TweetFollow Us on Twitter

Scripts Menu
Volume Number:12
Issue Number:2
Column Tag:Open Scripting Architecture

Attaching a Scripts Menu

An introduction to using the OSA in PowerPlant

By Jeremy Roschelle

Note: Source code files accompanying article are located on MacTech CD-ROM or source code disks.

A fully AppleEvent-savvy application is scriptable, recordable, and attachable. In a scriptable application, any user can automate tasks, interconnect applications, and extend the capabilities of your application. A recordable application generates a script by observing the user’s actions. Yet these capabilities prove worthless if users have no easy way to execute their scripts. Unfortunately, Apple did not provide any standard human interface for attaching scripts to an application. And although the PowerPlant framework provides excellent support for scripting and recording, it provides no recipes for customizing your application to launch scripts. This article addresses these issues with a simple customizable Script menu which allows users to execute scripts (see Figure 1).

At first, implementing a script menu looks complex: it requires interacting with PowerPlant, the Menu Manager, the File Manager, the Open Scripting Architecture (OSA), and the scriptable Finder. On the bright side, PowerPlant and the OSA provide excellent modular, easy-to-use interfaces [see Jeremy’s article, “Powering Up AppleEvents in PowerPlant”, MacTech Magazine, 11:6 (1994) 33-46 - man]. In this article, I’ll present an implementation of an extension to the PowerPlant framework that that can compile and execute scripts from a standard pull-down menu. This script menu provides a relatively complete implementation of attachable scripts: it loads scripts at launch time from a “script menu items” folder, automatically supplies Balloon Help for each menu item, and can open a script for editing in the Script Editor. This article will also show you how easy it is to use OSA to compile and execute scripts.

Figure 1. The Script menu

The implementation also strives to use the capabilities of PowerPlant, C++, and AppleEvents to achieve modularity and encapsulation. For example, we use the LAttachment mechanism to encapsulate all the code for handling the script menu into a re-usable class. Likewise, we introduce a C++ iterator class for scanning through items in a folder. Finally, we use AppleEvents to connect our script menu to external applications that provide script editing services, thus avoiding the need to embed a script editor ourselves.

OSA Basics

From the user’s point of view, a script is a small program written in AppleScript or another OSA dialect. From the programmer’s point of view, a script is a data type containing code that the OSA can execute. The process of compiling a script reconciles these views: compiling converts AppleScript statements into an executable data type.

As a programmer, you manipulate a script as a Handle to some script data. The easiest way to get such a handle is to get the 'scpt' resource out of a ScriptEditor document. There is one 'scpt' resource in each ScriptEditor document, storing the script compiled by the user.

To run a script, you first load the script data into OSA. This results in an OSAID, a token that refers to the loaded script. The process of loading is relatively slow (a second or two on my Quadra 660AV). Once a script is loaded, running it is fast (small scripts seem as fast as hard-coded commands in my application). To execute the script, you pass the OSAID to the OSAExecute function. When you are through with a script (or any value returned by OSA), you dispose of its OSAID to free up the associated memory.

To hide the ugly details, I wrapped my code in a utility class with static methods:

UScripting::Initialize
void UScripting::Initialize()
{ 
    // sComponent is a static class member of type ComponentInstance             
 if (sComponent == nil)
 SetComponent(
 ::OpenDefaultComponent(kOSAComponentType, 'scpt');
} 

UScripting::LoadScript

OSErr UScripting::LoadScript(
 Handle inScript, 
 OSAID  &outScriptID)
{ 
 Initialize();

 AEDesc scriptDesc;
 scriptDesc.descriptorType = typeOSAGenericStorage;
 scriptDesc.dataHandle = inScript;
 return ::OSALoad(sComponent,
 &inScriptDesc,
 kOSAModeNull,
 &outScriptID);
} 

UScripting:: ExecuteScript

OSErr UScripting::ExecuteScript(
 OSAID inScriptID)
{ 
 Initialize();

 OSAID  resultID;
 OSErr  err;
 
 err = ::OSAExecute(sComponent,
 inScriptID,
 kOSANullScript,
 kOSAModeNull, &resultID);
 if (err) 
 return err;
 else ::OSADispose(sComponent, resultID);
 return noErr;
} 

Design Overview

The main challenge in designing a script menu is maintaining a correspondence between items in a Menu Manager menu and script data that we can execute. This script data (an FSSpec for a script file and an OSAID for an executable script) will be encapsulated by a class called SCScriptMenuItem. Because scripts will be added to the menu dynamically, we cannot specify the menu items ahead of time in our resource file and cannot use PowerPlant’s 'Mcmd' scheme for binding each menu item to a command number. Instead, the implementation builds a list of SCScriptMenuItems, where the index of the item in the list matches the index of the item in the menu.

Our application must use this correspondence to respond when the user selects an item from the Script menu. We could do this by overriding LApplication methods that handle menu commands. But PowerPlant’s LAttachment class provides a better solution. It allows the code to be completely encapsulated in a class, SCScriptMenuHandler. This class can be attached to any PowerPlant application with one AddAttachment call. (Such modularity and portability can be dangerous - your employer may come to expect it regularly!)

Your application will normally create one SCScriptMenuHandler at launch time. When created, this object will iterate through the designated folder and create one MacOS menu item and a corresponding SCScriptMenuItem for each script in the folder. When a user selects a script from the menu for execution or editing, the SCScriptMenuHandler calls the appropriate method of the corresponding SCScriptMenuItem.

The article covers the implementation starting from the basic structure of SCScriptMenuHandler and SCScriptMenuItem. Next, the article describes how to create Balloon Help for each script automatically. Finally, the article reviews the utility routines for interacting with the File Manager.

Creating the Script Menu

Like every menu, the Script menu requires a 'MENU' resource, a 'hmnu' resource for Balloon Help, and a reference to the correct ID in your 'MBAR' resource. The 'MENU' and 'hmnu' resources contain the fixed portion of the script menus: the menu title and a final menu item that allows the user to add a script to the menu while your application is running. (This additional feature is supported in the sample code, but not discussed in this article.) At run-time, we add additional menu and help items for each script.

In your application, you create a handler for this script menu, normally within the constructor for your application class. When creating the handler, you provide the resource id for the script menu, and the vRefNum and dirID for the folder from which you wish to load scripts.

YourApp constructor
YourApp::YourApp()
{ 
    // get folder id and volume number for the Scripts Folder, relative to launch spec
 FSSpec appSpec;
 long   folderID;
 
 UFinder::GetAppSpec(appSpec);
 folderID = UFinder::GetFolderID(
 appSpec, "\pScript Menu Items");
 
    // attach a new handler for the scripts menu
 AddAttachment(
 new SCScriptsMenuHandler(kScriptsMenuID,
 appSpec.vRefNum,
 folderID));
} 

When SCScriptsMenuHandler is constructed, it iterates through a folder, appending a script menu item for each script file it finds. To hide the ugly details of iterating through a folder, the implementation uses an iteration class, StFolderIterator.

SCScriptsMenuHandler constructor

SCScriptsMenuHandler::SCScriptsMenuHandler(
 ResIDT inMenuID,
 short  inVRefNum, 
 long   inParID,
 Int16  inMax) 
 : LAttachment(msg_AnyMessage, true), mMenuID(inMenuID)
{ 
    // appends menu items for each script in the designated folder
 if (inVRefNum != 0) {    
    // set up iteration structs
 Int16  count = 0;
 Str255 scriptFileName;
 HFileParam fInfo;
 fInfo.ioNamePtr = scriptFileName;
 
    // iterate through each item in the folder, inserting scripts
 StFolderIteratoriter(inVRefNum, inParID);
 while ((++count <= inMax) && iter.Next(fInfo)) { 
 if (fInfo.ioFlFndrInfo.fdType == kOSAFileType) { 
 FSSpec spec;
 FSMakeFSSpec(
 inVRefNum, inParID, scriptFileName, &spec);
 AppendScript(spec);
 } 
 } 
 } 
} 

To append each script, we first grab the menu. Then we insert an item into the menu, using the file name as the menu item name. To handle each menu item, we build a SCScriptMenuItem and insert it in the mScripts list, such that index numbers of the MacOS menu item and the SCScriptMenuItem correspond. Finally, we construct Balloon Help (as described later).

SCScriptsMenuHandler::AppendScript

void SCScriptsMenuHandler::AppendScript(
 FSSpec &inScriptFile)
{ 
 MenuHandle menu = ::GetMenu(mMenuID);
 if (! menu) return;
 
 SCScriptsMenuItem *item = 
 new SCScriptsMenuItem(inScriptFile);
 
    // insert into the menu
 ::InsMenuItem(
 menu, inScriptFile.name, mScripts.GetCount());
 
    // insert the corresponding class instance into the list
 mScripts.InsertItemsAt(1, arrayIndex_Last, &item);
 
    // insert balloon help into resource
 AttachBalloonHelp(inScriptFile, mScripts.GetCount());
} 

Running a Script

As described earlier, running a script in the OSA requires two simple steps. First you load the script, resulting in token called an OSAID that represents the executable. Then you pass the token to the OSA execute function.

Running scripts from a menu is only slightly more complicated. The AppendScript procedure created a SCScriptMenuItem for each menu item, storing the FSSpec of a script file. To compile a script, we need to extract the 'scpt' resource from this file and pass it to OSALoad to get an OSAID. Because loaded scripts execute much faster, we load the script and store the OSAID to service future requests to run the same script.

SCScriptsMenuHandler:: RunScript

OSErr SCScriptsMenuItem::RunScript()
{ 
 OSErr  err = noErr;
    // load the script if its not available yet
 if (mScriptID == kOSANullScript) { 
 Handle script = nil, text = nil;
 short  fRefNum = -1;
 
 Try_ { 
    // open resource fork
 fRefNum = ::FSpOpenResFile(&mFileSpec, fsRdPerm);
 ThrowIfResError_();
    // get the first script resource in the file
 script = ::Get1IndResource('scpt', 1); 
 FailNIL_(script);
    // Load it
 UScripting::LoadScript(script, mScriptID);
 } 
 Catch_(catchErr) { 
 err = catchErr;
 SysBeep(0);
 } 
 EndCatch_
 if (fRefNum != -1) ::CloseResFile(fRefNum);
 } 
 if (err == noErr) new URun1Script(mScriptID);
 return err;
} 

Testing reveals one additional complication. If the script brings a different application to the front while you are still handling a menu selection, a menubar drawing glitch occurs. To solve this problem, we create a LPeriodical task that runs immediately after the menu event completes (and the MacOS has removed the menu hiliting). URun1Script simply executes a loaded script with a given OSAID and then deletes itself.

URun1Script constructor

URun1Script::URun1Script(OSAID inScriptID) 
 : mScriptID(inScriptID) 
{ 
 StartRepeating();
} 
URun1Script::SpendTime
void URun1Script::SpendTime(
 const EventRecord &inMacEvent)
{ 
 UScripting::ExecuteScript(mScriptID);
 delete this;
} 

Handling The Menu Selection

Handling menu selection in an LAttachment is a matter of overriding ExecuteSelf. When the user selects the menu item, PowerPlant will generate a negative command number (because the menu has no 'Mcmd' resource). The menu id will be in the HiWord, and the item number in the LoWord.

Our handler must respond both to this command and to a command status message that enables the menu item. Since scripts are always available, we enable all menu items in the script menu. To respond to the command, we find the corresponding SCScriptMenuItem. Normally we run the script. However, if the command key is down we open it for editing. The methods for running a script were described above; the next section explains how to open a script.

SCScriptsMenuHandler::ExecuteSelf

void SCScriptsMenuHandler::ExecuteSelf(
 MessageT inMessage, 
 void   *ioParam)
{ 
 mExecuteHost = true;
    // update status
 if (inMessage == msg_CommandStatus) { 
 SCommandStatus  *status = (SCommandStatus *)ioParam;
 if (HiWord(- status->command) == mMenuID) { 
 *status->enabled = true;
 *status->usesMark = false;
 mExecuteHost = false; // we handled it
 } 
 } 
    // handle menu comand 
 else if (HiWord(-inMessage) == mMenuID) { 
 Int16  index = LoWord(-inMessage);
 SCScriptsMenuItem *item;
 if (mScripts.FetchItemAt(index, &item)) { 
 if (cmdKey & UEventUtils::GetModifiers())
 item->OpenScript(); // open on command key
 else item->RunScript();
 mExecuteHost = false; // we handled it
 } 
 } 
 } 
} 

Editing a Script, the AppleEvent Way

Providing support for users to edit scripts is not hard. OSA provides calls that get the text and style record for a script, which you can display in an LTextEdit pane. When the user finishes her changes, you can use OSA calls to compile the script, and then execute it. But there is an easier way: the ScriptEditor already provides full script editing capabilities. By sending an AppleEvent, we can open a file in ScriptEditor and let it handle editing.

Since we already have an FSSpec for each script in our menu, this is easy. Our SCScriptMenuItem method for opening a script calls a utility method to send the Finder an “open” event with the FSSpec. Before doing so, we dispose of the token that represents the loaded script. By doing this, we will force our RunScript method to re-load the script from the file. Thus, when the user edits and then saves the script, her next attempt to run it will load and execute the modified version.

SCScriptsMenuItem::OpenScript
OSErr SCScriptsMenuItem::OpenScript()
{ 
 if (mScriptID != kOSANullScript) { 
    // first unload script from OSA
 UScripting::DisposeScript(mScriptID))
 mScriptID = kOSANullScript;
 } 
 return UFinder::SendFinderAEOpen(mFileSpec);
} 

We could send an “open” event to ScriptEditor, but instead we send it to the scriptable Finder. The Finder will open the correct script editing application based on the creator of the file.

Sending an AppleEvent is not hard. The first step is to create a descriptor for the target of the event, in this case the Finder. The easiest type of process descriptor just uses the application signature. The second step is to create an AppleEvent with this process descriptor. The third step is to add any parameters to the event. In this case there is just one, the FSSpec. Finally we send the event and dispose of the reply.

The implementation uses exceptions to handle an error at any stage of the process, but it catches all errors, disposes of the memory in AEDescs and returns the error code.

UFinder::SendFinderAEOpen
OSErr UFinder::SendFinderAEOpen(
 FSSpec &inFile)
{ 
 OSErr  err = noErr;
 AEDesc processDesc;
 AppleEvent ae, aeReply;
 ae.descriptorType = 
 aeReply.descriptorType = 
 processDesc.descriptorType = typeNull;
 ae.dataHandle = 
 aeReply.dataHandle = 
 processDesc.dataHandle = 
 nil;
 
 Try_ { 
 DescType finderType = 'MACS';
 err = ::AECreateDesc(
 typeApplSignature,
 &finderType,
 sizeof(DescType),
 &processDesc);
 FailOSErr_(err);
 
 err  = ::AECreateAppleEvent(
 kCoreEventClass, 
 kAEOpen,
 &processDesc,
 kAutoGenerateReturnID,
 kAnyTransactionID,
 &ae);
 FailOSErr_(err);
 
 err = ::AEPutParamPtr(
 &ae,
 keyDirectObject,
 typeFSS,
 &inFile,
 sizeof(inFile));
 FailOSErr_(err);
 err = ::AESend(
 &ae,
 &aeReply,
 kAENoReply | kAENeverInteract, 
 kAENormalPriority,
 kAEDefaultTimeout,
 nil,
 nil);
 FailOSErr_(err);
 } 
 Catch_(catchErr) { err = catchErr;} EndCatch_
 
 if (processDesc.descriptorType != typeNull)
 ::AEDisposeDesc(&processDesc);
 if (ae.descriptorType != typeNull) 
 ::AEDisposeDesc(&ae);
 if (aeReply.descriptorType != typeNull) 
 ::AEDisposeDesc(&aeReply);
 return err;
} 

Writing Balloons Without Typing

As a final touch, it’s nice to provide Balloon Help for all menu items. But scripts are loaded at run time, so there’s no way to know in advance what scripts will be present. Yet there is a way to automatically create sensible help text for each script at run time. Here’s how.

When a user creates a script in ScriptEditor, the user can write an English description of the script in the area just below the window title. This description ends up in a 'TEXT' resource in the script file. The script menu can grab this text from the file, truncate it to 255 characters, and install it as Balloon Help for the menu item. Thus, the Script Editor description field becomes the Balloon Help automatically.

Here is the top-level routine that is called when the SCScriptsMenuHandler is constructed.

SCScriptsMenuHandler::AttachBalloonHelp

void SCScriptsMenuHandler::AttachBalloonHelp(
 FSSpec &inScriptFile, 
 Int16  inIndex)
{ 
 Str255 text;
 { 
    // get the text
 Int16  fRefNum = 
 ::FSpOpenResFile(&inScriptFile, fsRdPerm);
 if (ResError()) return;
 
    // the first text resource has the description of the script
 Handle outText = ::Get1IndResource('TEXT', 1);
 if (outText)
 UFinder::Handle2PStr(outText, text);
 else *text = 0;
  
 ::CloseResFile(fRefNum);
 }
  
 {
    // add the help
 char   buffer[500];
 MakeBalloonData(text, buffer);
 InsertBalloonData(inIndex, buffer);
 } 
} 

Once we have extracted the description text, the process of installing it is divided into 2 steps. First we construct a buffer containing a single entry for the 'hmnu' resource. Each entry begins with a size word for the size of the entry, and then a flag word indicating the type of the entry. We only deal with two kinds of entries, a “skip” entry for empty balloons, and a direct string entry. A direct string entry has 4 packed Pascal strings. The routine below writes an entry in this format, implementing the writes as if writing to a stream.

SCScriptsMenuHandler::MakeBalloonData

void SCScriptsMenuHandler::MakeBalloonData(
 Str255 inHelp,
 char   *ioBuffer)
{ 
 Int16  mark, data;
 Int32  zeros = 0;

    // leave room to write number of bytes to end
 mark = 2; 
 
 if (*inHelp == 0) {  
    // no data, so skip this item
 data = 0x0100;
 ::BlockMoveData(&data, ioBuffer[mark], sizeof(Int16));
 mark += sizeof(Int16);
 } 
 else { 
 data = 0x0001; // direct string type
 ::BlockMoveData(&data, &ioBuffer[mark], sizeof(Int16));
 mark += sizeof(Int16);
 
    // write out the string
 ::BlockMoveData(inHelp, &ioBuffer[mark], 1 + *inHelp);
 mark += 1 + *inHelp;
 
    // write out three zeros for the other strings
 ::BlockMoveData(&zeros, &ioBuffer[mark], 3);
 mark += 3;
 } 
 
    // align buffer to an even word boundary
 if (mark & 0x0001) ++mark;
 
    // add size to first word of buffer
 ::BlockMoveData(&mark, ioBuffer, sizeof(mark));
} 

Balloon data for a menu is packed into a single Handle. In order to insert an entry for a new menu item, we need to increment the count word, and then insert the entry in the right place. To find the right place we have to read the size of each preceding entry, and skip over that many bytes to arrive at the next entry. Once we find the right place, remaining entries are moved out of the way, and the new entry is copied into place.

SCScriptsMenuHandler:: InsertBalloonData

void SCScriptsMenuHandler::InsertBalloonData(
 Int16  inIndex, 
 char   *inBuffer)
{ 
 Handle hmnu = ::Get1Resource('hmnu', mMenuID);
 if (! hmnu) return;
 
 Int16  len = *(short *)inBuffer;
 
    // make some room in the handle
 ::SetHandleSize(hmnu, ::GetHandleSize(hmnu) + len);
 if (::MemError()) return;
 
    // lock it down so we can safely dereference it
 StHandleLocker  lock(hmnu);
 char   *help = *hmnu;
 
    // increment number of items
 ++*(short *)(help + 0x0A); // @ help + 0x0A
 
    // skip over existing items
 { 
    // skip default and title resource, don’t skip self
 Int16  itemsToSkip = inIndex + 2 - 1;
 help += 0x0C; // location of first msg record
 do { 
 help += *(Int16 *)help;  // add the number of bytes to skip
 } while (--itemsToSkip);
 } 
 
    // shift data out of the way
 { 
 char  *dest, *end;
 dest = help + len;
 end = ((char *)*hmnu + ::GetHandleSize(hmnu));
 ::BlockMoveData(help, dest, end - dest);
 } 

    // copy help data in
 ::BlockMoveData(inBuffer, help, len);
} 

Note that the implementation does not call ChangedResource, even though it did change the resource. This is because the resource is in the application, and calling ChangedResource would cause the application to store the Balloon data when it quit. We don’t want this data stored; it is re-computed every time the application is launched. We also don’t call ReleaseResource, so the changed resource will stay in memory for the duration of the session.

Finder Utilities

The implementation made use of a few Finder utilities: (a) for finding the FSSpec of the running application; (b) for finding a folder id, given a parent folder and a folder name; (c) for iterating through all the items in a folder. These are fairly common steps in many applications, but the techniques are not easy to find in standard Macintosh references. For the sake of completeness, the routines are presented below:

To find the FSSpec of the running application, you call the process manager, requesting information about the current process.

UFinder::GetAppSpec
UFinder::GetAppSpec(
 FSSpec &inSpec)
{ 
 ProcessSerialNumber psn;
 ProcessInfoRec  info;
 info.processAppSpec = &inSpec;
 info.processInfoLength = sizeof(info);
 info.processName = nil;
 ::GetCurrentProcess(&psn);
 ::GetProcessInformation(&psn, &info); 
} 

We find the folder of scripts by finding the folder that the application was launched from, and then looking for an enclosed folder named Script Menu Items. The routine below finds an enclosed folder id, given a parent folder and a name:

UFinder::GetFolderID
long UFinder::GetFolderID(
 FSSpec &inParentFolder, 
 Str255 inName)
{  
 CInfoPBRec pb;  
 DirInfo*dpb = (DirInfo *)&pb;
 OSErr  err;

 dpb->ioNamePtr = inName ;
 dpb->ioVRefNum = inParentFolder.vRefNum;
 dpb->ioDrDirID = inParentFolder.parID;
 dpb->ioFDirIndex = 0;
 err = PBGetCatInfo(&pb, false);

    // make sure its a folder
 if (err == noErr && dpb->ioFlAttrib & ( 1 << 4)) 
 return dpb->ioDrDirID;
 else return 0;
} 

The recipe for iterating through each item in a folder is really ugly. The class below encapsulates the details in an iterator:

StFolderIterator constructor
StFolderIterator::StFolderIterator(
 short inVRefNum, long inFolderID)
 : mVRefNum(inVRefNum), mFolderID(inFolderID), mIndex(0)
{ 
} 


StFolderIterator:: Next
Boolean StFolderIterator::Next(
 HFileParam &ioRec)
{ 
 ioRec.ioVRefNum = mVRefNum;
 ioRec.ioDirID = mFolderID;
    // reset name field
 if (ioRec.ioNamePtr) ioRec.ioNamePtr[0] = 0; 
 ioRec.ioFDirIndex = ++mIndex;
 ioRec.ioResult = noErr;
 
 PBHGetFInfo((HParmBlkPtr)&ioRec, false);
 return (ioRec.ioResult == noErr);
} 

Conclusion

Scripting adds very powerful capabilities to your application. The script menu makes it easy for users to attach scripts to a menu in your application. And the code is encapsulated in an LAttachment.

 

Community Search:
MacTech Search:

Software Updates via MacUpdate

Lyn 1.5.11 - Lightweight image browser a...
Lyn is a lightweight and fast image browser and viewer designed for photographers, graphic artists and Web designers. Featuring an extremely versatile and aesthetically pleasing interface, it... Read more
NeoOffice 2014.11 - Mac-tailored, OpenOf...
NeoOffice is a complete office suite for OS X. With NeoOffice, users can view, edit, and save OpenOffice documents, PDF files, and most Microsoft Word, Excel, and PowerPoint documents. NeoOffice 3.x... Read more
LaunchBar 6.4 - Powerful file/URL/email...
LaunchBar is an award-winning productivity utility that offers an amazingly intuitive and efficient way to search and access any kind of information stored on your computer or on the Web. It provides... Read more
Remotix 3.1.4 - Access all your computer...
Remotix is a fast and powerful application to easily access multiple Macs (and PCs) from your own Mac. Features Complete Apple Screen Sharing support - including Mac OS X login, clipboard... Read more
DesktopLyrics 2.6.6 - Displays current i...
DesktopLyrics is an application that displays the lyrics of the song currently playing in "iTunes" right on your desktop. The lyrics for the song have to be set in iTunes; DesktopLyrics does nothing... Read more
VOX 2.5.1 - Music player that supports m...
VOX is a beautiful music player that supports many filetypes. The beauty is in its simplicity, yet behind the minimal exterior lies a powerful music player with a ton of features and support for all... Read more
NetNewsWire 4.0.0 - RSS and Atom news re...
NetNewsWire is the best way to keep up with the sites and authors you read most regularly. Let NetNewsWire pull down the latest articles, and read them in a distraction-free and Mac-like way. Native... Read more
MacUpdate Desktop 6.0.6 - Search and ins...
MacUpdate Desktop 6 brings seamless 1-click installs and version updates to your Mac. With a free MacUpdate account and MacUpdate Desktop 6, Mac users can now install almost any Mac app on macupdate.... Read more
ForkLift 2.6.5 - Powerful file manager:...
ForkLift is a powerful file manager and ferociously fast FTP client clothed in a clean and versatile UI that offers the combination of absolute simplicity and raw power expected from a well-executed... Read more
Drive Genius 4.1.0 - Powerful system uti...
Drive Genius 4 gives you faster performance from your Mac while also protecting it. The award-winning and improved DrivePulse feature alerts you to hard drive issues before they become major problems... Read more

Auroch Digital is Bringing Back Games Wo...
| Read more »
Carbo - Handwriting in the Digital Age...
Carbo - Handwriting in the Digital Age 1.0 Device: iOS Universal Category: Productivity Price: $3.99, Version: 1.0 (iTunes) Description: | Read more »
Draggy Dead (Games)
Draggy Dead 1.1 Device: iOS Universal Category: Games Price: $.99, Version: 1.1 (iTunes) Description: Ditch your dead end job and take up a rewarding career in Grave Robbing today!Guide the recently deceased to a fun filled life of... | Read more »
Bad Dinos (Games)
Bad Dinos 1.0.0 Device: iOS Universal Category: Games Price: $2.99, Version: 1.0.0 (iTunes) Description: | Read more »
The Apple Watch isn't Great as a Fi...
| Read more »
Show the World What You See With Stre.am...
Live broadcasting is getting popular on mobile devices, which is why you can now get Stre.am, by Infinite Takes. [Read more] | Read more »
PhotoTime's 2.1 Update Adds Apple W...
The latest PhotoTime update is adding even more functionality to the handy photo organizing app. Yep, including Apple Watch support. [Read more] | Read more »
Oh My Glob! Adventure Time Puzzle Quest...
Finn and Jake are taking over D3 Go!'s popular puzzle game series in the upcoming Adventure Time Puzzle Quest. [Read more] | Read more »
Earthcore: Shattered Elements - Tips, Tr...
At first glance, Earthcore: Shattered Elements seems like a rather simple card-battling game. Once you’re introduced to skills that will change quite a bit. Even more so once you start to acquire hero cards. But it’s not so complicated that we... | Read more »
Dungeon999F (Games)
Dungeon999F 1.33 Device: iOS Universal Category: Games Price: $.99, Version: 1.33 (iTunes) Description: "The game you must play at least once in your life!" "The game with potential of million downloads globally!" ...is what the... | Read more »

Price Scanner via MacPrices.net

OtterBox Maximizes Portability, Productivity...
From the kitchen recipe book to the boarsroom presentation, the OtterBox Agility Tablet System turns tablets into one of the most versatile pieces of handheld technology available. Available now, the... Read more
Launch of New Car App Gallery and Open Develo...
Automatic, a company on a mission to bring the power of the Internet into every car, has announced the launch of the Automatic App Gallery, an app store for nearly every car or truck on the road... Read more
Memorial Day Weekend Sale: 13-inch 1.6GHz Mac...
Best Buy has the new 13″ 1.6GHz/128GB MacBook Air on sale for $849 on their online store this weekend. Choose free shipping or free local store pickup (if available). Sale price for online orders... Read more
Memorial Day Weekend Sale: 27-inch 3.5GHz 5K...
Best Buy has the 27″ 3.5GHz 5K iMac on sale for $2099.99 this weekend. Choose free shipping or free local store pickup (if available). Sale price for online orders only, in-store prices may vary.... Read more
Sale! 16GB iPad mini 3 for $349, save $50
B&H Photo has the 16GB iPad mini 3 WiFi on sale for $349 including free shipping plus NY sales tax only. Their price is $50 off MSRP, and it’s the lowest price available for this model. Read more
Price drop on 2014 15-inch Retina MacBook Pro...
B&H Photo has dropped prices on 2014 15″ Retina MacBook Pros by $200. Shipping is free, and B&H charges NY sales tax only: - 15″ 2.2GHz Retina MacBook Pro: $1799.99 save $200 - 15″ 2.5GHz... Read more
With a Mission to Make Mobile Free, Scratch W...
Scratch Wireless, claiming to be the world’s first truly free mobile service, has announced the availability of a new Scratch-enabled Android smartphone, the Coolpad Arise. The smartphone is equipped... Read more
First-Ever Titanium Alloy Curved iPhone 6 Scr...
One of the most common problems with mobile phones is damage to the screens. The slightest drop can cause a dreaded spider web of gashes and cracks in the glass panel surface that can cost $hundreds... Read more
Preorder new 12-inch MacBook, $10 off, save o...
Adorama has new 12″ Retina MacBooks available for preorder for $10 off MSRP including free shipping plus NY & NJ sales tax only. For a limited time, Adorama will include a free Apple USB-C to USB... Read more
Will iOS 9 Finally Bring Productivity Friendl...
Ah, the irony. From its original announcement in 2010, Apple has doggedly insisted that the iPad remain “simple,” thus arbitrarily limiting its considerable potential as a content creation and... Read more

Jobs Board

*Apple* Solutions Consultant - Retail Sales...
**Job Summary** As an Apple Solutions Consultant (ASC) you are the link between our customers and our products. Your role is to drive the Apple business in a retail Read more
Business Development Manager - *Apple* Pay...
**Job Summary** Apple Pay is seeking an experienced Business Development professional to join the Apple Pay team to develop partnerships and strategic alliances with Read more
Project Manager, *Apple* Retail New Store O...
**Job Summary** An Apple Retail New Store Openings & Remodels Project Manager is responsible for successfully managing the openings, remodels, and small works of Read more
SW QA Engineer - *Apple* TV - Apple (United...
**Job Summary** The Apple TV team is looking for experienced Quality Assurance Engineers with a passion for delivering first in class home entertainment solutions. **Key Read more
Partner Marketing Manager - *Apple* Pay - A...
**Job Summary** The Apple Pay partner marketing team is looking for a marketing manager to develop and drive US marketing programs with our financial institution Read more
All contents are Copyright 1984-2011 by Xplain Corporation. All rights reserved. Theme designed by Icreon.