TweetFollow Us on Twitter

Scripts Menu
Volume Number:12
Issue Number:2
Column Tag:Open Scripting Architecture

Attaching a Scripts Menu

An introduction to using the OSA in PowerPlant

By Jeremy Roschelle

Note: Source code files accompanying article are located on MacTech CD-ROM or source code disks.

A fully AppleEvent-savvy application is scriptable, recordable, and attachable. In a scriptable application, any user can automate tasks, interconnect applications, and extend the capabilities of your application. A recordable application generates a script by observing the user’s actions. Yet these capabilities prove worthless if users have no easy way to execute their scripts. Unfortunately, Apple did not provide any standard human interface for attaching scripts to an application. And although the PowerPlant framework provides excellent support for scripting and recording, it provides no recipes for customizing your application to launch scripts. This article addresses these issues with a simple customizable Script menu which allows users to execute scripts (see Figure 1).

At first, implementing a script menu looks complex: it requires interacting with PowerPlant, the Menu Manager, the File Manager, the Open Scripting Architecture (OSA), and the scriptable Finder. On the bright side, PowerPlant and the OSA provide excellent modular, easy-to-use interfaces [see Jeremy’s article, “Powering Up AppleEvents in PowerPlant”, MacTech Magazine, 11:6 (1994) 33-46 - man]. In this article, I’ll present an implementation of an extension to the PowerPlant framework that that can compile and execute scripts from a standard pull-down menu. This script menu provides a relatively complete implementation of attachable scripts: it loads scripts at launch time from a “script menu items” folder, automatically supplies Balloon Help for each menu item, and can open a script for editing in the Script Editor. This article will also show you how easy it is to use OSA to compile and execute scripts.

Figure 1. The Script menu

The implementation also strives to use the capabilities of PowerPlant, C++, and AppleEvents to achieve modularity and encapsulation. For example, we use the LAttachment mechanism to encapsulate all the code for handling the script menu into a re-usable class. Likewise, we introduce a C++ iterator class for scanning through items in a folder. Finally, we use AppleEvents to connect our script menu to external applications that provide script editing services, thus avoiding the need to embed a script editor ourselves.

OSA Basics

From the user’s point of view, a script is a small program written in AppleScript or another OSA dialect. From the programmer’s point of view, a script is a data type containing code that the OSA can execute. The process of compiling a script reconciles these views: compiling converts AppleScript statements into an executable data type.

As a programmer, you manipulate a script as a Handle to some script data. The easiest way to get such a handle is to get the 'scpt' resource out of a ScriptEditor document. There is one 'scpt' resource in each ScriptEditor document, storing the script compiled by the user.

To run a script, you first load the script data into OSA. This results in an OSAID, a token that refers to the loaded script. The process of loading is relatively slow (a second or two on my Quadra 660AV). Once a script is loaded, running it is fast (small scripts seem as fast as hard-coded commands in my application). To execute the script, you pass the OSAID to the OSAExecute function. When you are through with a script (or any value returned by OSA), you dispose of its OSAID to free up the associated memory.

To hide the ugly details, I wrapped my code in a utility class with static methods:

void UScripting::Initialize()
    // sComponent is a static class member of type ComponentInstance             
 if (sComponent == nil)
 ::OpenDefaultComponent(kOSAComponentType, 'scpt');


OSErr UScripting::LoadScript(
 Handle inScript, 
 OSAID  &outScriptID)

 AEDesc scriptDesc;
 scriptDesc.descriptorType = typeOSAGenericStorage;
 scriptDesc.dataHandle = inScript;
 return ::OSALoad(sComponent,

UScripting:: ExecuteScript

OSErr UScripting::ExecuteScript(
 OSAID inScriptID)

 OSAID  resultID;
 OSErr  err;
 err = ::OSAExecute(sComponent,
 kOSAModeNull, &resultID);
 if (err) 
 return err;
 else ::OSADispose(sComponent, resultID);
 return noErr;

Design Overview

The main challenge in designing a script menu is maintaining a correspondence between items in a Menu Manager menu and script data that we can execute. This script data (an FSSpec for a script file and an OSAID for an executable script) will be encapsulated by a class called SCScriptMenuItem. Because scripts will be added to the menu dynamically, we cannot specify the menu items ahead of time in our resource file and cannot use PowerPlant’s 'Mcmd' scheme for binding each menu item to a command number. Instead, the implementation builds a list of SCScriptMenuItems, where the index of the item in the list matches the index of the item in the menu.

Our application must use this correspondence to respond when the user selects an item from the Script menu. We could do this by overriding LApplication methods that handle menu commands. But PowerPlant’s LAttachment class provides a better solution. It allows the code to be completely encapsulated in a class, SCScriptMenuHandler. This class can be attached to any PowerPlant application with one AddAttachment call. (Such modularity and portability can be dangerous - your employer may come to expect it regularly!)

Your application will normally create one SCScriptMenuHandler at launch time. When created, this object will iterate through the designated folder and create one MacOS menu item and a corresponding SCScriptMenuItem for each script in the folder. When a user selects a script from the menu for execution or editing, the SCScriptMenuHandler calls the appropriate method of the corresponding SCScriptMenuItem.

The article covers the implementation starting from the basic structure of SCScriptMenuHandler and SCScriptMenuItem. Next, the article describes how to create Balloon Help for each script automatically. Finally, the article reviews the utility routines for interacting with the File Manager.

Creating the Script Menu

Like every menu, the Script menu requires a 'MENU' resource, a 'hmnu' resource for Balloon Help, and a reference to the correct ID in your 'MBAR' resource. The 'MENU' and 'hmnu' resources contain the fixed portion of the script menus: the menu title and a final menu item that allows the user to add a script to the menu while your application is running. (This additional feature is supported in the sample code, but not discussed in this article.) At run-time, we add additional menu and help items for each script.

In your application, you create a handler for this script menu, normally within the constructor for your application class. When creating the handler, you provide the resource id for the script menu, and the vRefNum and dirID for the folder from which you wish to load scripts.

YourApp constructor
    // get folder id and volume number for the Scripts Folder, relative to launch spec
 FSSpec appSpec;
 long   folderID;
 folderID = UFinder::GetFolderID(
 appSpec, "\pScript Menu Items");
    // attach a new handler for the scripts menu
 new SCScriptsMenuHandler(kScriptsMenuID,

When SCScriptsMenuHandler is constructed, it iterates through a folder, appending a script menu item for each script file it finds. To hide the ugly details of iterating through a folder, the implementation uses an iteration class, StFolderIterator.

SCScriptsMenuHandler constructor

 ResIDT inMenuID,
 short  inVRefNum, 
 long   inParID,
 Int16  inMax) 
 : LAttachment(msg_AnyMessage, true), mMenuID(inMenuID)
    // appends menu items for each script in the designated folder
 if (inVRefNum != 0) {    
    // set up iteration structs
 Int16  count = 0;
 Str255 scriptFileName;
 HFileParam fInfo;
 fInfo.ioNamePtr = scriptFileName;
    // iterate through each item in the folder, inserting scripts
 StFolderIteratoriter(inVRefNum, inParID);
 while ((++count <= inMax) && iter.Next(fInfo)) { 
 if (fInfo.ioFlFndrInfo.fdType == kOSAFileType) { 
 FSSpec spec;
 inVRefNum, inParID, scriptFileName, &spec);

To append each script, we first grab the menu. Then we insert an item into the menu, using the file name as the menu item name. To handle each menu item, we build a SCScriptMenuItem and insert it in the mScripts list, such that index numbers of the MacOS menu item and the SCScriptMenuItem correspond. Finally, we construct Balloon Help (as described later).


void SCScriptsMenuHandler::AppendScript(
 FSSpec &inScriptFile)
 MenuHandle menu = ::GetMenu(mMenuID);
 if (! menu) return;
 SCScriptsMenuItem *item = 
 new SCScriptsMenuItem(inScriptFile);
    // insert into the menu
 menu,, mScripts.GetCount());
    // insert the corresponding class instance into the list
 mScripts.InsertItemsAt(1, arrayIndex_Last, &item);
    // insert balloon help into resource
 AttachBalloonHelp(inScriptFile, mScripts.GetCount());

Running a Script

As described earlier, running a script in the OSA requires two simple steps. First you load the script, resulting in token called an OSAID that represents the executable. Then you pass the token to the OSA execute function.

Running scripts from a menu is only slightly more complicated. The AppendScript procedure created a SCScriptMenuItem for each menu item, storing the FSSpec of a script file. To compile a script, we need to extract the 'scpt' resource from this file and pass it to OSALoad to get an OSAID. Because loaded scripts execute much faster, we load the script and store the OSAID to service future requests to run the same script.

SCScriptsMenuHandler:: RunScript

OSErr SCScriptsMenuItem::RunScript()
 OSErr  err = noErr;
    // load the script if its not available yet
 if (mScriptID == kOSANullScript) { 
 Handle script = nil, text = nil;
 short  fRefNum = -1;
 Try_ { 
    // open resource fork
 fRefNum = ::FSpOpenResFile(&mFileSpec, fsRdPerm);
    // get the first script resource in the file
 script = ::Get1IndResource('scpt', 1); 
    // Load it
 UScripting::LoadScript(script, mScriptID);
 Catch_(catchErr) { 
 err = catchErr;
 if (fRefNum != -1) ::CloseResFile(fRefNum);
 if (err == noErr) new URun1Script(mScriptID);
 return err;

Testing reveals one additional complication. If the script brings a different application to the front while you are still handling a menu selection, a menubar drawing glitch occurs. To solve this problem, we create a LPeriodical task that runs immediately after the menu event completes (and the MacOS has removed the menu hiliting). URun1Script simply executes a loaded script with a given OSAID and then deletes itself.

URun1Script constructor

URun1Script::URun1Script(OSAID inScriptID) 
 : mScriptID(inScriptID) 
void URun1Script::SpendTime(
 const EventRecord &inMacEvent)
 delete this;

Handling The Menu Selection

Handling menu selection in an LAttachment is a matter of overriding ExecuteSelf. When the user selects the menu item, PowerPlant will generate a negative command number (because the menu has no 'Mcmd' resource). The menu id will be in the HiWord, and the item number in the LoWord.

Our handler must respond both to this command and to a command status message that enables the menu item. Since scripts are always available, we enable all menu items in the script menu. To respond to the command, we find the corresponding SCScriptMenuItem. Normally we run the script. However, if the command key is down we open it for editing. The methods for running a script were described above; the next section explains how to open a script.


void SCScriptsMenuHandler::ExecuteSelf(
 MessageT inMessage, 
 void   *ioParam)
 mExecuteHost = true;
    // update status
 if (inMessage == msg_CommandStatus) { 
 SCommandStatus  *status = (SCommandStatus *)ioParam;
 if (HiWord(- status->command) == mMenuID) { 
 *status->enabled = true;
 *status->usesMark = false;
 mExecuteHost = false; // we handled it
    // handle menu comand 
 else if (HiWord(-inMessage) == mMenuID) { 
 Int16  index = LoWord(-inMessage);
 SCScriptsMenuItem *item;
 if (mScripts.FetchItemAt(index, &item)) { 
 if (cmdKey & UEventUtils::GetModifiers())
 item->OpenScript(); // open on command key
 else item->RunScript();
 mExecuteHost = false; // we handled it

Editing a Script, the AppleEvent Way

Providing support for users to edit scripts is not hard. OSA provides calls that get the text and style record for a script, which you can display in an LTextEdit pane. When the user finishes her changes, you can use OSA calls to compile the script, and then execute it. But there is an easier way: the ScriptEditor already provides full script editing capabilities. By sending an AppleEvent, we can open a file in ScriptEditor and let it handle editing.

Since we already have an FSSpec for each script in our menu, this is easy. Our SCScriptMenuItem method for opening a script calls a utility method to send the Finder an “open” event with the FSSpec. Before doing so, we dispose of the token that represents the loaded script. By doing this, we will force our RunScript method to re-load the script from the file. Thus, when the user edits and then saves the script, her next attempt to run it will load and execute the modified version.

OSErr SCScriptsMenuItem::OpenScript()
 if (mScriptID != kOSANullScript) { 
    // first unload script from OSA
 mScriptID = kOSANullScript;
 return UFinder::SendFinderAEOpen(mFileSpec);

We could send an “open” event to ScriptEditor, but instead we send it to the scriptable Finder. The Finder will open the correct script editing application based on the creator of the file.

Sending an AppleEvent is not hard. The first step is to create a descriptor for the target of the event, in this case the Finder. The easiest type of process descriptor just uses the application signature. The second step is to create an AppleEvent with this process descriptor. The third step is to add any parameters to the event. In this case there is just one, the FSSpec. Finally we send the event and dispose of the reply.

The implementation uses exceptions to handle an error at any stage of the process, but it catches all errors, disposes of the memory in AEDescs and returns the error code.

OSErr UFinder::SendFinderAEOpen(
 FSSpec &inFile)
 OSErr  err = noErr;
 AEDesc processDesc;
 AppleEvent ae, aeReply;
 ae.descriptorType = 
 aeReply.descriptorType = 
 processDesc.descriptorType = typeNull;
 ae.dataHandle = 
 aeReply.dataHandle = 
 processDesc.dataHandle = 
 Try_ { 
 DescType finderType = 'MACS';
 err = ::AECreateDesc(
 err  = ::AECreateAppleEvent(
 err = ::AEPutParamPtr(
 err = ::AESend(
 kAENoReply | kAENeverInteract, 
 Catch_(catchErr) { err = catchErr;} EndCatch_
 if (processDesc.descriptorType != typeNull)
 if (ae.descriptorType != typeNull) 
 if (aeReply.descriptorType != typeNull) 
 return err;

Writing Balloons Without Typing

As a final touch, it’s nice to provide Balloon Help for all menu items. But scripts are loaded at run time, so there’s no way to know in advance what scripts will be present. Yet there is a way to automatically create sensible help text for each script at run time. Here’s how.

When a user creates a script in ScriptEditor, the user can write an English description of the script in the area just below the window title. This description ends up in a 'TEXT' resource in the script file. The script menu can grab this text from the file, truncate it to 255 characters, and install it as Balloon Help for the menu item. Thus, the Script Editor description field becomes the Balloon Help automatically.

Here is the top-level routine that is called when the SCScriptsMenuHandler is constructed.


void SCScriptsMenuHandler::AttachBalloonHelp(
 FSSpec &inScriptFile, 
 Int16  inIndex)
 Str255 text;
    // get the text
 Int16  fRefNum = 
 ::FSpOpenResFile(&inScriptFile, fsRdPerm);
 if (ResError()) return;
    // the first text resource has the description of the script
 Handle outText = ::Get1IndResource('TEXT', 1);
 if (outText)
 UFinder::Handle2PStr(outText, text);
 else *text = 0;
    // add the help
 char   buffer[500];
 MakeBalloonData(text, buffer);
 InsertBalloonData(inIndex, buffer);

Once we have extracted the description text, the process of installing it is divided into 2 steps. First we construct a buffer containing a single entry for the 'hmnu' resource. Each entry begins with a size word for the size of the entry, and then a flag word indicating the type of the entry. We only deal with two kinds of entries, a “skip” entry for empty balloons, and a direct string entry. A direct string entry has 4 packed Pascal strings. The routine below writes an entry in this format, implementing the writes as if writing to a stream.


void SCScriptsMenuHandler::MakeBalloonData(
 Str255 inHelp,
 char   *ioBuffer)
 Int16  mark, data;
 Int32  zeros = 0;

    // leave room to write number of bytes to end
 mark = 2; 
 if (*inHelp == 0) {  
    // no data, so skip this item
 data = 0x0100;
 ::BlockMoveData(&data, ioBuffer[mark], sizeof(Int16));
 mark += sizeof(Int16);
 else { 
 data = 0x0001; // direct string type
 ::BlockMoveData(&data, &ioBuffer[mark], sizeof(Int16));
 mark += sizeof(Int16);
    // write out the string
 ::BlockMoveData(inHelp, &ioBuffer[mark], 1 + *inHelp);
 mark += 1 + *inHelp;
    // write out three zeros for the other strings
 ::BlockMoveData(&zeros, &ioBuffer[mark], 3);
 mark += 3;
    // align buffer to an even word boundary
 if (mark & 0x0001) ++mark;
    // add size to first word of buffer
 ::BlockMoveData(&mark, ioBuffer, sizeof(mark));

Balloon data for a menu is packed into a single Handle. In order to insert an entry for a new menu item, we need to increment the count word, and then insert the entry in the right place. To find the right place we have to read the size of each preceding entry, and skip over that many bytes to arrive at the next entry. Once we find the right place, remaining entries are moved out of the way, and the new entry is copied into place.

SCScriptsMenuHandler:: InsertBalloonData

void SCScriptsMenuHandler::InsertBalloonData(
 Int16  inIndex, 
 char   *inBuffer)
 Handle hmnu = ::Get1Resource('hmnu', mMenuID);
 if (! hmnu) return;
 Int16  len = *(short *)inBuffer;
    // make some room in the handle
 ::SetHandleSize(hmnu, ::GetHandleSize(hmnu) + len);
 if (::MemError()) return;
    // lock it down so we can safely dereference it
 StHandleLocker  lock(hmnu);
 char   *help = *hmnu;
    // increment number of items
 ++*(short *)(help + 0x0A); // @ help + 0x0A
    // skip over existing items
    // skip default and title resource, don’t skip self
 Int16  itemsToSkip = inIndex + 2 - 1;
 help += 0x0C; // location of first msg record
 do { 
 help += *(Int16 *)help;  // add the number of bytes to skip
 } while (--itemsToSkip);
    // shift data out of the way
 char  *dest, *end;
 dest = help + len;
 end = ((char *)*hmnu + ::GetHandleSize(hmnu));
 ::BlockMoveData(help, dest, end - dest);

    // copy help data in
 ::BlockMoveData(inBuffer, help, len);

Note that the implementation does not call ChangedResource, even though it did change the resource. This is because the resource is in the application, and calling ChangedResource would cause the application to store the Balloon data when it quit. We don’t want this data stored; it is re-computed every time the application is launched. We also don’t call ReleaseResource, so the changed resource will stay in memory for the duration of the session.

Finder Utilities

The implementation made use of a few Finder utilities: (a) for finding the FSSpec of the running application; (b) for finding a folder id, given a parent folder and a folder name; (c) for iterating through all the items in a folder. These are fairly common steps in many applications, but the techniques are not easy to find in standard Macintosh references. For the sake of completeness, the routines are presented below:

To find the FSSpec of the running application, you call the process manager, requesting information about the current process.

 FSSpec &inSpec)
 ProcessSerialNumber psn;
 ProcessInfoRec  info;
 info.processAppSpec = &inSpec;
 info.processInfoLength = sizeof(info);
 info.processName = nil;
 ::GetProcessInformation(&psn, &info); 

We find the folder of scripts by finding the folder that the application was launched from, and then looking for an enclosed folder named Script Menu Items. The routine below finds an enclosed folder id, given a parent folder and a name:

long UFinder::GetFolderID(
 FSSpec &inParentFolder, 
 Str255 inName)
 CInfoPBRec pb;  
 DirInfo*dpb = (DirInfo *)&pb;
 OSErr  err;

 dpb->ioNamePtr = inName ;
 dpb->ioVRefNum = inParentFolder.vRefNum;
 dpb->ioDrDirID = inParentFolder.parID;
 dpb->ioFDirIndex = 0;
 err = PBGetCatInfo(&pb, false);

    // make sure its a folder
 if (err == noErr && dpb->ioFlAttrib & ( 1 << 4)) 
 return dpb->ioDrDirID;
 else return 0;

The recipe for iterating through each item in a folder is really ugly. The class below encapsulates the details in an iterator:

StFolderIterator constructor
 short inVRefNum, long inFolderID)
 : mVRefNum(inVRefNum), mFolderID(inFolderID), mIndex(0)

StFolderIterator:: Next
Boolean StFolderIterator::Next(
 HFileParam &ioRec)
 ioRec.ioVRefNum = mVRefNum;
 ioRec.ioDirID = mFolderID;
    // reset name field
 if (ioRec.ioNamePtr) ioRec.ioNamePtr[0] = 0; 
 ioRec.ioFDirIndex = ++mIndex;
 ioRec.ioResult = noErr;
 PBHGetFInfo((HParmBlkPtr)&ioRec, false);
 return (ioRec.ioResult == noErr);


Scripting adds very powerful capabilities to your application. The script menu makes it easy for users to attach scripts to a menu in your application. And the code is encapsulated in an LAttachment.


Community Search:
MacTech Search:

Software Updates via MacUpdate

The best GIF making apps
Animated GIFs have exploded in popularity recently which is likely thanks to a combination of Tumblr, our shorter attention spans, and the simple fact they’re a lot of fun. [Read more] | Read more »
The best remote desktop apps for iOS
We've been sifting through the App Store to find the best ways to do computer tasks on a tablet. That gave us a thought - what if we could just do computer tasks from our tablets? Here's a list of the best remote desktop apps to help you use your... | Read more »
Warhammer 40,000: Freeblade guide - How...
Warhammer 40,000: Freebladejust launched in the App Store and it lets you live your childhood dream of blowing up and slashing a bunch of enemies as a massive, hulking Space Marine. It's not easy being a Space Marine though - and particularly if... | Read more »
Gopogo guide - How to bounce like the be...
Nitrome just launched a new game and, as to be expected, it's a lot of addictive fun. It's called Gopogo, and it challenges you to hoparound a bunch of platforms, avoiding enemies and picking up shiny stuff. It's not easy though - just like the... | Read more »
Sago Mini Superhero (Education)
Sago Mini Superhero 1.0 Device: iOS Universal Category: Education Price: $2.99, Version: 1.0 (iTunes) Description: KAPOW! Jack the rabbit bursts into the sky as the Sago Mini Superhero! Fly with Jack as he lifts impossible weights,... | Read more »
Star Wars: Galaxy of Heroes guide - How...
Star Wars: Galaxy of Heroes is all about collecting heroes, powering them up, and using them together to defeat your foes. It's pretty straightforward stuff for the most part, but increasing your characters' stats can be a bit confusing because it... | Read more »
The best cooking apps (just in time for...
It’s that time of year again, where you’ll be gathering around the dinner table with your family and a huge feast in front of you. [Read more] | Read more »
Square Rave guide - How to grab those te...
Square Rave is an awesome little music-oriented puzzle game that smacks of games like Lumines, but with its own unique sense of gameplay. To help wrap your head around the game, keep the following tips and tricks in mind. [Read more] | Read more »
Snowboard Party 2 (Games)
Snowboard Party 2 1.0 Device: iOS Universal Category: Games Price: $1.99, Version: 1.0 (iTunes) Description: Crowned the best snowboarding game available on the market, Snowboard Party is back to fulfill all your adrenaline needs in... | Read more »
One Button Travel (Games)
One Button Travel 1.0 Device: iOS Universal Category: Games Price: $2.99, Version: 1.0 (iTunes) Description: “To cut a long story short, If you like interactive fiction, just go buy this one.” - “Oozes the polish that... | Read more »

Price Scanner via

Holiday weekend Mac sales roundup: B&H Ph...
B&H Photo continues to have all new Macs on sale for up to $500 off MSRP as part of their Black Friday/Holiday weekend sale. Shipping is free, and B&H charges NY tax only: - 15″ 2.2GHz Retina... Read more
iMobie Releases its Ace iOS Cleaner PhoneClea...
iMobie Inc. has announced the new update of PhoneClean 4, its iOS cleaner designed to reclaim wasted space on iPhone/iPad for use and keep the device fast. Alongside, iMobie hosts a 3-day giveaway of... Read more
U.S. Cellular Offering iPad Pro
U.S. Cellular today announced that it is offering the new iPad Pro with Wi-Fi + Cellular, featuring a 12.9-inch Retina display with 5.6 million pixels — the most ever in an iOS device. U.S. Cellular... Read more
Newegg Canada Unveils Black Friday Deals for...
Newegg Canada is offering more than 1,000 deep discounts to Canadian customers this Black Friday, available now through Cyber Monday, with new deals posted throughout the week. “Black Friday is... Read more
Black Friday: Macs on sale for up to $500 off...
BLACK FRIDAY B&H Photo has all new Macs on sale for up to $500 off MSRP as part of their early Black Friday sale including free shipping plus NY sales tax only: - 15″ 2.2GHz Retina MacBook Pro: $... Read more
Black Friday: Up to $125 off iPad Air 2s at B...
BLACK FRIDAY Walmart has the 16GB iPad Air 2 WiFi on sale for $100 off MSRP on their online store. Choose free shipping or free local store pickup (if available): - 16GB iPad Air 2 WiFi: $399, save $... Read more
Black Friday: iPad mini 4s on sale for $100 o...
BLACK FRIDAY Best Buy has iPad mini 4s on sale for $100 off MSRP on their online store for Black Friday. Choose free shipping or free local store pickup (if available): - 16GB iPad mini 4 WiFi: $299.... Read more
Black Friday: Apple Watch for up to $100 off...
BLACK FRIDAY Apple resellers are offering discounts and bundles with the purchase of an Apple Watch this Black Friday. Below is a roundup of the deals being offered by authorized Watch resellers:... Read more
Black Friday: Target offers 6th Generation iP...
BLACK FRIDAY Save $40 to $60 on a 6th generation iPod touch at Target with free shipping or free local store pickup (if available). Sale prices for online orders only, in-store prices may vary: -... Read more
Black Friday: Walmart and Target offer iPod n...
BLACK FRIDAY Walmart has the 16GB iPod nano (various colors) on sale for $119.20 on their online store for a limited time. That’s $30 off MSRP. Choose free shipping or free local store pickup (if... Read more

Jobs Board

Specialist *Apple* /Mac Desktop - University...
…technical support, expertise and user training for a variety of Apple /Macintosh hardware, software and devices.Researches, analyzes and resolves complex Apple Read more
*Apple* Site Security Manager - Apple (Unite...
# Apple Site Security Manager Job Number: 42975010 Culver City, Califo ia, United States Posted: Oct. 2, 2015 Weekly Hours: 40.00 **Job Summary** The Apple Site Read more
WiSE *Apple* Pay Quality Engineer - Apple (...
# WiSE Apple Pay Quality Engineer Job Number: 44313381 Santa Clara Valley, Califo ia, United States Posted: Nov. 13, 2015 Weekly Hours: 40.00 **Job Summary** Join our Read more
Holiday Retail Associate with *Apple* Knowl...
…and assertive.Someone who can troubleshoot iOS devices (iPhone and iPad) and Apple Mail issues.Someone who can offer solutions.Someone who can work weekends.Someone with Read more
*Apple* Systems Engineer (Mclean, VA and NYC...
Summary:Assist in providing strategic direction and technical leadership within the Apple portfolio, including desktops, laptops, and printing environment. This person Read more
All contents are Copyright 1984-2011 by Xplain Corporation. All rights reserved. Theme designed by Icreon.