquare = 0;
}


BlankRight
static void BlankRight() { // move the BLANK SQUARE right
   long   tile, *oldBlankSquare, *newBlankSquare;
   long   *pieceRow = gPieceRow;
   long   *pieceCol = gPieceCol;

   oldBlankSquare = gBlankSquare;
   gBlankSquare = newBlankSquare = oldBlankSquare + 1;
   tile = *newBlankSquare;
   pieceCol[tile] = gBlankCol++;
   gMakeMove(gBlankRow, gBlankCol);
   *oldBlankSquare = tile;
   *newBlankSquare = 0;
}

MoveBlankToCol
static void MoveBlankToCol(long destCol) {
   long   tile, *oldBlankSquare, *newBlankSquare;
   long   *pieceRow = gPieceRow;
   long   *pieceCol = gPieceCol;
   long   blankCol = gBlankCol;
   long   inc;

   if (blankCol < destCol) { // move RIGHT
      inc = 1;
   } else if (blankCol > destCol) { // move LEFT
      inc = -1;
   } else return;

   oldBlankSquare = gBlankSquare;
   do {
      newBlankSquare = oldBlankSquare + inc;
      tile = *newBlankSquare;
      pieceCol[tile] = blankCol;
      blankCol += inc;
      gMakeMove(gBlankRow, blankCol);
      *oldBlankSquare = tile;
      *newBlankSquare = 0;
      oldBlankSquare = newBlankSquare;
   } while (blankCol != destCol);
   gBlankSquare = newBlankSquare;
   gBlankCol = blankCol;
}

MoveAPiece

static void MoveAPiece(long piece, long destRow, long destCol, 
 long nextPiece) {
   long   sourceRow, sourceCol;
   long   *pieceRow = gPieceRow;
   long   *pieceCol = gPieceCol;
   long   nextRow = gNumCols;

   sourceRow = pieceRow[piece];
   sourceCol = pieceCol[piece];

   if (sourceRow >= destRow) { 
      // in this case, we have to move the tile up (or directly right) to get to its destination
      if (sourceRow == destRow) {
         if (sourceCol == destCol) return;

         // simplify: move the blank so that it is not to the right of the target
         if (gBlankCol > destCol) {
            MoveBlankToCol(destCol);
         }

         // move the blank to the left of the source, possibly moving the source
         // to the right at the same time.
         if (gBlankRow != destRow) {
            if (sourceCol == destCol-1 && gBlankRow > destRow) {
               MoveBlankToCol(sourceCol - 1);
               MoveBlankToRow(sourceRow - 1);
               BlankRight(); BlankRight();
               BlankDown();  BlankLeft();
               return; // all done
            } else {
               MoveBlankToCol(sourceCol + 1);
               MoveBlankToRow(sourceRow);
               BlankLeft();
               sourceCol++;
            }
         } else {
            if (gBlankCol < sourceCol) {
               MoveBlankToCol(sourceCol - 1);
            } else {
               MoveBlankToCol(sourceCol);
               sourceCol++;
            }
         }
         
WereOnTheSameRowNow:
         // at this point, the blank is to the left of the source,
         // and the puzzle might very well be done already.
         while (sourceCol != destCol) {
            if (nextPiece == piece - 1) { // into a row?
               if (gBlankCol != 0 && 
                     pieceCol[nextPiece]-pieceRow[nextPiece] <= 
                     gBlankCol-gBlankRow) {
                  MoveAPiece(nextPiece, gBlankRow, gBlankCol, 
                               nextPiece - 1);
               }
               if (gBlankRow == destRow) 
                 while ((gBlankSquare[-1] == gBlankSquare[1] - 1) 
                        && gBlankCol != 0) {
                  BlankLeft();
               }
            }
            if (gBlankRow == destRow) BlankUp();
            do {
               BlankRight();
            } while (gBlankCol <= sourceCol);
            BlankDown();  BlankLeft();  sourceCol++;
         }
         return;
      }
      // simplify: move the blank so that it is to the left of the target
      if (gBlankCol >= destCol) {
         MoveBlankToCol(destCol - 1);
      }
      // simplify: move the blank so that it is not above the target.
      if (gBlankRow < destRow) MoveBlankToRow(destRow);

again1:   // simplify: if the blank is below the source, move it so it’s not.
      sourceRow = pieceRow[piece];
      sourceCol = pieceCol[piece];
      if (gBlankRow >= sourceRow) {
         // if the blank is in the same column, move it away first.
         if (gBlankCol == sourceCol) {
            if (gBlankCol == destCol - 1) {
               BlankLeft();
            } else {
               BlankRight();
            }
         }
         // now that they're in different columns, move the blank so it’s not below
         MoveBlankToRow(sourceRow);
      }
      // simplify: if the blank is on the same row, and to the left, move up.
      if (gBlankRow == sourceRow && gBlankCol < sourceCol) {
         BlankUp();
      }
      // simplify: if the blank is to the left, move it to the same column.
      if (gBlankCol < sourceCol) {
         MoveBlankToCol(sourceCol);
      }
      // simplify: if the blank is to the upper right, move it to the left and down.
      if (gBlankRow < sourceRow) {
         if (gBlankCol > sourceCol) {
            MoveBlankToCol(sourceCol);
         }
         if (gBlankRow < sourceRow - 1) {
            MoveBlankToRow(sourceRow - 1);
         }
      }
      // if the blank is off to the right, move it next to the source.
      while (gBlankCol > sourceCol + 1) {
         MoveBlankToCol(sourceCol + 1);
      }
      // at this point, the blank should be either just above or just right of the piece.
      if (gBlankCol == sourceCol) {
         if (gBlankRow != sourceRow - 1) Debugger();
      } else {
         if (gBlankRow != sourceRow) Debugger();
         if (gBlankCol != sourceCol + 1) Debugger();
         BlankLeft();  BlankUp();    BlankRight();
      }
      BlankDown();
      sourceRow = pieceRow[piece];
      sourceCol = pieceCol[piece];
      if (sourceRow != destRow) goto again1;
      if (gBlankCol != destCol - 1) {
         BlankRight(); BlankUp();    BlankLeft();
         while (pieceCol[piece] != destCol) {
            BlankUp();    BlankRight(); BlankRight();
            BlankDown();  BlankLeft();
         }
         return; // DONE!!!!
      }
      BlankLeft();  BlankUp();    BlankUp();    BlankRight(); 
      BlankRight(); BlankDown();  BlankLeft();
      return; // DONE!!!!
   }

   // at this point, we know that source is above our destination.
   if (sourceCol >= destCol) { 
      // in this case, we have to move the tile left (or directly down) to get to its destination
      if (sourceCol == destCol) {

         // simplify: move the blank so that it is not below the target
         if (gBlankRow > destRow) {
            MoveBlankToRow(destRow);
         }

         // move the blank above the source, possibly moving the source
         // down at the same time.
         if (gBlankCol != destCol) {
            if (sourceRow == destRow-1 && gBlankCol > destCol) {
               MoveBlankToRow(sourceRow - 1);
               MoveBlankToCol(sourceCol - 1);
               BlankDown();  BlankDown();
               BlankRight(); BlankUp();
               return; // all done
            } else {
               MoveBlankToRow(sourceRow + 1);
               MoveBlankToCol(sourceCol);
               BlankUp();
               sourceRow++;
            }
         } else {
            if (gBlankRow < sourceRow) {
               MoveBlankToRow(sourceRow - 1);
            } else {
               MoveBlankToRow(sourceRow);
               sourceRow++;
            }
         }
         
WereInTheSameColumnNow:
         // at this point, the blank is on top of the source,
         // and the puzzle might very well be done already.
         while (sourceRow != destRow) {
            if (nextPiece == piece - nextRow) { // into a column?
               if (gBlankRow != 0 && 
                   pieceCol[nextPiece]-pieceRow[nextPiece] >= 
                     gBlankCol-gBlankRow) {
                  MoveAPiece(nextPiece, gBlankRow, gBlankCol, 
                               nextPiece - nextRow);
               }
               if (gBlankCol == destCol) 
                 while ((gBlankSquare[-nextRow] == 
                         gBlankSquare[nextRow] - 1) && 
                        gBlankRow != 0) {
                  BlankUp();
               }
            }
            if (gBlankCol == destCol) BlankLeft();
            do {
               BlankDown();
            } while (gBlankRow <= sourceRow);
            BlankRight(); BlankUp();    sourceRow++;
         }
         return;
      }
      // simplify: move the blank so that it is to the up of the target
      if (gBlankRow >= destRow) {
         MoveBlankToRow(destRow - 1);
      }
      // simplify: move the blank so that it is not to the left of the target.
      if (gBlankCol < destCol) MoveBlankToCol(destCol);

again2:   // simplify: if the blank is to the right of the source, move it so it’s not.
      sourceRow = pieceRow[piece];
      sourceCol = pieceCol[piece];
      if (gBlankCol >= sourceCol) {
         // if the blank is in the same row, move it away first.
         if (gBlankRow == sourceRow) {
            if (gBlankRow == destRow - 1) {
               BlankUp();
            } else {
               BlankDown();
            }
         }
         // now that they’re in different rows, move the blank so it’s not to the right of
         MoveBlankToCol(sourceCol);
      }
      // simplify: if the blank is on the same column, and to the up, move left.
      if (gBlankCol == sourceCol && gBlankRow < sourceRow) {
         BlankLeft();
      }
      // simplify: if the blank is to the up, move it to the same row.
      if (gBlankRow < sourceRow) {
         MoveBlankToRow(sourceRow);
      }
      // simplify: if the blank is to the lower left, move it to the right and up.
      if (gBlankCol < sourceCol) {
         if (gBlankRow > sourceRow) {
            MoveBlankToRow(sourceRow);
         }
         if (gBlankCol < sourceCol - 1) {
            MoveBlankToCol(sourceCol - 1);
         }
      }
      // if the blank is off to the down, move it next to the source.
      while (gBlankRow > sourceRow + 1) {
         MoveBlankToRow(sourceRow + 1);
      }
      // at this point, the blank should be either just below or just to the left of the piece.
      if (gBlankRow == sourceRow) {
         if (gBlankCol != sourceCol - 1) Debugger();
      } else {
         if (gBlankCol != sourceCol) Debugger();
         if (gBlankRow != sourceRow + 1) Debugger();
         BlankUp();    BlankLeft();  BlankDown();
      }
      BlankRight();
      sourceRow = pieceRow[piece];
      sourceCol = pieceCol[piece];
      if (sourceCol != destCol) goto again2;
      if (gBlankRow != destRow - 1) {
         BlankDown();  BlankLeft();  BlankUp();
         while (pieceRow[piece] != destRow) {
            BlankLeft();  BlankDown();
            BlankDown();  BlankRight(); BlankUp();
         }
         return; // DONE!!!!
      }
      BlankUp();    BlankLeft();  BlankLeft();  BlankDown();
      BlankDown();  BlankRight(); BlankUp();
      return; // DONE!!!!
   }

   // at this point, we know that we are above and to the left of our destination.

   if (destCol - sourceCol == destRow - sourceRow) {
      // we’re on the diagonal.
      if (gBlankCol >= sourceCol) {
         if (gBlankRow <= sourceRow) goto MoveSrcRightFirst;
      }
      if (gBlankRow >= sourceRow) {
         if (gBlankCol <= sourceCol) goto MoveSrcDownFirst;
      }
      if (gPieceRow[nextPiece] - gPieceCol[nextPiece] > 
          destRow - destCol) {
         // relative to the destination, the next piece is to the lower left.
         // this means we want the blank to end up to the left of the target,
         // rather than above it.
         goto MoveSrcDownFirst;
      }
      goto MoveSrcRightFirst;
   }
   if (destCol - sourceCol < destRow - sourceRow) {
MoveSrcDownFirst:
      // the source is within the 90š-135š octant.
      // we want to move the blank square just below the source.
      // we will end up just to the left of the target.
      if (gBlankCol == sourceCol && gBlankRow < sourceRow) {
         // the blank is on top of the source.  moving it
         // down would move our square in the wrong direction.
         BlankRight();
      }
      // in case the source is just to the upper left of the target,
      // we have to make sure we don’t accidentally munge the protected area.
      if (gBlankCol > destCol) MoveBlankToCol(destCol);
      MoveBlankToRow(sourceRow + 1);
      MoveBlankToCol(sourceCol);
      BlankUp();    sourceRow++;
      BlankRight(); BlankDown();
      // the blank is now to the right of the source.
   } else {
MoveSrcRightFirst:
      // the source is within the 135š-180š octant.
      // we want to move the blank square just to the right of the source.
      // we will end up just above the target.
      if (gBlankRow == sourceRow && gBlankCol < sourceCol) {
         // the blank is to the left of the source.  moving it
         // to the right would move our square in the wrong direction.
         BlankDown();
      }
      // in case the source is just to the upper left of the target,
      // we have to make sure we don't accidentally munge the protected area.
      if (gBlankRow > destRow) MoveBlankToRow(destRow);
      MoveBlankToCol(sourceCol + 1);
      MoveBlankToRow(sourceRow);
      // the blank is now to the right of the source.
   }
   BlankLeft();
   sourceCol++;
   // the blank is now to the left of the source.
   // are we done yet?
   for (;;) {
      if (sourceCol == destCol) {
         if (sourceRow == destRow) return;
         // the blank is still to the left of the source.
         BlankDown();  BlankRight(); BlankUp();   sourceRow++;
         goto WereInTheSameColumnNow;
      }
      if (sourceRow == destRow) {
         goto WereOnTheSameRowNow;
      }
      BlankDown();  BlankRight(); BlankUp();    sourceRow++;
      BlankRight(); BlankDown();  BlankLeft();  sourceCol++;
   }
}

QuickBlock
static void *QuickBlock(long size) {
   Handle   h = NewHandle(size);
   if (h == 0) return 0;
   HLock(h);
   return *h;
}

DisposeBlock
static void DisposeBlock(void *block) {
   Handle   h = RecoverHandle(block);
   DisposeHandle(h);
}


SolveTiles
void SolveTiles(
  long *tiles,      /* pointer to array of tiles where */
  long numRows,     /*   tile (row,col) is at */
  long numCols,     /*   *(tiles + row*numCols + col) */
  MoveProc MakeMove /* Callback procedure to move a tile */
) {
   long   col, row, target, tile, correctTile;
   long   colsToGo, rowsToGo;
   long   *tileRover, *pieceRow, *pieceCol;

   pieceRow = QuickBlock(numRows * numCols * sizeof(long));
   if (pieceRow == 0) return;
   pieceCol = QuickBlock(numRows * numCols * sizeof(long));
   if (pieceCol == 0) {
      DisposeBlock(pieceRow);
      return;
   }
   gPieceRow = pieceRow;
   gPieceCol = pieceCol;
   gMakeMove = MakeMove;
   gTiles = tiles;
   gNumCols = numCols;

   tileRover = tiles;
   correctTile = 0;
   for (row = 0; row < numRows; row++) {
      for (col = 0; col < numCols; col++) {
         tile = *tileRover++;
         pieceRow[tile] = row;
         pieceCol[tile] = col;
         correctTile++;
      }
   }

   gBlankSquare = &tiles[gBlankRow * numCols + gBlankCol];

   rowsToGo = numRows;
   colsToGo = numCols;

   for (;;) {
      if (rowsToGo >= colsToGo) {
         if (rowsToGo <= 2) break;
         row = rowsToGo - 1;
         for (col = colsToGo - 1; col > 1; col--) {
            tile = row * numCols + col;
            MoveAPiece(tile, row, col, tile - 1);
         }
         tile = row * numCols;
         if (pieceRow[tile]     != row || 
             pieceCol[tile    ] != 0   ||
             pieceRow[tile + 1] != row || 
             pieceCol[tile + 1] != 1) {
            MoveAPiece(tile, row, 1, tile + 1);
            if (gBlankRow == row) {
               if (tiles[(row - 1) * numCols] == tile + 1) {
                  // problem scenario 1
rowScenario1:
                  BlankRight(); BlankUp();    BlankLeft();
                  BlankUp();    BlankRight(); BlankDown();
                  BlankDown();  BlankLeft();  BlankUp();
                  BlankRight(); BlankUp();    BlankLeft();
                  BlankDown();  BlankDown();  BlankRight();
                  BlankUp();
                  goto nextRow;
               }
            } else if (tiles[row * numCols] == tile + 1) {
               // problem scenario 2
               MoveBlankToCol(0);
               MoveBlankToRow(row);
               goto rowScenario1;
            }
            MoveAPiece(tile + 1, row, 1, 0);
         }
nextRow:   if (gBlankRow == row) BlankUp();
         if (pieceRow[tile]     != row || 
             pieceCol[tile    ] != 0) {
            // the “12” isn’t in place...
            Debugger();
         }
      rowsToGo--;
      } else {
         if (colsToGo <= 2) break;
         col = colsToGo - 1;
         for (row = rowsToGo - 1; row > 1; row--) {
            tile = row * numCols + col;
            MoveAPiece(tile, row, col, tile - numCols);
         }
         if (pieceRow[          col] != 0 || 
             pieceCol[          col] != col ||
             pieceRow[numCols + col] != 1 || 
             pieceCol[numCols + col] != col) {
            MoveAPiece(col, 1, col, col + numCols);
            if (gBlankCol == col) {
               if (tiles[col - 1] == numCols + col) {
                  // problem scenario 1
colScenario1:
                  BlankDown();  BlankLeft();  BlankUp();
                  BlankLeft();  BlankDown();  BlankRight();
                  BlankRight(); BlankUp();    BlankLeft();
                  BlankDown();  BlankLeft();  BlankUp();
                  BlankRight(); BlankRight(); BlankDown();
                  BlankLeft();
                  goto nextCol;
               }
            } else if (tiles[col] == numCols + col) {
               // problem scenario 2
               MoveBlankToRow(0);
               MoveBlankToCol(col);
               goto colScenario1;
            }
            MoveAPiece(numCols + col, 1, col, 0);
         }
nextCol:   if (gBlankCol == col) BlankLeft();
         if (pieceRow[          col] != 0 || 
             pieceCol[          col] != col) {
            // the “3” isn’t in place...
            Debugger();
         }
         colsToGo--;
      }
   }

   if (gBlankRow == 0) {
      if (gBlankCol == 0) {
         if (pieceRow[1] == 0) goto pos0123;
         if (pieceCol[1] == 0) goto pos0312;
                               goto pos0231;
      } else {
         if (pieceRow[1] == 0) goto pos1023;
         if (pieceCol[1] == 0) goto pos3012;
                               goto pos2031;
      }
   } else {
      if (gBlankCol == 0) {
         if (pieceRow[1] != 0) goto pos3201;
         if (pieceCol[1] == 0) goto pos1302;
                               goto pos2103;
      } else {
         if (pieceRow[1] != 0) goto pos3210;
         if (pieceCol[1] == 0) goto pos1320;
                               goto pos2130;
      }
   }

pos3012: BlankLeft();
pos0312: BlankDown();
pos1302: BlankRight();
pos1320: BlankUp();
pos1023: BlankLeft();
         goto all_done;

pos3210: BlankLeft();
pos3201: BlankUp();
pos0231: BlankRight();
pos2031: BlankDown();
pos2130: BlankLeft();
pos2103: BlankUp();
pos0123: goto all_done;

all_done:
   DisposeBlock(pieceRow); gPieceRow = 0;
   DisposeBlock(pieceCol); gPieceCol = 0;
}

 
AAPL
$118.48
Apple Inc.
+2.01
MSFT
$47.76
Microsoft Corpora
-0.22
GOOG
$538.53
Google Inc.
+1.03

MacTech Search:
Community Search:

Software Updates via MacUpdate

Carbon Copy Cloner 4.0.3 - Easy-to-use b...
Carbon Copy Cloner backups are better than ordinary backups. Suppose the unthinkable happens while you're under deadline to finish a project: your Mac is unresponsive and all you hear is an ominous,... Read more
ForeverSave 2.1.3 - Universal auto-save...
ForeverSave auto-saves all documents you're working on while simultaneously doing backup versioning in the background. Lost data can be quickly restored at any time. Losing data, caused by... Read more
Voila 3.8.1 - Capture, annotate, organiz...
Voila is a screen-capture, recording, and annotation tool that is a full-featured replacement for Mac's screen-capture and screen-recording capabilities. It has a large and robust set of editing,... Read more
SyncTwoFolders 2.0.6 - Syncs two user-sp...
SyncTwoFolders simply synchronizes two folders. It supports synchronization across mounted network drives and it is a possibility to run a simulation showing in a log what will be done. Please visit... Read more
Duplicate Annihilator 5.1.1 - Find and d...
Duplicate Annihilator takes on the time-consuming task of comparing the images in your iPhoto library using effective algorithms to make sure that no duplicate escapes. Duplicate Annihilator detects... Read more
Cobook 3.0.7 - Intelligent address book....
Cobook Contacts is an intuitive, engaging address book. Solve the problem of contact management with Cobook Contacts and its simple interface and powerful syncing and integration possibilities.... Read more
StatsBar 1.9 - Monitor system processes...
StatsBar gives you a comprehensive and detailed analysis of the following areas of your Mac: CPU usage Memory usage Disk usage Network and bandwidth usage Battery power and health (MacBooks only)... Read more
Cyberduck 4.6 - FTP and SFTP browser. (F...
Cyberduck is a robust FTP/FTP-TLS/SFTP browser for the Mac whose lack of visual clutter and cleverly intuitive features make it easy to use. Support for external editors and system technologies such... Read more
Maya 2015 - Professional 3D modeling and...
Maya is an award-winning software and powerful, integrated 3D modeling, animation, visual effects, and rendering solution. Because Maya is based on an open architecture, all your work can be scripted... Read more
Evernote 6.0.1 - Create searchable notes...
Evernote allows you to easily capture information in any environment using whatever device or platform you find most convenient, and makes this information accessible and searchable at anytime, from... Read more

Latest Forum Discussions

See All

RuPaul’s Drag Race: Dragopolis 2.0 is C...
RuPaul’s Drag Race: Dragopolis 2.0 is Coming to iOS December 4th Posted by Jessica Fisher on November 24th, 2014 [ permalink ] So Much Drama | Read more »
The Sandbox EDU Review
The Sandbox EDU Review By Nadia Oxford on November 24th, 2014 Our Rating: :: COME PLAY IN THE SANDBOX AGAINUniversal App - Designed for iPhone and iPad Like its predecessor, The Sandbox EDU offers lots for players to see, do, and... | Read more »
Taichi Panda Hits iOS in December
Taichi Panda Hits iOS in December Posted by Jessica Fisher on November 24th, 2014 [ permalink ] Snail Games has released the first official game play trailer for  | Read more »
Five Apps to Make Your Thanksgiving Plan...
Thanksgiving is nearly upon us! You know what that means? Eating too much turkey, watching the Big Game, and spending time with family (whether you like it or not). Oh, and that scary Black Friday thing, but we won’t talk about that here. For those... | Read more »
Kingdom Rush Origins HD Review
Kingdom Rush Origins HD Review By Jennifer Allen on November 24th, 2014 Our Rating: :: JUST AS GOOD AS BEFOREiPad Only App - Designed for the iPad It’s more of the same again, but that’s really no bad thing at all.   | Read more »
Skylanders, Show Off How You Fight Kaos...
Skylanders, Show Off How You Fight Kaos to Win Cool Prizes Posted by Jessica Fisher on November 24th, 2014 [ permalink ] iPad Only App - Designed for the iPad | Read more »
Mark of the Dragon – Tips, Tricks, and S...
Calling All Dragon Riders: | Read more »
Playdek has Annouced a Delicious Thanksg...
Playdek has Annouced a Delicious Thanksgiving Sale Posted by Jessica Fisher on November 24th, 2014 [ permalink ] Playdek, makers of | Read more »
Pair Solitaire Review
Pair Solitaire Review By Jennifer Allen on November 24th, 2014 Our Rating: :: ADDICTIVE. SO ADDICTIVEUniversal App - Designed for iPhone and iPad Welcome to your new ‘five more minutes, oh no, why is it dark outside’ addiction.   | Read more »
DryGin Studios Release a Free-to-Play Ve...
DryGin Studios Release a Free-to-Play Version of Bio Inc Posted by Ellis Spice on November 24th, 2014 [ permalink ] Universal App - Designed for iPhone and iPad | Read more »

Price Scanner via MacPrices.net

Jumptuit Launches One-Tap Windows 8.1 iTunes...
Jumptuit has launched Windows 8.1 support for One-Tap iTunes Sync. with which Windows 8.1 users can now easily sync their iTunes libraries with Microsoft OneDrive. Jumptuit provides easy access from... Read more
CEA Study Finds More People Recycling Electro...
A new study by the Consumer Electronics Association (CEA) finds that electronics recycling receives the continued and growing support of consumers. According to the CEA,s Recycling and Reuse Study,... Read more
15″ 2.2GHz Retina MacBook Pro on sale for $17...
 B&H Photo has the 2014 15″ 2.2GHz Retina MacBook Pro on sale today for $1749. Shipping is free, and B&H charges NY sales tax only. B&H will also include free copies of Parallels Desktop... Read more
27-inch 3.5GHz 5K iMac in stock today and on...
 B&H Photo has the new 27″ 3.5GHz 5K iMac in stock today and on sale for $2299 including free shipping plus NY sales tax only. Their price is $200 off MSRP, and it’s the lowest price available... Read more
21-inch 1.4GHz iMac on sale for $979, save $1...
B&H Photo has the new 21″ 1.4GHz iMac on sale for $979.99 including free shipping plus NY sales tax only. Their price is $120 off MSRP. B&H will also include free copies of Parallels Desktop... Read more
13-inch 1.4GHz/256GB MacBook Air on sale for...
B&H Photo has lowered their price on the 13″ 1.4GHz/256GB MacBook Air to $1059.99 including free shipping plus NY sales tax only. Their price is $140 off MSRP, and it’s the lowest price for this... Read more
Save up to $400 with Apple refurbished 2014 1...
The Apple Store has restocked Apple Certified Refurbished 2014 15″ Retina MacBook Pros for up to $400 off the cost of new models. An Apple one-year warranty is included with each model, and shipping... Read more
New 13-inch 1.4GHz MacBook Air on sale for $8...
 Adorama has the 2014 13″ 1.4GHz/128GB MacBook Air on sale for $899.99 including free shipping plus NY & NJ tax only. Their price is $100 off MSRP. B&H Photo has the 13″ 1.4GHz/128GB MacBook... Read more
Apple Expected to Reverse Nine-Month Tablet S...
Apple and Samsung combined accounted for 62 percent of the nearly 36 million branded tablets shipped in 3Q 2014, according to early vendor shipment share estimates from market intelligence firm ABI... Read more
Stratos: 30 Percent of US Smartphone Owners t...
Stratos, Inc., creator of the Bluetooth Connected Card Platform, has announced results from its 2014 Holiday Mobile Payments Survey. The consumer survey found that nearly one out of three (30 percent... Read more

Jobs Board

*Apple* Solutions Consultant (ASC) - Apple (...
**Job Summary** The ASC is an Apple employee who serves as an Apple brand ambassador and influencer in a Reseller's store. The ASC's role is to grow Apple Read more
*Apple* Solutions Consultant (ASC)- Retail S...
**Job Summary** The ASC is an Apple employee who serves as an Apple brand ambassador and influencer in a Reseller's store. The ASC's role is to grow Apple Read more
Project Manager, *Apple* Financial Services...
**Job Summary** Apple Financial Services (AFS) offers consumers, businesses and educational institutions ways to finance Apple purchases. We work with national and Read more
*Apple* Store Leader Program - College Gradu...
Job Description: Job Summary As an Apple Store Leader Program agent, you can continue your education as you major in the art of leadership at the Apple Store. You'll Read more
*Apple* Retail - Multiple Positions (US) - A...
Sales Specialist - Retail Customer Service and Sales Transform Apple Store visitors into loyal Apple customers. When customers enter the store, you're also the Read more
All contents are Copyright 1984-2011 by Xplain Corporation. All rights reserved. Theme designed by Icreon.