TweetFollow Us on Twitter

Mar 96 Challenge
Volume Number:12
Issue Number:3
Column Tag:Programmer’s Challenge

Programmer’s Challenge

By Bob Boonstra, Westford, Massachusetts

Note: Source code files accompanying article are located on MacTech CD-ROM or source code disks.

Words The Reverse

Text input, of Block given a in words of order the place (in reverse) will that routine a write to is challenge the month this. Oops, what I meant to say was: This month, the Challenge is to write a routine that will reverse (in place) the order of words in a given block of input text. The prototype for the code you should write is:

pascal void ReverseTheWords(
 const char *text, /* the words you should reverse */
 const long numCharsIn    /* length of inputText in chars */
);

Specifically, ReverseTheWords should exchange the first word in the input text with the last word, the second word with the next-to-last word, etc. For the purpose of this Challenge, a word is defined as a continuous sequence of alphanumeric characters [a..zA..Z0..9]. Any nonalphanumeric characters should remain in their original positions and in their original order with respect to the new words; that is, punctuation, white space, and other characters between the first and second input words should, on output, be located between the new first and second words. As an example, ReverseTheWords would convert:

 This, however, <-is-> a (difficult) test.

into

 Test, difficult, <-a-> is (however) this.

As you can see from the example, there is one additional requirement. Your code needs to adjust the capitalization of words so that the n-th word is capitalized on output only if the n-th word was capitalized in the input text.

There are no specific restrictions on the amount of auxiliary memory you may use (within reason), so you may allocate a few buffers of size numCharsIn should you need them. Remember, however, to deallocate any memory you allocate before returning, as I will be calling your code many times.

Note that the prototype specifies the use of Pascal calling conventions. That is because this month we are conducting

A Language Experiment

Over the past months, in response to suggestions from readers, we have made a number of changes to the Challenge, including migrating to PowerPC native code and expanding to other C compilers. Now we are experimenting with some additional changes. This month, for the first time, your solution to the Challenge can be coded in C, C++, or Pascal, using your choice among the MPW, Metrowerks, or Symantec compilers for these languages. Although either 68K or PowerPC code is permitted, I will be running your code on a PowerMac 8500, so native code is obviously recommended. The environment you choose must support linking your solution with test code written in C. Along with your solution, you should specify the intended environment, compiler and compiler options, or (better yet) provide a project file or make file that will generate a stand-alone application that calls your solution from C test code.

Two Months Ago Winner

Congratulations to Jorg “jbx” Brown and Eric Gundrum for submitting the fastest entry to the Sliding Tiles Challenge. Contestants were asked to unscramble an N¥M grid of interlocking tiles, where a tile could be moved horizontally or vertically into the empty tile location. Fourteen of the 16 entries submitted worked correctly. The table below presents selected results from the timing tests, which used puzzles ranging in size from 8¥8 to 100¥300. (Two of the entries worked too slowly to complete the entire test suite.)

The most common solution technique involved solving the puzzle row-by-row from the bottom, being careful not to disturb tiles that had already been moved into their correct positions. The top two rows were solved together, starting from the right column and working left. Several solutions, including the winners’ and the even more move-efficient second-place entry by Peter Lewis, refined this by using a “greedy” algorithm that solves the bottom row and right column first, then moves to the next row and column. Since the problem involved use of a given callback routine for each move, it was important to reduce the number of tile moves. Some solutions moved tiles primarily in horizontal and vertical directions; others (including the winners’) devised operators that moved a tile diagonally in fewer moves.

Thanks to Greg Linden for sending me a reference to an article on this subject in Information Processing Letters (Oct. 1995). In that article, Ian Parberry (University of North Texas) establishes some bounds on algorithms for the n2-1 puzzle (the square version of this Challenge). The article proves that the “greedy” algorithm requires at most 5n3 moves in the worst case, and that any algorithm must make at least n3 moves (ignoring lower-order terms for both bounds). While a better algorithm may exist, Ian speculates that the lower bound could be made tighter. Interested readers can contact the author at ian@cs.unt.edu, or browse his web page at http://hercule.csci.unt.edu/ian.

Here are the times for each of the correct entries. Numbers in parentheses after a person’s name indicate that person’s cumulative point total for all previous Challenges, not including this one.

Time Time Total # of Moves

Name 20x20 100x300 Time (Millions)

Jorg Brown (10)

& Eric Gundrum 183 175730 261694 249

Peter Lewis 195 197905 294931 228

Christopher Phillips 211 200368 302774 269

Ludovic Nicolle 252 220952 337386 300

Ernst Munter (110) 159 258165 365894 295

Randy Boring 386 309630 481609 307

Cathy Saxton 264 338127 496610 299

Rishi Khan (age 16) 284 350763 506952 320

Xan Gregg (88) 296 360735 531493 299

Tom Saxton (10) 333 404155 592967 339

Miguel Cruz Picão(7) 245 652588 912267 339

John Sweeney (4) 300 875362 1223956 321

A. K. * * * *

G. L. * * * *

Top Contestants Of All Time

Here are the Top Contestants for the Programmer’s Challenges to date, including everyone who has accumulated more than 20 points. The numbers below include points awarded for this month’s entrants.

Rank Name Points Rank Name Points

1. [Name deleted] 176 11. Mallett, Jeff 44

2. Munter, Ernst 112 12. Kasparian, Raffi 42

3. Gregg, Xan 88 13. Vineyard, Jeremy 42

4. Larsson, Gustav 87 14. Lengyel, Eric 40

5. Karsh, Bill 80 15. Darrah, Dave 31

6. Stenger, Allen 65 16. Brown, Jorg 30

7. Riha, Stepan 51 17. Landry, Larry 29

8. Cutts, Kevin 50 18. Elwertowski, Tom 24

9. Goebel, James 49 19. Lee, Johnny 22

10. Nepsund, Ronald 47 20. Noll, Robert 22

There are three ways to earn points: (1) scoring in the top 5 of any Challenge, (2) being the first person to find a bug in a published winning solution or, (3) being the first person to suggest a Challenge that I use. The points you can win are:

1st place 20 points 5th place 2 points

2nd place 10 points finding bug 2 points

3rd place 7 points suggesting Challenge 2 points

4th place 4 points

Here the winning solution by Jorg and Eric:

SlidingTiles.c

Written by Jorg Brown & Eric Gundrum

Thanks also to Brad Kollmyer

typedef Boolean (*MoveProc)(
  long tileToMoveRow, long tileToMoveCol);

static MoveProc gMakeMove;
static long *gTiles, gNumCols, *gPieceRow, *gPieceCol;
static long *gBlankSquare; // initialized by SolveTiles, updated by BlankXXX()

#define gBlankRow pieceRow[0]
#define gBlankCol pieceCol[0]

BlankUp
static void BlankUp() { // move the BLANK SQUARE up
   long   tile, *oldBlankSquare, *newBlankSquare;
   long   *pieceRow = gPieceRow;
   long   *pieceCol = gPieceCol;

   oldBlankSquare = gBlankSquare;
   gBlankSquare = newBlankSquare = oldBlankSquare - gNumCols;
   tile = *newBlankSquare;
   pieceRow[tile] = gBlankRow--;
   gMakeMove(gBlankRow, gBlankCol);
   *oldBlankSquare = tile;
   *newBlankSquare = 0;
}

BlankDown
static void BlankDown() { // move the BLANK SQUARE down
   long   tile, *oldBlankSquare, *newBlankSquare;
   long   *pieceRow = gPieceRow;
   long   *pieceCol = gPieceCol;

   oldBlankSquare = gBlankSquare;
   gBlankSquare = newBlankSquare = oldBlankSquare + gNumCols;
   tile = *newBlankSquare;
   pieceRow[tile] = gBlankRow++;
   gMakeMove(gBlankRow, gBlankCol);
   *oldBlankSquare = tile;
   *newBlankSquare = 0;
}

MoveBlankToRow
static void MoveBlankToRow(long destRow) {
   long   tile, *oldBlankSquare, *newBlankSquare;
   long   *pieceRow = gPieceRow;
   long   *pieceCol = gPieceCol;
   long   blankRow = gBlankRow;
   long   rowInc, BlankSquareInc;

   if (blankRow < destRow) { // move DOWN
      rowInc = 1;
      BlankSquareInc = gNumCols;
   } else if (blankRow > destRow) { // move UP
      rowInc = -1;
      BlankSquareInc = -gNumCols;
   } else return;

   oldBlankSquare = gBlankSquare;
   do {
      newBlankSquare = oldBlankSquare + BlankSquareInc;
      tile = *newBlankSquare;
      pieceRow[tile] = blankRow;
      blankRow += rowInc;
      gMakeMove(blankRow, gBlankCol);
      *oldBlankSquare = tile;
      *newBlankSquare = 0;
      oldBlankSquare = newBlankSquare;
   } while (blankRow != destRow);
   gBlankSquare = newBlankSquare;
   gBlankRow = blankRow;
}

BlankLeft
static void BlankLeft() { // move the BLANK SQUARE left
   long   tile, *oldBlankSquare, *newBlankSquare;
   long   *pieceRow = gPieceRow;
   long   *pieceCol = gPieceCol;

   oldBlankSquare = gBlankSquare;
   gBlankSquare = newBlankSquare = oldBlankSquare - 1;
   tile = *newBlankSquare;
   pieceCol[tile] = gBlankCol--;
   gMakeMove(gBlankRow, gBlankCol);
   *oldBlankSquare = tile;
   *newBlankSquare = 0;
}


BlankRight
static void BlankRight() { // move the BLANK SQUARE right
   long   tile, *oldBlankSquare, *newBlankSquare;
   long   *pieceRow = gPieceRow;
   long   *pieceCol = gPieceCol;

   oldBlankSquare = gBlankSquare;
   gBlankSquare = newBlankSquare = oldBlankSquare + 1;
   tile = *newBlankSquare;
   pieceCol[tile] = gBlankCol++;
   gMakeMove(gBlankRow, gBlankCol);
   *oldBlankSquare = tile;
   *newBlankSquare = 0;
}

MoveBlankToCol
static void MoveBlankToCol(long destCol) {
   long   tile, *oldBlankSquare, *newBlankSquare;
   long   *pieceRow = gPieceRow;
   long   *pieceCol = gPieceCol;
   long   blankCol = gBlankCol;
   long   inc;

   if (blankCol < destCol) { // move RIGHT
      inc = 1;
   } else if (blankCol > destCol) { // move LEFT
      inc = -1;
   } else return;

   oldBlankSquare = gBlankSquare;
   do {
      newBlankSquare = oldBlankSquare + inc;
      tile = *newBlankSquare;
      pieceCol[tile] = blankCol;
      blankCol += inc;
      gMakeMove(gBlankRow, blankCol);
      *oldBlankSquare = tile;
      *newBlankSquare = 0;
      oldBlankSquare = newBlankSquare;
   } while (blankCol != destCol);
   gBlankSquare = newBlankSquare;
   gBlankCol = blankCol;
}

MoveAPiece

static void MoveAPiece(long piece, long destRow, long destCol, 
 long nextPiece) {
   long   sourceRow, sourceCol;
   long   *pieceRow = gPieceRow;
   long   *pieceCol = gPieceCol;
   long   nextRow = gNumCols;

   sourceRow = pieceRow[piece];
   sourceCol = pieceCol[piece];

   if (sourceRow >= destRow) { 
      // in this case, we have to move the tile up (or directly right) to get to its destination
      if (sourceRow == destRow) {
         if (sourceCol == destCol) return;

         // simplify: move the blank so that it is not to the right of the target
         if (gBlankCol > destCol) {
            MoveBlankToCol(destCol);
         }

         // move the blank to the left of the source, possibly moving the source
         // to the right at the same time.
         if (gBlankRow != destRow) {
            if (sourceCol == destCol-1 && gBlankRow > destRow) {
               MoveBlankToCol(sourceCol - 1);
               MoveBlankToRow(sourceRow - 1);
               BlankRight(); BlankRight();
               BlankDown();  BlankLeft();
               return; // all done
            } else {
               MoveBlankToCol(sourceCol + 1);
               MoveBlankToRow(sourceRow);
               BlankLeft();
               sourceCol++;
            }
         } else {
            if (gBlankCol < sourceCol) {
               MoveBlankToCol(sourceCol - 1);
            } else {
               MoveBlankToCol(sourceCol);
               sourceCol++;
            }
         }
         
WereOnTheSameRowNow:
         // at this point, the blank is to the left of the source,
         // and the puzzle might very well be done already.
         while (sourceCol != destCol) {
            if (nextPiece == piece - 1) { // into a row?
               if (gBlankCol != 0 && 
                     pieceCol[nextPiece]-pieceRow[nextPiece] <= 
                     gBlankCol-gBlankRow) {
                  MoveAPiece(nextPiece, gBlankRow, gBlankCol, 
                               nextPiece - 1);
               }
               if (gBlankRow == destRow) 
                 while ((gBlankSquare[-1] == gBlankSquare[1] - 1) 
                        && gBlankCol != 0) {
                  BlankLeft();
               }
            }
            if (gBlankRow == destRow) BlankUp();
            do {
               BlankRight();
            } while (gBlankCol <= sourceCol);
            BlankDown();  BlankLeft();  sourceCol++;
         }
         return;
      }
      // simplify: move the blank so that it is to the left of the target
      if (gBlankCol >= destCol) {
         MoveBlankToCol(destCol - 1);
      }
      // simplify: move the blank so that it is not above the target.
      if (gBlankRow < destRow) MoveBlankToRow(destRow);

again1:   // simplify: if the blank is below the source, move it so it’s not.
      sourceRow = pieceRow[piece];
      sourceCol = pieceCol[piece];
      if (gBlankRow >= sourceRow) {
         // if the blank is in the same column, move it away first.
         if (gBlankCol == sourceCol) {
            if (gBlankCol == destCol - 1) {
               BlankLeft();
            } else {
               BlankRight();
            }
         }
         // now that they're in different columns, move the blank so it’s not below
         MoveBlankToRow(sourceRow);
      }
      // simplify: if the blank is on the same row, and to the left, move up.
      if (gBlankRow == sourceRow && gBlankCol < sourceCol) {
         BlankUp();
      }
      // simplify: if the blank is to the left, move it to the same column.
      if (gBlankCol < sourceCol) {
         MoveBlankToCol(sourceCol);
      }
      // simplify: if the blank is to the upper right, move it to the left and down.
      if (gBlankRow < sourceRow) {
         if (gBlankCol > sourceCol) {
            MoveBlankToCol(sourceCol);
         }
         if (gBlankRow < sourceRow - 1) {
            MoveBlankToRow(sourceRow - 1);
         }
      }
      // if the blank is off to the right, move it next to the source.
      while (gBlankCol > sourceCol + 1) {
         MoveBlankToCol(sourceCol + 1);
      }
      // at this point, the blank should be either just above or just right of the piece.
      if (gBlankCol == sourceCol) {
         if (gBlankRow != sourceRow - 1) Debugger();
      } else {
         if (gBlankRow != sourceRow) Debugger();
         if (gBlankCol != sourceCol + 1) Debugger();
         BlankLeft();  BlankUp();    BlankRight();
      }
      BlankDown();
      sourceRow = pieceRow[piece];
      sourceCol = pieceCol[piece];
      if (sourceRow != destRow) goto again1;
      if (gBlankCol != destCol - 1) {
         BlankRight(); BlankUp();    BlankLeft();
         while (pieceCol[piece] != destCol) {
            BlankUp();    BlankRight(); BlankRight();
            BlankDown();  BlankLeft();
         }
         return; // DONE!!!!
      }
      BlankLeft();  BlankUp();    BlankUp();    BlankRight(); 
      BlankRight(); BlankDown();  BlankLeft();
      return; // DONE!!!!
   }

   // at this point, we know that source is above our destination.
   if (sourceCol >= destCol) { 
      // in this case, we have to move the tile left (or directly down) to get to its destination
      if (sourceCol == destCol) {

         // simplify: move the blank so that it is not below the target
         if (gBlankRow > destRow) {
            MoveBlankToRow(destRow);
         }

         // move the blank above the source, possibly moving the source
         // down at the same time.
         if (gBlankCol != destCol) {
            if (sourceRow == destRow-1 && gBlankCol > destCol) {
               MoveBlankToRow(sourceRow - 1);
               MoveBlankToCol(sourceCol - 1);
               BlankDown();  BlankDown();
               BlankRight(); BlankUp();
               return; // all done
            } else {
               MoveBlankToRow(sourceRow + 1);
               MoveBlankToCol(sourceCol);
               BlankUp();
               sourceRow++;
            }
         } else {
            if (gBlankRow < sourceRow) {
               MoveBlankToRow(sourceRow - 1);
            } else {
               MoveBlankToRow(sourceRow);
               sourceRow++;
            }
         }
         
WereInTheSameColumnNow:
         // at this point, the blank is on top of the source,
         // and the puzzle might very well be done already.
         while (sourceRow != destRow) {
            if (nextPiece == piece - nextRow) { // into a column?
               if (gBlankRow != 0 && 
                   pieceCol[nextPiece]-pieceRow[nextPiece] >= 
                     gBlankCol-gBlankRow) {
                  MoveAPiece(nextPiece, gBlankRow, gBlankCol, 
                               nextPiece - nextRow);
               }
               if (gBlankCol == destCol) 
                 while ((gBlankSquare[-nextRow] == 
                         gBlankSquare[nextRow] - 1) && 
                        gBlankRow != 0) {
                  BlankUp();
               }
            }
            if (gBlankCol == destCol) BlankLeft();
            do {
               BlankDown();
            } while (gBlankRow <= sourceRow);
            BlankRight(); BlankUp();    sourceRow++;
         }
         return;
      }
      // simplify: move the blank so that it is to the up of the target
      if (gBlankRow >= destRow) {
         MoveBlankToRow(destRow - 1);
      }
      // simplify: move the blank so that it is not to the left of the target.
      if (gBlankCol < destCol) MoveBlankToCol(destCol);

again2:   // simplify: if the blank is to the right of the source, move it so it’s not.
      sourceRow = pieceRow[piece];
      sourceCol = pieceCol[piece];
      if (gBlankCol >= sourceCol) {
         // if the blank is in the same row, move it away first.
         if (gBlankRow == sourceRow) {
            if (gBlankRow == destRow - 1) {
               BlankUp();
            } else {
               BlankDown();
            }
         }
         // now that they’re in different rows, move the blank so it’s not to the right of
         MoveBlankToCol(sourceCol);
      }
      // simplify: if the blank is on the same column, and to the up, move left.
      if (gBlankCol == sourceCol && gBlankRow < sourceRow) {
         BlankLeft();
      }
      // simplify: if the blank is to the up, move it to the same row.
      if (gBlankRow < sourceRow) {
         MoveBlankToRow(sourceRow);
      }
      // simplify: if the blank is to the lower left, move it to the right and up.
      if (gBlankCol < sourceCol) {
         if (gBlankRow > sourceRow) {
            MoveBlankToRow(sourceRow);
         }
         if (gBlankCol < sourceCol - 1) {
            MoveBlankToCol(sourceCol - 1);
         }
      }
      // if the blank is off to the down, move it next to the source.
      while (gBlankRow > sourceRow + 1) {
         MoveBlankToRow(sourceRow + 1);
      }
      // at this point, the blank should be either just below or just to the left of the piece.
      if (gBlankRow == sourceRow) {
         if (gBlankCol != sourceCol - 1) Debugger();
      } else {
         if (gBlankCol != sourceCol) Debugger();
         if (gBlankRow != sourceRow + 1) Debugger();
         BlankUp();    BlankLeft();  BlankDown();
      }
      BlankRight();
      sourceRow = pieceRow[piece];
      sourceCol = pieceCol[piece];
      if (sourceCol != destCol) goto again2;
      if (gBlankRow != destRow - 1) {
         BlankDown();  BlankLeft();  BlankUp();
         while (pieceRow[piece] != destRow) {
            BlankLeft();  BlankDown();
            BlankDown();  BlankRight(); BlankUp();
         }
         return; // DONE!!!!
      }
      BlankUp();    BlankLeft();  BlankLeft();  BlankDown();
      BlankDown();  BlankRight(); BlankUp();
      return; // DONE!!!!
   }

   // at this point, we know that we are above and to the left of our destination.

   if (destCol - sourceCol == destRow - sourceRow) {
      // we’re on the diagonal.
      if (gBlankCol >= sourceCol) {
         if (gBlankRow <= sourceRow) goto MoveSrcRightFirst;
      }
      if (gBlankRow >= sourceRow) {
         if (gBlankCol <= sourceCol) goto MoveSrcDownFirst;
      }
      if (gPieceRow[nextPiece] - gPieceCol[nextPiece] > 
          destRow - destCol) {
         // relative to the destination, the next piece is to the lower left.
         // this means we want the blank to end up to the left of the target,
         // rather than above it.
         goto MoveSrcDownFirst;
      }
      goto MoveSrcRightFirst;
   }
   if (destCol - sourceCol < destRow - sourceRow) {
MoveSrcDownFirst:
      // the source is within the 90š-135š octant.
      // we want to move the blank square just below the source.
      // we will end up just to the left of the target.
      if (gBlankCol == sourceCol && gBlankRow < sourceRow) {
         // the blank is on top of the source.  moving it
         // down would move our square in the wrong direction.
         BlankRight();
      }
      // in case the source is just to the upper left of the target,
      // we have to make sure we don’t accidentally munge the protected area.
      if (gBlankCol > destCol) MoveBlankToCol(destCol);
      MoveBlankToRow(sourceRow + 1);
      MoveBlankToCol(sourceCol);
      BlankUp();    sourceRow++;
      BlankRight(); BlankDown();
      // the blank is now to the right of the source.
   } else {
MoveSrcRightFirst:
      // the source is within the 135š-180š octant.
      // we want to move the blank square just to the right of the source.
      // we will end up just above the target.
      if (gBlankRow == sourceRow && gBlankCol < sourceCol) {
         // the blank is to the left of the source.  moving it
         // to the right would move our square in the wrong direction.
         BlankDown();
      }
      // in case the source is just to the upper left of the target,
      // we have to make sure we don't accidentally munge the protected area.
      if (gBlankRow > destRow) MoveBlankToRow(destRow);
      MoveBlankToCol(sourceCol + 1);
      MoveBlankToRow(sourceRow);
      // the blank is now to the right of the source.
   }
   BlankLeft();
   sourceCol++;
   // the blank is now to the left of the source.
   // are we done yet?
   for (;;) {
      if (sourceCol == destCol) {
         if (sourceRow == destRow) return;
         // the blank is still to the left of the source.
         BlankDown();  BlankRight(); BlankUp();   sourceRow++;
         goto WereInTheSameColumnNow;
      }
      if (sourceRow == destRow) {
         goto WereOnTheSameRowNow;
      }
      BlankDown();  BlankRight(); BlankUp();    sourceRow++;
      BlankRight(); BlankDown();  BlankLeft();  sourceCol++;
   }
}

QuickBlock
static void *QuickBlock(long size) {
   Handle   h = NewHandle(size);
   if (h == 0) return 0;
   HLock(h);
   return *h;
}

DisposeBlock
static void DisposeBlock(void *block) {
   Handle   h = RecoverHandle(block);
   DisposeHandle(h);
}


SolveTiles
void SolveTiles(
  long *tiles,      /* pointer to array of tiles where */
  long numRows,     /*   tile (row,col) is at */
  long numCols,     /*   *(tiles + row*numCols + col) */
  MoveProc MakeMove /* Callback procedure to move a tile */
) {
   long   col, row, target, tile, correctTile;
   long   colsToGo, rowsToGo;
   long   *tileRover, *pieceRow, *pieceCol;

   pieceRow = QuickBlock(numRows * numCols * sizeof(long));
   if (pieceRow == 0) return;
   pieceCol = QuickBlock(numRows * numCols * sizeof(long));
   if (pieceCol == 0) {
      DisposeBlock(pieceRow);
      return;
   }
   gPieceRow = pieceRow;
   gPieceCol = pieceCol;
   gMakeMove = MakeMove;
   gTiles = tiles;
   gNumCols = numCols;

   tileRover = tiles;
   correctTile = 0;
   for (row = 0; row < numRows; row++) {
      for (col = 0; col < numCols; col++) {
         tile = *tileRover++;
         pieceRow[tile] = row;
         pieceCol[tile] = col;
         correctTile++;
      }
   }

   gBlankSquare = &tiles[gBlankRow * numCols + gBlankCol];

   rowsToGo = numRows;
   colsToGo = numCols;

   for (;;) {
      if (rowsToGo >= colsToGo) {
         if (rowsToGo <= 2) break;
         row = rowsToGo - 1;
         for (col = colsToGo - 1; col > 1; col--) {
            tile = row * numCols + col;
            MoveAPiece(tile, row, col, tile - 1);
         }
         tile = row * numCols;
         if (pieceRow[tile]     != row || 
             pieceCol[tile    ] != 0   ||
             pieceRow[tile + 1] != row || 
             pieceCol[tile + 1] != 1) {
            MoveAPiece(tile, row, 1, tile + 1);
            if (gBlankRow == row) {
               if (tiles[(row - 1) * numCols] == tile + 1) {
                  // problem scenario 1
rowScenario1:
                  BlankRight(); BlankUp();    BlankLeft();
                  BlankUp();    BlankRight(); BlankDown();
                  BlankDown();  BlankLeft();  BlankUp();
                  BlankRight(); BlankUp();    BlankLeft();
                  BlankDown();  BlankDown();  BlankRight();
                  BlankUp();
                  goto nextRow;
               }
            } else if (tiles[row * numCols] == tile + 1) {
               // problem scenario 2
               MoveBlankToCol(0);
               MoveBlankToRow(row);
               goto rowScenario1;
            }
            MoveAPiece(tile + 1, row, 1, 0);
         }
nextRow:   if (gBlankRow == row) BlankUp();
         if (pieceRow[tile]     != row || 
             pieceCol[tile    ] != 0) {
            // the “12” isn’t in place...
            Debugger();
         }
      rowsToGo--;
      } else {
         if (colsToGo <= 2) break;
         col = colsToGo - 1;
         for (row = rowsToGo - 1; row > 1; row--) {
            tile = row * numCols + col;
            MoveAPiece(tile, row, col, tile - numCols);
         }
         if (pieceRow[          col] != 0 || 
             pieceCol[          col] != col ||
             pieceRow[numCols + col] != 1 || 
             pieceCol[numCols + col] != col) {
            MoveAPiece(col, 1, col, col + numCols);
            if (gBlankCol == col) {
               if (tiles[col - 1] == numCols + col) {
                  // problem scenario 1
colScenario1:
                  BlankDown();  BlankLeft();  BlankUp();
                  BlankLeft();  BlankDown();  BlankRight();
                  BlankRight(); BlankUp();    BlankLeft();
                  BlankDown();  BlankLeft();  BlankUp();
                  BlankRight(); BlankRight(); BlankDown();
                  BlankLeft();
                  goto nextCol;
               }
            } else if (tiles[col] == numCols + col) {
               // problem scenario 2
               MoveBlankToRow(0);
               MoveBlankToCol(col);
               goto colScenario1;
            }
            MoveAPiece(numCols + col, 1, col, 0);
         }
nextCol:   if (gBlankCol == col) BlankLeft();
         if (pieceRow[          col] != 0 || 
             pieceCol[          col] != col) {
            // the “3” isn’t in place...
            Debugger();
         }
         colsToGo--;
      }
   }

   if (gBlankRow == 0) {
      if (gBlankCol == 0) {
         if (pieceRow[1] == 0) goto pos0123;
         if (pieceCol[1] == 0) goto pos0312;
                               goto pos0231;
      } else {
         if (pieceRow[1] == 0) goto pos1023;
         if (pieceCol[1] == 0) goto pos3012;
                               goto pos2031;
      }
   } else {
      if (gBlankCol == 0) {
         if (pieceRow[1] != 0) goto pos3201;
         if (pieceCol[1] == 0) goto pos1302;
                               goto pos2103;
      } else {
         if (pieceRow[1] != 0) goto pos3210;
         if (pieceCol[1] == 0) goto pos1320;
                               goto pos2130;
      }
   }

pos3012: BlankLeft();
pos0312: BlankDown();
pos1302: BlankRight();
pos1320: BlankUp();
pos1023: BlankLeft();
         goto all_done;

pos3210: BlankLeft();
pos3201: BlankUp();
pos0231: BlankRight();
pos2031: BlankDown();
pos2130: BlankLeft();
pos2103: BlankUp();
pos0123: goto all_done;

all_done:
   DisposeBlock(pieceRow); gPieceRow = 0;
   DisposeBlock(pieceCol); gPieceCol = 0;
}

 

Community Search:
MacTech Search:

Software Updates via MacUpdate

Monolingual 1.6.4 - Remove unwanted OS X...
Monolingual is a program for removing unnecesary language resources from OS X, in order to reclaim several hundred megabytes of disk space. If you use your computer in only one (human) language, you... Read more
CleanApp 5.0 - Application deinstaller a...
CleanApp is an application deinstaller and archiver.... Your hard drive gets fuller day by day, but do you know why? CleanApp 5 provides you with insights how to reclaim disk space. There are... Read more
Fantastical 2.0 - Create calendar events...
Fantastical is the Mac calendar you'll actually enjoy using. Creating an event with Fantastical is quick, easy, and fun: Open Fantastical with a single click or keystroke Type in your event details... Read more
Cocktail 8.2 - General maintenance and o...
Cocktail is a general purpose utility for OS X that lets you clean, repair and optimize your Mac. It is a powerful digital toolset that helps hundreds of thousands of Mac users around the world get... Read more
Direct Mail 4.0.4 - Create and send grea...
Direct Mail is an easy-to-use, fully-featured email marketing app purpose-built for OS X. It lets you create and send great looking email campaigns. Start your newsletter by selecting from a gallery... Read more
jAlbum Pro 12.6 - Organize your digital...
jAlbum Pro has all the features you love in jAlbum, but comes with a commercial license. With jAlbum, you can create gorgeous custom photo galleries for the Web without writing a line of code!... Read more
jAlbum 12.6 - Create custom photo galler...
With jAlbum, you can create gorgeous custom photo galleries for the Web without writing a line of code! Beginner-friendly, with pro results Simply drag and drop photos into groups, choose a design... Read more
Lyn 1.5.9 - Lightweight image browser an...
Lyn is a lightweight and fast image browser and viewer designed for photographers, graphic artists and Web designers. Featuring an extremely versatile and aesthetically pleasing interface, it... Read more
Sublime Text 3080 - Sophisticated text e...
Sublime Text is a sophisticated text editor for code, markup, and prose. You'll love the slick user interface, extraordinary features, and amazing performance. Goto Anything. Use Goto Anything to... Read more
WALTR 1.0.11 - Drag-and-drop any media f...
WALTR is designed to make it easy to upload and convert any music or video file to an iPad or iPhone format for native playback. It supports a huge variety of media file types, including MP3, MP4,... Read more

MLB Manager 2015 (Games)
MLB Manager 2015 5.0.14 Device: iOS Universal Category: Games Price: $4.99, Version: 5.0.14 (iTunes) Description: Guide your favorite MLB franchise to glory! MLB Manager 2015, officially licensed by MLB.com and based on the award-... | Read more »
Breath of Light (Games)
Breath of Light 1.0.1421 Device: iOS Universal Category: Games Price: $2.99, Version: 1.0.1421 (iTunes) Description: Hold a quiet moment. Breath of Light is a meditative and beautiful puzzle game with a hypnotic soundtrack by... | Read more »
WWE WrestleMania Tags into the App Store
Are You ready to rumble? The official WWE WrestleMania app, by World Wrestling Entertainment, is now available. Now you can get all your WrestleMania info in one place before anyone else. The app offers details on superstar signings, interactive... | Read more »
Bio Inc's New Expansion is Infectin...
Bio Inc., by DryGin Studios, is the real time strategy game where you infect a human body with the worst virus your evil brain can design. Recently, the game was updated to add a whole lot of new features. Now you can play the new “Lethal”... | Read more »
The Monocular Minion is Here! Despicable...
Despicable Me: Minion Rush, by Gameloft, is introducing a new runner to the mix in their latest update. Now you can play as Carl, the prankster minion. Carl has a few new abilities to play with, including running at a higher speed from the start.... | Read more »
Dungeon of Madness (Games)
Dungeon of Madness 1.0.0 Device: iOS Universal Category: Games Price: $1.99, Version: 1.0.0 (iTunes) Description: Dungeon of Madness is an action game where you rotate tiles to create our own route. Help the hero by connecting the... | Read more »
Filters for iPhone (Photography)
Filters for iPhone 1.0 Device: iOS iPhone Category: Photography Price: $.99, Version: 1.0 (iTunes) Description: | Read more »
Jump'N'Shoot Attack (Games)
Jump'N'Shoot Attack 1.0 Device: iOS Universal Category: Games Price: $1.99, Version: 1.0 (iTunes) Description: A mobile game for gamers! Join Louise Lightfoot, the legendary "Master of Jumping and Shooting", on her mission to save... | Read more »
Space Bounties Inc. (Games)
Space Bounties Inc. 1.4 Device: iOS Universal Category: Games Price: $1.99, Version: 1.4 (iTunes) Description: SuperGameDroid: 4/5 "Satisfying futuristic RPG combat, high replay value, and a heavy dose of nostalgia make Space... | Read more »
Gamebook: Pocket RPG (Games)
Gamebook: Pocket RPG 1.0.11 Device: iOS Universal Category: Games Price: $2.99, Version: 1.0.11 (iTunes) Description: Walk into the Land of Lanthir Lamath ruled by wicked skeletons and fight for your life in a thrilling adventure.... | Read more »

Price Scanner via MacPrices.net

Logitech Says MX Master Is Its Most Advanced...
Logitech’s new MX Master Wireless Mouse incorporates the best of Logitech’s many computer mouse innovations into a striking hand-sculpted design. The company claims that the MX Master creates a new... Read more
Save up to $300 on a new Mac, $30 on an iPad,...
Purchase a new Mac or iPad at The Apple Store for Education and take up to $300 off MSRP. All teachers, students, and staff of any educational institution qualify for the discount. Shipping is free,... Read more
Apple refurbished 2014 MacBook Airs available...
The Apple Store lowered prices on Apple Certified Refurbished 2014 MacBook Airs recently, with models now available starting at $679. An Apple one-year warranty is included with each MacBook, and... Read more
Mac Notebook Evolution; A Desktop Replacement...
More often than not right from the beginning, Apple’s Macs have tended to skew toward small. The original Macs were called “compacts,”, and notwithstanding a few exceptions like the honking Big Mac... Read more
13-inch 1.4GHz/128GB MacBook Air (Apple refur...
The Apple Store has Apple Certified Refurbished 2014 13″ 1.4GHz/128GB MacBook Airs available for $759 including free shipping plus Apple’s standard one-year warranty. Their price is $240 off original... Read more
YEP! Alternative Browser for iOS Now Supports...
Pfaeffikon, Switzerland based Power App AG has announced the release of an update to their Yep! Web Browser (v1.3.0) for iOS8 iPhone and iPad. Yep! hit the App Store shortly after the release of iOS... Read more
15-inch Retina MacBook Pros on sale for up to...
B&H Photo has the new 2014 15″ Retina MacBook Pros on sale for up to $250 off MSRP for a limited time. Shipping is free, and B&H charges NY sales tax only: - 15″ 2.2GHz Retina MacBook Pro: $... Read more
Clearance 13-inch Retina MacBook Pros availab...
B&H Photo has leftover 2014 13″ Retina MacBook Pros on sale for up to $250 off original MSRP. Shipping is free, and B&H charges NY sales tax only: - 13″ 2.6GHz/128GB Retina MacBook Pro: $1098... Read more
Clearance 2014 MacBook Airs on sale for up to...
B&H Photo has MacBook Airs on sale for up to $180 off original MSRP. Shipping is free, and B&H charges NY sales tax only: - 11″ 128GB MacBook Air: $789.99 110 off original MSRP - 11″ 256GB... Read more
Apple refurbished Time Capsules available for...
The Apple Store has certified refurbished Time Capsules available for $100 off MSRP. Apple’s one-year warranty is included with each Time Capsule, and shipping is free: - 2TB Time Capsule: $199, $100... Read more

Jobs Board

*Apple* Solutions Consultant - Retail Sales...
**Job Summary** As an Apple Solutions Consultant (ASC) you are the link between our customers and our products. Your role is to drive the Apple business in a retail Read more
*Apple* Retail - Multiple Positions (US) - A...
Sales Specialist - Retail Customer Service and Sales Transform Apple Store visitors into loyal Apple customers. When customers enter the store, you're also the Read more
*Apple* Retail - Multiple Positions (US) - D...
Job Description: Sales Specialist - Retail Customer Service and Sales Transform Apple Store visitors into loyal Apple customers. When customers enter the store, Read more
*Apple* Systems Engineer - Pre Sales, Educat...
…is responsible for proactively providing technical expertise to drive sales of Apple solutions into assigned accounts. The SE architects, validates, and assists in Read more
Sr. Technical Services Consultant, *Apple*...
**Job Summary** Apple Professional Services (APS) has an opening for a senior technical position that contributes to Apple 's efforts for strategic and transactional Read more
All contents are Copyright 1984-2011 by Xplain Corporation. All rights reserved. Theme designed by Icreon.