TweetFollow Us on Twitter

Scripts Menu
Volume Number:12
Issue Number:2
Column Tag:Open Scripting Architecture

Attaching a Scripts Menu

An introduction to using the OSA in PowerPlant

By Jeremy Roschelle

Note: Source code files accompanying article are located on MacTech CD-ROM or source code disks.

A fully AppleEvent-savvy application is scriptable, recordable, and attachable. In a scriptable application, any user can automate tasks, interconnect applications, and extend the capabilities of your application. A recordable application generates a script by observing the user’s actions. Yet these capabilities prove worthless if users have no easy way to execute their scripts. Unfortunately, Apple did not provide any standard human interface for attaching scripts to an application. And although the PowerPlant framework provides excellent support for scripting and recording, it provides no recipes for customizing your application to launch scripts. This article addresses these issues with a simple customizable Script menu which allows users to execute scripts (see Figure 1).

At first, implementing a script menu looks complex: it requires interacting with PowerPlant, the Menu Manager, the File Manager, the Open Scripting Architecture (OSA), and the scriptable Finder. On the bright side, PowerPlant and the OSA provide excellent modular, easy-to-use interfaces [see Jeremy’s article, “Powering Up AppleEvents in PowerPlant”, MacTech Magazine, 11:6 (1994) 33-46 - man]. In this article, I’ll present an implementation of an extension to the PowerPlant framework that that can compile and execute scripts from a standard pull-down menu. This script menu provides a relatively complete implementation of attachable scripts: it loads scripts at launch time from a “script menu items” folder, automatically supplies Balloon Help for each menu item, and can open a script for editing in the Script Editor. This article will also show you how easy it is to use OSA to compile and execute scripts.

Figure 1. The Script menu

The implementation also strives to use the capabilities of PowerPlant, C++, and AppleEvents to achieve modularity and encapsulation. For example, we use the LAttachment mechanism to encapsulate all the code for handling the script menu into a re-usable class. Likewise, we introduce a C++ iterator class for scanning through items in a folder. Finally, we use AppleEvents to connect our script menu to external applications that provide script editing services, thus avoiding the need to embed a script editor ourselves.

OSA Basics

From the user’s point of view, a script is a small program written in AppleScript or another OSA dialect. From the programmer’s point of view, a script is a data type containing code that the OSA can execute. The process of compiling a script reconciles these views: compiling converts AppleScript statements into an executable data type.

As a programmer, you manipulate a script as a Handle to some script data. The easiest way to get such a handle is to get the 'scpt' resource out of a ScriptEditor document. There is one 'scpt' resource in each ScriptEditor document, storing the script compiled by the user.

To run a script, you first load the script data into OSA. This results in an OSAID, a token that refers to the loaded script. The process of loading is relatively slow (a second or two on my Quadra 660AV). Once a script is loaded, running it is fast (small scripts seem as fast as hard-coded commands in my application). To execute the script, you pass the OSAID to the OSAExecute function. When you are through with a script (or any value returned by OSA), you dispose of its OSAID to free up the associated memory.

To hide the ugly details, I wrapped my code in a utility class with static methods:

void UScripting::Initialize()
    // sComponent is a static class member of type ComponentInstance             
 if (sComponent == nil)
 ::OpenDefaultComponent(kOSAComponentType, 'scpt');


OSErr UScripting::LoadScript(
 Handle inScript, 
 OSAID  &outScriptID)

 AEDesc scriptDesc;
 scriptDesc.descriptorType = typeOSAGenericStorage;
 scriptDesc.dataHandle = inScript;
 return ::OSALoad(sComponent,

UScripting:: ExecuteScript

OSErr UScripting::ExecuteScript(
 OSAID inScriptID)

 OSAID  resultID;
 OSErr  err;
 err = ::OSAExecute(sComponent,
 kOSAModeNull, &resultID);
 if (err) 
 return err;
 else ::OSADispose(sComponent, resultID);
 return noErr;

Design Overview

The main challenge in designing a script menu is maintaining a correspondence between items in a Menu Manager menu and script data that we can execute. This script data (an FSSpec for a script file and an OSAID for an executable script) will be encapsulated by a class called SCScriptMenuItem. Because scripts will be added to the menu dynamically, we cannot specify the menu items ahead of time in our resource file and cannot use PowerPlant’s 'Mcmd' scheme for binding each menu item to a command number. Instead, the implementation builds a list of SCScriptMenuItems, where the index of the item in the list matches the index of the item in the menu.

Our application must use this correspondence to respond when the user selects an item from the Script menu. We could do this by overriding LApplication methods that handle menu commands. But PowerPlant’s LAttachment class provides a better solution. It allows the code to be completely encapsulated in a class, SCScriptMenuHandler. This class can be attached to any PowerPlant application with one AddAttachment call. (Such modularity and portability can be dangerous - your employer may come to expect it regularly!)

Your application will normally create one SCScriptMenuHandler at launch time. When created, this object will iterate through the designated folder and create one MacOS menu item and a corresponding SCScriptMenuItem for each script in the folder. When a user selects a script from the menu for execution or editing, the SCScriptMenuHandler calls the appropriate method of the corresponding SCScriptMenuItem.

The article covers the implementation starting from the basic structure of SCScriptMenuHandler and SCScriptMenuItem. Next, the article describes how to create Balloon Help for each script automatically. Finally, the article reviews the utility routines for interacting with the File Manager.

Creating the Script Menu

Like every menu, the Script menu requires a 'MENU' resource, a 'hmnu' resource for Balloon Help, and a reference to the correct ID in your 'MBAR' resource. The 'MENU' and 'hmnu' resources contain the fixed portion of the script menus: the menu title and a final menu item that allows the user to add a script to the menu while your application is running. (This additional feature is supported in the sample code, but not discussed in this article.) At run-time, we add additional menu and help items for each script.

In your application, you create a handler for this script menu, normally within the constructor for your application class. When creating the handler, you provide the resource id for the script menu, and the vRefNum and dirID for the folder from which you wish to load scripts.

YourApp constructor
    // get folder id and volume number for the Scripts Folder, relative to launch spec
 FSSpec appSpec;
 long   folderID;
 folderID = UFinder::GetFolderID(
 appSpec, "\pScript Menu Items");
    // attach a new handler for the scripts menu
 new SCScriptsMenuHandler(kScriptsMenuID,

When SCScriptsMenuHandler is constructed, it iterates through a folder, appending a script menu item for each script file it finds. To hide the ugly details of iterating through a folder, the implementation uses an iteration class, StFolderIterator.

SCScriptsMenuHandler constructor

 ResIDT inMenuID,
 short  inVRefNum, 
 long   inParID,
 Int16  inMax) 
 : LAttachment(msg_AnyMessage, true), mMenuID(inMenuID)
    // appends menu items for each script in the designated folder
 if (inVRefNum != 0) {    
    // set up iteration structs
 Int16  count = 0;
 Str255 scriptFileName;
 HFileParam fInfo;
 fInfo.ioNamePtr = scriptFileName;
    // iterate through each item in the folder, inserting scripts
 StFolderIteratoriter(inVRefNum, inParID);
 while ((++count <= inMax) && iter.Next(fInfo)) { 
 if (fInfo.ioFlFndrInfo.fdType == kOSAFileType) { 
 FSSpec spec;
 inVRefNum, inParID, scriptFileName, &spec);

To append each script, we first grab the menu. Then we insert an item into the menu, using the file name as the menu item name. To handle each menu item, we build a SCScriptMenuItem and insert it in the mScripts list, such that index numbers of the MacOS menu item and the SCScriptMenuItem correspond. Finally, we construct Balloon Help (as described later).


void SCScriptsMenuHandler::AppendScript(
 FSSpec &inScriptFile)
 MenuHandle menu = ::GetMenu(mMenuID);
 if (! menu) return;
 SCScriptsMenuItem *item = 
 new SCScriptsMenuItem(inScriptFile);
    // insert into the menu
 menu,, mScripts.GetCount());
    // insert the corresponding class instance into the list
 mScripts.InsertItemsAt(1, arrayIndex_Last, &item);
    // insert balloon help into resource
 AttachBalloonHelp(inScriptFile, mScripts.GetCount());

Running a Script

As described earlier, running a script in the OSA requires two simple steps. First you load the script, resulting in token called an OSAID that represents the executable. Then you pass the token to the OSA execute function.

Running scripts from a menu is only slightly more complicated. The AppendScript procedure created a SCScriptMenuItem for each menu item, storing the FSSpec of a script file. To compile a script, we need to extract the 'scpt' resource from this file and pass it to OSALoad to get an OSAID. Because loaded scripts execute much faster, we load the script and store the OSAID to service future requests to run the same script.

SCScriptsMenuHandler:: RunScript

OSErr SCScriptsMenuItem::RunScript()
 OSErr  err = noErr;
    // load the script if its not available yet
 if (mScriptID == kOSANullScript) { 
 Handle script = nil, text = nil;
 short  fRefNum = -1;
 Try_ { 
    // open resource fork
 fRefNum = ::FSpOpenResFile(&mFileSpec, fsRdPerm);
    // get the first script resource in the file
 script = ::Get1IndResource('scpt', 1); 
    // Load it
 UScripting::LoadScript(script, mScriptID);
 Catch_(catchErr) { 
 err = catchErr;
 if (fRefNum != -1) ::CloseResFile(fRefNum);
 if (err == noErr) new URun1Script(mScriptID);
 return err;

Testing reveals one additional complication. If the script brings a different application to the front while you are still handling a menu selection, a menubar drawing glitch occurs. To solve this problem, we create a LPeriodical task that runs immediately after the menu event completes (and the MacOS has removed the menu hiliting). URun1Script simply executes a loaded script with a given OSAID and then deletes itself.

URun1Script constructor

URun1Script::URun1Script(OSAID inScriptID) 
 : mScriptID(inScriptID) 
void URun1Script::SpendTime(
 const EventRecord &inMacEvent)
 delete this;

Handling The Menu Selection

Handling menu selection in an LAttachment is a matter of overriding ExecuteSelf. When the user selects the menu item, PowerPlant will generate a negative command number (because the menu has no 'Mcmd' resource). The menu id will be in the HiWord, and the item number in the LoWord.

Our handler must respond both to this command and to a command status message that enables the menu item. Since scripts are always available, we enable all menu items in the script menu. To respond to the command, we find the corresponding SCScriptMenuItem. Normally we run the script. However, if the command key is down we open it for editing. The methods for running a script were described above; the next section explains how to open a script.


void SCScriptsMenuHandler::ExecuteSelf(
 MessageT inMessage, 
 void   *ioParam)
 mExecuteHost = true;
    // update status
 if (inMessage == msg_CommandStatus) { 
 SCommandStatus  *status = (SCommandStatus *)ioParam;
 if (HiWord(- status->command) == mMenuID) { 
 *status->enabled = true;
 *status->usesMark = false;
 mExecuteHost = false; // we handled it
    // handle menu comand 
 else if (HiWord(-inMessage) == mMenuID) { 
 Int16  index = LoWord(-inMessage);
 SCScriptsMenuItem *item;
 if (mScripts.FetchItemAt(index, &item)) { 
 if (cmdKey & UEventUtils::GetModifiers())
 item->OpenScript(); // open on command key
 else item->RunScript();
 mExecuteHost = false; // we handled it

Editing a Script, the AppleEvent Way

Providing support for users to edit scripts is not hard. OSA provides calls that get the text and style record for a script, which you can display in an LTextEdit pane. When the user finishes her changes, you can use OSA calls to compile the script, and then execute it. But there is an easier way: the ScriptEditor already provides full script editing capabilities. By sending an AppleEvent, we can open a file in ScriptEditor and let it handle editing.

Since we already have an FSSpec for each script in our menu, this is easy. Our SCScriptMenuItem method for opening a script calls a utility method to send the Finder an “open” event with the FSSpec. Before doing so, we dispose of the token that represents the loaded script. By doing this, we will force our RunScript method to re-load the script from the file. Thus, when the user edits and then saves the script, her next attempt to run it will load and execute the modified version.

OSErr SCScriptsMenuItem::OpenScript()
 if (mScriptID != kOSANullScript) { 
    // first unload script from OSA
 mScriptID = kOSANullScript;
 return UFinder::SendFinderAEOpen(mFileSpec);

We could send an “open” event to ScriptEditor, but instead we send it to the scriptable Finder. The Finder will open the correct script editing application based on the creator of the file.

Sending an AppleEvent is not hard. The first step is to create a descriptor for the target of the event, in this case the Finder. The easiest type of process descriptor just uses the application signature. The second step is to create an AppleEvent with this process descriptor. The third step is to add any parameters to the event. In this case there is just one, the FSSpec. Finally we send the event and dispose of the reply.

The implementation uses exceptions to handle an error at any stage of the process, but it catches all errors, disposes of the memory in AEDescs and returns the error code.

OSErr UFinder::SendFinderAEOpen(
 FSSpec &inFile)
 OSErr  err = noErr;
 AEDesc processDesc;
 AppleEvent ae, aeReply;
 ae.descriptorType = 
 aeReply.descriptorType = 
 processDesc.descriptorType = typeNull;
 ae.dataHandle = 
 aeReply.dataHandle = 
 processDesc.dataHandle = 
 Try_ { 
 DescType finderType = 'MACS';
 err = ::AECreateDesc(
 err  = ::AECreateAppleEvent(
 err = ::AEPutParamPtr(
 err = ::AESend(
 kAENoReply | kAENeverInteract, 
 Catch_(catchErr) { err = catchErr;} EndCatch_
 if (processDesc.descriptorType != typeNull)
 if (ae.descriptorType != typeNull) 
 if (aeReply.descriptorType != typeNull) 
 return err;

Writing Balloons Without Typing

As a final touch, it’s nice to provide Balloon Help for all menu items. But scripts are loaded at run time, so there’s no way to know in advance what scripts will be present. Yet there is a way to automatically create sensible help text for each script at run time. Here’s how.

When a user creates a script in ScriptEditor, the user can write an English description of the script in the area just below the window title. This description ends up in a 'TEXT' resource in the script file. The script menu can grab this text from the file, truncate it to 255 characters, and install it as Balloon Help for the menu item. Thus, the Script Editor description field becomes the Balloon Help automatically.

Here is the top-level routine that is called when the SCScriptsMenuHandler is constructed.


void SCScriptsMenuHandler::AttachBalloonHelp(
 FSSpec &inScriptFile, 
 Int16  inIndex)
 Str255 text;
    // get the text
 Int16  fRefNum = 
 ::FSpOpenResFile(&inScriptFile, fsRdPerm);
 if (ResError()) return;
    // the first text resource has the description of the script
 Handle outText = ::Get1IndResource('TEXT', 1);
 if (outText)
 UFinder::Handle2PStr(outText, text);
 else *text = 0;
    // add the help
 char   buffer[500];
 MakeBalloonData(text, buffer);
 InsertBalloonData(inIndex, buffer);

Once we have extracted the description text, the process of installing it is divided into 2 steps. First we construct a buffer containing a single entry for the 'hmnu' resource. Each entry begins with a size word for the size of the entry, and then a flag word indicating the type of the entry. We only deal with two kinds of entries, a “skip” entry for empty balloons, and a direct string entry. A direct string entry has 4 packed Pascal strings. The routine below writes an entry in this format, implementing the writes as if writing to a stream.


void SCScriptsMenuHandler::MakeBalloonData(
 Str255 inHelp,
 char   *ioBuffer)
 Int16  mark, data;
 Int32  zeros = 0;

    // leave room to write number of bytes to end
 mark = 2; 
 if (*inHelp == 0) {  
    // no data, so skip this item
 data = 0x0100;
 ::BlockMoveData(&data, ioBuffer[mark], sizeof(Int16));
 mark += sizeof(Int16);
 else { 
 data = 0x0001; // direct string type
 ::BlockMoveData(&data, &ioBuffer[mark], sizeof(Int16));
 mark += sizeof(Int16);
    // write out the string
 ::BlockMoveData(inHelp, &ioBuffer[mark], 1 + *inHelp);
 mark += 1 + *inHelp;
    // write out three zeros for the other strings
 ::BlockMoveData(&zeros, &ioBuffer[mark], 3);
 mark += 3;
    // align buffer to an even word boundary
 if (mark & 0x0001) ++mark;
    // add size to first word of buffer
 ::BlockMoveData(&mark, ioBuffer, sizeof(mark));

Balloon data for a menu is packed into a single Handle. In order to insert an entry for a new menu item, we need to increment the count word, and then insert the entry in the right place. To find the right place we have to read the size of each preceding entry, and skip over that many bytes to arrive at the next entry. Once we find the right place, remaining entries are moved out of the way, and the new entry is copied into place.

SCScriptsMenuHandler:: InsertBalloonData

void SCScriptsMenuHandler::InsertBalloonData(
 Int16  inIndex, 
 char   *inBuffer)
 Handle hmnu = ::Get1Resource('hmnu', mMenuID);
 if (! hmnu) return;
 Int16  len = *(short *)inBuffer;
    // make some room in the handle
 ::SetHandleSize(hmnu, ::GetHandleSize(hmnu) + len);
 if (::MemError()) return;
    // lock it down so we can safely dereference it
 StHandleLocker  lock(hmnu);
 char   *help = *hmnu;
    // increment number of items
 ++*(short *)(help + 0x0A); // @ help + 0x0A
    // skip over existing items
    // skip default and title resource, don’t skip self
 Int16  itemsToSkip = inIndex + 2 - 1;
 help += 0x0C; // location of first msg record
 do { 
 help += *(Int16 *)help;  // add the number of bytes to skip
 } while (--itemsToSkip);
    // shift data out of the way
 char  *dest, *end;
 dest = help + len;
 end = ((char *)*hmnu + ::GetHandleSize(hmnu));
 ::BlockMoveData(help, dest, end - dest);

    // copy help data in
 ::BlockMoveData(inBuffer, help, len);

Note that the implementation does not call ChangedResource, even though it did change the resource. This is because the resource is in the application, and calling ChangedResource would cause the application to store the Balloon data when it quit. We don’t want this data stored; it is re-computed every time the application is launched. We also don’t call ReleaseResource, so the changed resource will stay in memory for the duration of the session.

Finder Utilities

The implementation made use of a few Finder utilities: (a) for finding the FSSpec of the running application; (b) for finding a folder id, given a parent folder and a folder name; (c) for iterating through all the items in a folder. These are fairly common steps in many applications, but the techniques are not easy to find in standard Macintosh references. For the sake of completeness, the routines are presented below:

To find the FSSpec of the running application, you call the process manager, requesting information about the current process.

 FSSpec &inSpec)
 ProcessSerialNumber psn;
 ProcessInfoRec  info;
 info.processAppSpec = &inSpec;
 info.processInfoLength = sizeof(info);
 info.processName = nil;
 ::GetProcessInformation(&psn, &info); 

We find the folder of scripts by finding the folder that the application was launched from, and then looking for an enclosed folder named Script Menu Items. The routine below finds an enclosed folder id, given a parent folder and a name:

long UFinder::GetFolderID(
 FSSpec &inParentFolder, 
 Str255 inName)
 CInfoPBRec pb;  
 DirInfo*dpb = (DirInfo *)&pb;
 OSErr  err;

 dpb->ioNamePtr = inName ;
 dpb->ioVRefNum = inParentFolder.vRefNum;
 dpb->ioDrDirID = inParentFolder.parID;
 dpb->ioFDirIndex = 0;
 err = PBGetCatInfo(&pb, false);

    // make sure its a folder
 if (err == noErr && dpb->ioFlAttrib & ( 1 << 4)) 
 return dpb->ioDrDirID;
 else return 0;

The recipe for iterating through each item in a folder is really ugly. The class below encapsulates the details in an iterator:

StFolderIterator constructor
 short inVRefNum, long inFolderID)
 : mVRefNum(inVRefNum), mFolderID(inFolderID), mIndex(0)

StFolderIterator:: Next
Boolean StFolderIterator::Next(
 HFileParam &ioRec)
 ioRec.ioVRefNum = mVRefNum;
 ioRec.ioDirID = mFolderID;
    // reset name field
 if (ioRec.ioNamePtr) ioRec.ioNamePtr[0] = 0; 
 ioRec.ioFDirIndex = ++mIndex;
 ioRec.ioResult = noErr;
 PBHGetFInfo((HParmBlkPtr)&ioRec, false);
 return (ioRec.ioResult == noErr);


Scripting adds very powerful capabilities to your application. The script menu makes it easy for users to attach scripts to a menu in your application. And the code is encapsulated in an LAttachment.


Community Search:
MacTech Search:

Software Updates via MacUpdate

Typinator 6.7 - Speedy and reliable text...
Typinator turbo-charges your typing productivity. Type a little. Typinator does the rest. We've all faced projects that require repetitive typing tasks. With Typinator, you can store commonly used... Read more
Adobe Lightroom 6.2 - Import, develop, a...
Adobe Lightroom is available as part of Adobe Creative Cloud for as little as $9.99/month bundled with Photoshop CC as part of the photography package. Lightroom 6 is also available for purchase as a... Read more
ForeverSave 2.1.4 - Universal auto-save...
ForeverSave auto-saves all documents you're working on while simultaneously doing backup versioning in the background. Lost data can be quickly restored at any time. Losing data, caused by... Read more
VueScan 9.5.27 - Scanner software with a...
VueScan is a scanning program that works with most high-quality flatbed and film scanners to produce scans that have excellent color fidelity and color balance. VueScan is easy to use, and has... Read more
AirPort Utility 6.3.6 - Set up and manag...
Note: Most recent release available only within OS X 10.11 El Capitan update. Use AirPort Utility to set up and manage your Wi-Fi network and AirPort base stations, including AirPort Express, AirPort... Read more
Quicksilver 1.3.1 - Application launcher...
Quicksilver is a light, fast and free Mac application that gives you the power to control your Mac with keystrokes alone. Quicksilver allows you to find what you need quickly and easily, then act... Read more
Tidy Up (Five Users) 4.1.5 - Find duplic...
Tidy Up is a complete duplicate finder and disk-tidiness utility. With Tidy Up you can search for duplicate files and packages by the owner application, content, type, creator, extension, time... Read more
Mellel 3.4.3 - The word processor of cho...
Mellel is the leading word processor for OS X and has been widely considered the industry standard since its inception. Mellel focuses on writers and scholars for technical writing and multilingual... Read more
Skype - Voice-over-internet p...
Skype allows you to talk to friends, family and co-workers across the Internet without the inconvenience of long distance telephone charges. Using peer-to-peer data transmission technology, Skype... Read more
Bookends 12.6.0 - Reference management a...
Bookends is a full-featured bibliography/reference and information-management system for students and professionals. Access the power of Bookends directly from Mellel, Nisus Writer Pro, or MS Word (... Read more

Swords & Crossbones: An Epic Pirate...
Swords & Crossbones: An Epic Pirate Story 1.0 Device: iOS Universal Category: Games Price: $4.99, Version: 1.0 (iTunes) Description: | Read more »
Camel Up (Games)
Camel Up 1.0.0 Device: iOS Universal Category: Games Price: $4.99, Version: 1.0.0 (iTunes) Description: | Read more »
The Martian: Bring Him Home (Games)
The Martian: Bring Him Home 1.0 Device: iOS Universal Category: Games Price: $2.99, Version: 1.0 (iTunes) Description: Based on the best selling novel and critically acclaimed film, THE MARTIAN tells the story of Astronaut Mark... | Read more »
This Week at 148Apps: September 21-30, 2...
Leap Into Fall With 148Apps How do you know what apps are worth your time and money? Just look to the review team at 148Apps. We sort through the chaos and find the apps you're looking for. The ones we love become Editor’s Choice, standing out above... | Read more »
Tweetbot 4 for Twitter (Social Networki...
Tweetbot 4 for Twitter 4.0 Device: iOS Universal Category: Social Networking Price: $4.99, Version: 4.0 (iTunes) Description: *** 50% off for a limited time. *** | Read more »
Mori (Games)
Mori 1.0 Device: iOS Universal Category: Games Price: $2.99, Version: 1.0 (iTunes) Description: Stop, rewind and unwind with Mori. Time is always running, take a moment to take control. Mori is an action puzzle game about infinitely... | Read more »
100 Years' War (Games)
100 Years' War 1.0 Device: iOS Universal Category: Games Price: $3.99, Version: 1.0 (iTunes) Description: | Read more »
Tower in the Sky (Games)
Tower in the Sky 0.0.60 Device: iOS Universal Category: Games Price: $1.99, Version: 0.0.60 (iTunes) Description: | Read more »
hocus. (Games)
hocus. 1.0.0 Device: iOS Universal Category: Games Price: $.99, Version: 1.0.0 (iTunes) Description: New, polished, mind-bending, minimal puzzle game with dozens of levels and extra-ordinary design Features:- Beautifully crafted... | Read more »
Mos Speedrun 2 (Games)
Mos Speedrun 2 1.0 Device: iOS Universal Category: Games Price: $1.99, Version: 1.0 (iTunes) Description: Mos is back, in her biggest and most exciting adventure ever! Wall-jump to victory through 30 mysterious, action packed levels... | Read more »

Price Scanner via

13-inch 2.5GHz MacBook Pro (refurbished) avai...
Apple has Certified Refurbished 13″ 2.5GHz MacBook Pros available for $829, or $270 off the cost of new models. Apple’s one-year warranty is standard, and shipping is free: - 13″ 2.5GHz MacBook Pros... Read more
27-inch 3.2GHz iMac on sale for $1689, save $...
Adorama has the 27″ 3.2GHz iMac on sale for $1689 including free shipping plus NY & NJ sales tax only. Their price is $110 off MSRP. Read more
12-inch Retina MacBooks on sale for up to $12...
B&H Photo has 12″ Retina MacBooks in stock today and on sale for up to $120 off MSRP. B&H will include free shipping, and there is NY sales tax only: - 12″ 1.1GHz Gray Retina MacBook: $1224 $... Read more
Tablets Shaping Up for Growth in 2016 – Strat...
Observing that Apple, Samsung, and Microsoft have refocused what tablet computers can do, market analysis firm Strategy Analytics believes there is immense opportunity for new and replacement sales... Read more
Apple Interbrand’s Number One Most Valuable G...
Apple and Google hold aced #1 and #2 spots respectively in Interbrand’s 2015 Best Global Brands Report, leading all tech brands that now comprise more than a third of the entire rankings value.... Read more
Apple offering refurbished 2015 13-inch Retin...
Apple is offering Certified Refurbished 2015 13″ Retina MacBook Pros for up to $270 (15%) off the cost of new models. An Apple one-year warranty is included with each model, and shipping is free: -... Read more
Apple refurbished 2015 MacBook Airs available...
Apple has Certified Refurbished 2015 11″ and 13″ MacBook Airs (the latest models), available for up to $180 off the cost of new models. An Apple one-year warranty is included with each MacBook, and... Read more
Adobe Photoshop Elements 14 Gets Haze Removal...
The latest iteration of Adobe’s powerful consumer image editing appliction Photoshop Elements 14 analyzes your photo and removes background haze, so your shot looks sharp all the way to the horizon... Read more
Apple refurbished 15-inch Retina MacBook Pros...
Apple has Certified Refurbished 2015 15″ Retina MacBook Pros available for up to $380 off the cost of new models. An Apple one-year warranty is included with each model, and shipping is free: - 15″ 2... Read more
21-inch iMacs on sale for up to $120 off MSRP
B&H Photo has 21″ iMacs on sale for up to $100 off MSRP including free shipping plus NY sales tax only: - 21″ 1.4GHz iMac: $1029.99 $70 off - 21″ 2.7GHz iMac: $1229 $70 off - 21″ 2.9GHz iMac: $... Read more

Jobs Board

*Apple* Retail - Multiple Positions (US) - A...
Job Description:SalesSpecialist - Retail Customer Service and SalesTransform Apple Store visitors into loyal Apple customers. When customers enter the store, you're Read more
Senior Payments Architect - *Apple* Pay - A...
**Job Summary** Apple , Inc. is looking for a highly motivated, innovative and hands-on senior payments architect to join the Apple Pay Engineering team. You will Read more
SW QA Engineer - *Apple* TV - Apple (United...
**Job Summary** The Apple TV team is looking for experienced Quality Assurance Engineers with a passion for delivering first in class home entertainment solutions. **Key Read more
Finance Manager, *Apple* Online Store - App...
…successful global retailer. Innovate and think creatively as a finance partner for the Apple Online Store team. Look ahead and anticipate the needs of your business. Read more
*Apple* Retail for Business Support Supervis...
…is looking for a motivated, outgoing, and creative individual who wants to offer Apple Business Customers an unparalleled customer experience. The Apple Retail for Read more
All contents are Copyright 1984-2011 by Xplain Corporation. All rights reserved. Theme designed by Icreon.