TweetFollow Us on Twitter

Feb 96 Challenge
Volume Number:12
Issue Number:2
Column Tag:Programmer’s Challenge

Programmer’s Challenge

By Bob Boonstra, Westford, Massachusetts

Note: Source code files accompanying article are located on MacTech CD-ROM or source code disks.

Intersecting Rectangles

The Challenge this month is to write a routine that will accept a list of rectangles and calculate a result based on the intersections of those rectangles. Specifically, your code will return a list of non-overlapping rectangles that contain all points enclosed by an odd (or even) number of the input rectangles. The prototype for the code you should write is:

void RectangleIntersections(
 const Rect inputRects[], /* list if input rectangles */
 const long numRectsIn,   /* number of inputRects */
 Rect outputRects[], /* preallocated storage for output */
 long *numRectsOut,/* number of outputRects returned */
 const Boolean oddParity  /* see text for explanation */
);

The parameter oddParity indicates whether you are to return rectangles containing points enclosed by an odd number of the numRectsIn inputRects rectangles (oddParity==true) or by an even (nonzero) number of rectangles (oddParity==false). Sufficient storage for the output will be preallocated for you and pointed to by outputRects.

As an example, if you were given these inputRects:

 {0,10,20,30}, {5,15,20,30}

and oddParity were true, you might return the following list of outputRects:

 {0,10,5,15}, {0,15,5,30}, {5,10,15,20}

It would also be correct to return a result that combined the first of these rectangles with either of the other two. If oddParity were false, you would return the following list for the example input:

 {5,15,20,30}

The outputRects must be non-empty and non-overlapping. In the example, it would be incorrect to return the following for the odd parity case:

 {0,10,5,30} {0,10,20,15}

The outputRects you generate must also be maximal, in the sense that each edge of each of the outputRects should pass through a vertex of one of the inputRects. That is, for example, I don’t want you to return a 1¥1 rectangle representing each point enclosed in the desired number of inputRects. Before returning, set *numRectsOut to indicate the number of outputRects you generated.

If you need auxiliary storage, you may allocate any reasonable amount within your code using toolbox routines or malloc, but you must deallocate that storage before returning. (No memory leaks! - I’ll be calling your code many times.)

This native PowerPC Challenge will be scored using the latest Metrowerks compiler, with the winner determined by execution time. If you have any questions, or would like some test data for your code, please send me e-mail at one of the Programmer’s Challenge addresses, or directly to bob_boonstra@mactech.com. Test data will also be sent to the Programmer’s Challenge mailing list, which you can join by sending a message to autoshare@mactech.com with the SUBJECT line “sub challenge YourName”, substituting your real name for YourName.

Two Months Ago Winner

Eight of the 13 solutions submitted for the Find Again And Again Challenge worked correctly. Congratulations to Gustav Larsson (Mountain View, CA) for submitting an entry that was significantly faster than the others. The problem was to write a text search engine optimized to operate repeatedly on the same block of text. A variety of optimization techniques were represented in the solutions, a couple of which are highlighted in the table of results below. Several people optimized for the case where the same word was repeatedly searched for. Some of my tests included this case, and those results are in the columns headed “repeat.” The “random” columns shows results for tests that searched for random occurrences of random words. Each of the tests were run under conditions where only 64KB of auxiliary storage was available, and where much more memory was available. These conditions were weighted 20% and 80% respectively in calculating the total time, since the problem statement promised that ample memory would usually be provided. You can see that Gustav’s solution performed reasonably well when memory was scarce, and very well when memory was plentiful.

Gustav’s solution hashes as many words of the input text as possible in the initialization routine. He uses the Boyer-Moore-Horspool algorithm to find words in any text that was not parsed during initialization. Other features of the approach are described in the well-commented code.

Here are the times and code sizes for entries that passed by tests. Numbers in parentheses after a person’s name indicate that person’s cumulative point total for all previous Challenges, not including this one.

64K Memory >>64K Memory code

Name repeat random repeat random time size

Gustav Larsson (67) 1814 3773 62 111 1255 3584

Tom Saxton 46 16400 197 459 3814 2000

Xan Gregg (81) 27 2907 1316 2835 3907 1664

Kevin Cutts (46) 1760 3234 1760 2809 4654 1600

Joseph Ku 8856 14570 121 509 5189 1584

David Cary 60 22665 499 1000 5745 2124

Eric Lengyel (40) 34 10221 29 4697 5831 1188

Ernst Munter (110) 2036 2053 2287 4603 6330 2976

Top Contestants of All time

Here are the Top Contestants for the Programmer’s Challenges to date, including everyone who has accumulated more than 20 points. The numbers below include points awarded for this month’s entrants.

Rank Name Points Rank Name Points

1. [Name deleted] 176 11. Mallett, Jeff 44

2. Munter, Ernst 110 12. Kasparian, Raffi 42

3. Gregg, Xan 88 13. Vineyard, Jeremy 42

4. Larsson, Gustav 87 14. Lengyel, Eric 40

5. Karsh, Bill 80 15. Darrah, Dave 31

6. Stenger, Allen 65 16. Landry, Larry 29

7. Riha, Stepan 51 17. Elwertowski, Tom 24

8. Cutts, Kevin 50 18. Lee, Johnny 22

9. Goebel, James 49 19. Noll, Robert 22

10. Nepsund, Ronald 47

There are three ways to earn points: (1) scoring in the top 5 of any Challenge, (2) being the first person to find a bug in a published winning solution or, (3) being the first person to suggest a Challenge that I use. The points you can win are:

1st place 20 points 5th place 2 points

2nd place 10 points finding bug 2 points

3rd place 7 points suggesting Challenge 2 points

4th place 4 points

Here is Gustav’s winning solution:

Find Again and Again

Copyright © 1995 Gustav Larsson

Constants & Types
#define ALPHABET_SIZE 256
#define ALLOC_SIZE(n) ((n+3) & -4L) /* next multiple of 4 */
#define HASH_BUCKETS 1024           /* must be power of 2 */
#define HASH_MASK (HASH_BUCKETS - 1)
#define NO_NULL_CHAR 'A'
#define NULL 0

typedef unsigned char  uchar;
typedef unsigned short ushort;
typedef unsigned long  ulong;

typedef struct Word Word;
typedef struct Occurrence Occurrence;
typedef struct Private Private;

/* 
  A block of occurrence positions.  We pack in as many occurrences as possible into 
  a single block, from 3 to 6 depending on textLength.

  The first entry in the block is always used.  The remaining entries are in use if they 
  are not zero.  These facts are used several places to simplify the code.
*/
struct Occurrence {
  Occurrence *next;
  union {
    ushort pos2[6];   /* 2 bytes/occurrence */
    struct {
      ushort lo[4];
      uchar  hi[4];
    } pos3;           /* 3 bytes/occurrence */
    long pos4[3];     /* 4 bytes/occurrence */
  } p;
};

/*
  There is one Word struct for each distinct word.  The word’s length is stored in the 
  top eight bits of the hash value.  There’s no need to store the characters in the word 
  since we can just look at the first occurrence (first entry in Word.first).
*/
struct Word {
  Word        *next;
  ulong       hash;
  Occurrence  *last;
  Occurrence  first;
};

/*
  The structure of our private storage.  The hashCodes[] array serves two purposes: it 
  distinguishes alphanumeric from non-alphanumeric characters, and it provides a 
  non-zero hash code for each alphanumeric character.  The endParsedText field will 
  be -1 if there was enough private memory to parse all the text.  Otherwise, it points to 
  the start of the unparsed text.  nullChar is used by the BMH_Search() function when 
  we must search unparsed text for an occurrence.
*/
struct Private {
  ulong hashCodes [ ALPHABET_SIZE ];
  Word  *hashTable [ HASH_BUCKETS ];
  long  endParsedText;  /* start of parsed text */
  long  posBytes;       /* POS_x_BYTES, below */
  char  nullChar;       /* char not appearing in the text */
  long  heap;           /* start of private heap  */
};

Macros
/*
  These macros simplify access to the occurrence positions stored in an Occurrence 
  struct.  Posbytes is a macro argument that is usually set to private->posBytes.  
  However, you can also use a constant for posbytes, which lets the compiler choose 
  the right case at compile time, producing smaller and faster code.
*/
#define POS_2_BYTES 1   /* word position fits in 2 bytes */
#define POS_3_BYTES 0   /* fits in 3 bytes; usual case */
#define POS_4_BYTES 2   /* fits in 4 bytes */

#define GET_POS(pos,occur,index,posbytes)           \
  {                                                 \
    if ( (posbytes) == POS_3_BYTES )                \
      pos = ((long)(occur)->p.pos3.hi[index] << 16) \
          + (occur)->p.pos3.lo[index];              \
    else if ( (posbytes) == POS_2_BYTES )           \
      pos = (occur)->p.pos2[index];                 \
    else                                            \
      pos = (occur)->p.pos4[index];                 \
  }

#define SET_POS(pos,occur,index,posbytes)       \
  {                                             \
    if ( (posbytes) == POS_3_BYTES )            \
    {                                           \
      (occur)->p.pos3.hi[index] = (pos) >> 16;  \
      (occur)->p.pos3.lo[index] = (pos);        \
    }                                           \
    else if ( (posbytes) == POS_2_BYTES )       \
      (occur)->p.pos2[index] = pos;             \
    else                                        \
      (occur)->p.pos4[index] = pos;             \
  }

InitFind
void InitFind (
  char *textToSearch,
  long textLength,
  void *privateStorage,
  long storageSize
)
{
  Private *private = privateStorage;

  private->endParsedText =
    InitFindBody(
        (uchar *)textToSearch,
        textLength,
        privateStorage,
        (uchar *)privateStorage + storageSize
    );

  if ( private->endParsedText != -1 )
    private->nullChar =
      PickNullChar(
            private,
            (uchar *)textToSearch + private->endParsedText,
            (uchar *)textToSearch + textLength );
  else
    private->nullChar = NO_NULL_CHAR;
}

InitFindBody
/*
  This function does most of the work for InitFind().  The arguments have been recast 
  into a more useful form; uchar and ulong are used a lot so that we don’t have to 
  worry about the sign, especially when indexing private->hashCodes[].

  The return value is the character position when the unparsed text begins (if we run 
  out of private storage), or -1 if all the text was parsed.
*/
static long InitFindBody (
  uchar   *textToSearch,
  long    textLength,
  Private *private,
  uchar   *endPrivateStorage
)
{
  uchar       *alloc, *textPos, *textEnd, *wordStart;
  long        wordLength;
  ulong       hash, code;
  Word        *word;
  Occurrence  *occur;

/*
  Init table of hash codes.  The remaining entries are guaranteed to be initialized to 
  zero.  The hash codes were chosen so that any two codes differ by at least five bits.
  */
  {
    ulong *table = private->hashCodes;  /* reduces typing */

    table['0'] = 0xFFC0;  table['5'] = 0xF492;
    table['1'] = 0xFE07;  table['6'] = 0xF31E;
    table['2'] = 0xF98B;  table['7'] = 0xF2D9;
    table['3'] = 0xF84C;  table['8'] = 0xCF96;
    table['4'] = 0xF555;  table['9'] = 0xCE51;

    table['A'] = 0xC9DD;  table['N'] = 0xA245;
    table['B'] = 0xC81A;  table['O'] = 0x9F0A;
    table['C'] = 0xC503;  table['P'] = 0x9ECD;
    table['D'] = 0xC4C4;  table['Q'] = 0x9941;
    table['E'] = 0xC348;  table['R'] = 0x9886;
    table['F'] = 0xC28F;  table['S'] = 0x959F;
    table['G'] = 0xAF5C;  table['T'] = 0x9458;
    table['H'] = 0xAE9B;  table['U'] = 0x93D4;
    table['I'] = 0xA917;  table['V'] = 0x9213;
    table['J'] = 0xA8D0;  table['W'] = 0x6DD3;
    table['K'] = 0xA5C9;  table['X'] = 0x6C14;
    table['L'] = 0xA40E;  table['Y'] = 0x6B98;
    table['M'] = 0xA382;  table['Z'] = 0x6A5F;

    table['a'] = 0x6746;  table['n'] = 0x3C88;
    table['b'] = 0x6681;  table['o'] = 0x3B04;
    table['c'] = 0x610D;  table['p'] = 0x3AC3;
    table['d'] = 0x60CA;  table['q'] = 0x37DA;
    table['e'] = 0x5D85;  table['r'] = 0x361D;
    table['f'] = 0x5C42;  table['s'] = 0x3191;
    table['g'] = 0x5BCE;  table['t'] = 0x3056;
    table['h'] = 0x5A09;  table['u'] = 0x0D19;
    table['i'] = 0x5710;  table['v'] = 0x0CDE;
    table['j'] = 0x56D7;  table['w'] = 0x0B52;
    table['k'] = 0x515B;  table['x'] = 0x0A95;
    table['l'] = 0x509C;  table['y'] = 0x078C;
    table['m'] = 0x3D4F;  table['z'] = 0x064B;
  }

  /*  Determine the number of bytes needed to store each occurrence position. */
  if ( textLength <= 0x10000L )
    private->posBytes = POS_2_BYTES;
  else if ( textLength <= 0x1000000L )
    private->posBytes = POS_3_BYTES;
  else
    private->posBytes = POS_4_BYTES;

  /* Set up variables to handle allocation of private storage. */
  alloc = (uchar *)&private->heap;

  /* Parse the text */
  textPos = textToSearch;
  textEnd = textPos + textLength;

  while ( textPos != textEnd )
  {
    /* Search for start of word */
    while ( private->hashCodes[*textPos] == 0 )
    {
      textPos++;
      if ( textPos == textEnd )
        return -1;  /* parse all text */
    }
    wordStart = textPos;

    /* Search for end of word; generate hash value too */
    hash = 0;
    while ( textPos != textEnd &&
            (code = private->hashCodes[ *textPos ]) != 0 )
    {
      hash = (hash << 1) ^ code;
      textPos++;
    }
    wordLength = textPos - wordStart;
    hash = (hash & 0xFFFFFF) | (wordLength << 24);

    /*
      Record the occurrence.  First we see if a Word struct exists for this word and 
      whether we need to allocate a new Occurrence struct.
    */
    word = LookupWord(
                private,
                (char *)textToSearch,
                (char *)wordStart,
                wordLength,
                hash );
    if ( word )
    {
      long allocateNewBlock, blockSize, i, pos;

      /*
        This word has occurred before, so it already has a Word struct.  See if there’s 
        room in the last Occurrence block for another entry.  Remember that entry #0 in 
        the Occurrence block is always in use, so we can start checking at entry #1 for a 
        non-zero entry.
      */
      occur = word->last;
      allocateNewBlock = TRUE;
      switch ( private->posBytes )
      {
        case POS_2_BYTES:  blockSize = 6; break;
        case POS_3_BYTES:  blockSize = 4; break;
        case POS_4_BYTES:  blockSize = 3; break;
      }

      for ( i = 1; i < blockSize; i++ )
      {
        GET_POS( pos, occur, i, private->posBytes )
        if ( pos == 0 )
        {
          SET_POS( wordStart - textToSearch, occur, i,
                   private->posBytes )
          allocateNewBlock = FALSE;
          break;
        }
      }

      if ( allocateNewBlock )
      {
        /* Block is full.  Allocate new Occurrence block */
        occur = (Occurrence *) alloc;
        alloc += ALLOC_SIZE( sizeof(Occurrence) );
        if ( alloc >= endPrivateStorage )
          return wordStart-textToSearch; /* out of memory */

        /* Init the new struct and link it to the end of the occurence list. */
        SET_POS( wordStart - textToSearch, occur, 0,
                 private->posBytes )
        word->last->next = occur;
        word->last = occur;
      }
    }
    else
    {
      long i;

/* This is a new word.  Allocate a new Word struct, which contains an Occurrence 
    struct too.  */
      word = (Word *) alloc;
      alloc += ALLOC_SIZE( sizeof(Word) );
      if ( alloc >= endPrivateStorage )
        return wordStart-textToSearch ;  /* out of memory */

      /*  Link it to the start of the Word list, coming off the hash table. */
      word->next = private->hashTable[ hash & HASH_MASK ];
      private->hashTable[ hash & HASH_MASK ] = word;

      /* Init the Word struct */
      word->hash = hash;
      word->last = &word->first;

      /* Init the Occurrence struct */
      SET_POS( wordStart - textToSearch, &word->first, 0,
               private->posBytes )
    }
  }

  /* Finished parsing text */
  return -1;
}

FindWordOccurrence
long FindWordOccurrence (
  char *wordToFind,
  long wordLength,
  long occurrenceToFind,
  char *textToSearch,
  long textLength,
  void *privateStorage,
  long storageSize
)
{
  Private *private = privateStorage;
  Word  *word;
  ulong hash;

  /* Make occurenceToFind zero-based */
  occurrenceToFind--;

  /* Generate hash value for word to find */
  hash = 0;
  {
    long remain = wordLength;
    uchar *p = (uchar *) wordToFind;
    while ( remain > 0 )
    {
      hash = (hash << 1) ^ private->hashCodes[*p++];
      remain--;
    }
    hash = (hash & 0xFFFFFF) | (wordLength << 24);
  }

  /* Look for word/occurrence in hash table */
  word = LookupWord( private, textToSearch, wordToFind,
                     wordLength, hash );
  if ( word )
  {
    Occurrence *occur = &word->first;
    long blockSize, pos, i;

    /* Word exists in hash table, so go down the occurrence list.  */
    switch ( private->posBytes )
    {
      case POS_2_BYTES: blockSize = 6;  break;
      case POS_3_BYTES: blockSize = 4;  break;
      case POS_4_BYTES: blockSize = 3;  break;
    }

    while ( occur && occurrenceToFind >= blockSize )
    {
      occurrenceToFind -= blockSize;
      occur = occur->next;
    }

    if ( occur )
    {
      GET_POS( pos, occur, occurrenceToFind,
               private->posBytes )
      if ( occurrenceToFind == 0 || pos != 0 )
        return pos;
      occurrenceToFind -= blockSize;
    }

    occur = word->last;
    for ( i = 0; i < blockSize; i++ )
    {
      GET_POS( pos, occur, i, private->posBytes )
      if ( pos == 0 )
        occurrenceToFind++;
    }
  }

  /* Not in parsed text, so check the unparsed text */
  if ( private->endParsedText != -1 )
  {
    char *p;
    if ( wordLength > 3 )
      p = BMH_Search(
              private->hashCodes,
              wordToFind,
              wordLength,
              occurrenceToFind,
              textToSearch + private->endParsedText,
              textToSearch + textLength,
              private->nullChar );
    else
      p = SimpleSearch(
              private->hashCodes,
              wordToFind,
              wordLength,
              occurrenceToFind,
              textToSearch + private->endParsedText,
              textToSearch + textLength );
    if (p)
      return (p - textToSearch);
  }

  /* Not found */
  return -1;
}

LookupWord 
/* Look up a word in the hash table */
static Word *LookupWord (
  Private *private,
  char    *textToSearch,
  char    *wordText,
  long    wordLength,
  ulong   hash
)
{
  Word *word = private->hashTable[ hash & HASH_MASK ];
  while ( word )
  {
    if ( word->hash == hash )
    {
      char *w1, *w2;
      long pos, remain = wordLength;

      /*
        The hash values match, so compare characters to make sure it’s the right word.  
        We already know the word length is correct since the length is contained
        in the upper eight bits of the hash value.
      */
      GET_POS( pos, &word->first, 0, private->posBytes )
      w1 = textToSearch + pos;
      w2 = wordText;
      while ( remain-- > 0 && *w1++ == *w2++ )
        ;
      if ( remain == -1 )
        return word;
    }
    word = word->next;
  }
  return NULL;
}

PickNullChar 
/*
  Find a character that doesn’t appear anywhere in the unparsed text.  BMH_Search() is 
  faster if such a character can be found.
*/
static char PickNullChar (
  Private *private,
  uchar   *textStart,
  uchar   *textEnd
)
{
  long i;
  uchar *p, occurs[ ALPHABET_SIZE ];

  for ( i = 0; i < ALPHABET_SIZE; i++ )
    occurs[i] = FALSE;

  for ( p = textStart; p < textEnd; p++ )
    occurs[*p] = TRUE;

  for ( i = 0; i < ALPHABET_SIZE; i++ )
    if ( occurs[i] == FALSE && private->hashCodes[i] == 0 )
      return i;

  return NO_NULL_CHAR;
}

BMH_Search
/*
  Search the unparsed text using the Boyer-Moore-Horspool algorithm.  Ideally a null 
  character is supplied (one that appears in neither the search string nor the text being 
  searched).  This allows the inner loop to be faster.
*/
static char *BMH_Search (
  ulong *hashCodes,       /* private->hashCodes     */
  char  *wordToFind,
  long  wordLength,
  long  occurrenceToFind, /* 0 is first occurrence  */
  char  *textStart,       /* start of unparsed text */
  char  *textEnd,         /* end of unparsed text   */
  char  nullChar          /* private->nullChar      */
)
{
  long  i;
  char  *text, *wordEnd;
  char  word[256];
  long  offset[ ALPHABET_SIZE ];

  /*
    Copy the search string to a private buffer, where
    the first character is the null character.
  */
  word[0] = nullChar;
  for ( i = 0; i < wordLength; i++ )
    word[i+1] = wordToFind[i];

  /* Set up the offset[] lookup table */
  for ( i = 0; i < ALPHABET_SIZE; i++ )
    offset[i] = wordLength;

  for ( i = 1; i < wordLength; i++ )
    offset[ word[i] ] = wordLength - i;

  /* Let the search begin... */
  wordEnd = word + wordLength;
  text = textStart + wordLength - 1;

  if ( nullChar == NO_NULL_CHAR )
  {
    /* No null character, so use a slower inner loop */
    while ( text < textEnd )
    {
      long i;
      char *p, *q;
      for ( i = wordLength, p = wordEnd, q = text;
            i > 0 && *p == *q;
            i--, p--, q-- )
        ;
/*If i == 0, we have found the search string.  Now we make sure that it is delimited.*/
      if ( i == 0 && hashCodes[*q] == 0 &&
           (text+1 == textEnd || hashCodes[text[1]] == 0) )
      {
        if ( occurrenceToFind == 0 )
          return q+1;
        occurrenceToFind--;
      }

      text += offset[*text];
    }
  }
  else
  {
    /* There is a null character (usual case), 
        so we can use a faster and simpler inner loop. */
    while ( text < textEnd )
    {
      char *p, *q;
      for ( p = wordEnd, q = text; *p == *q; p--, q-- )
        ;
      if ( p == word && hashCodes[*q] == 0 &&
           (text+1 == textEnd || hashCodes[text[1]] == 0) )
      {
        if ( occurrenceToFind == 0 )
          return q+1;
        occurrenceToFind--;
      }
      text += offset[*text];
    }
  }
  return NULL;
}

SimpleSearch
/*
  Search the unparsed text using a simple search algorithm.  Note that wordLength 
  must be 1, 2, or 3.  This algorithm runs faster than BMH_Search() for small search 
  strings.
*/
static char *SimpleSearch(
  ulong *hashCodes,       /* private->hashCodes      */
  char  *wordToFind,
  long  wordLength,       /* 1..3                    */
  long  occurrenceToFind, /* 0 is 1st occurrence     */
  char  *textStart,       /* start of unparsed text  */
  char  *textEnd          /* end of all text         */
)
{
  char *text, first;

  first = wordToFind[0];
  text = textStart;

  if ( wordLength == 1 )
  {
    while ( text < textEnd )
    {
      while ( text < textEnd && *text != first )
        text++;
      if ( hashCodes[*(text-1)] == 0 &&
           hashCodes[text[wordLength]] == 0 )
      {
        if ( occurrenceToFind == 0 )
          return text;
        occurrenceToFind--;
      }
    text++;
    }
  }
  else if ( wordLength == 2 )
  {
    while ( text < textEnd )
    {
      while ( text < textEnd && *text != first )
        text++;
      if ( text[1] == wordToFind[1] &&
           hashCodes[*(text-1)] == 0 &&
           hashCodes[text[wordLength]] == 0 )
      {
        if ( occurrenceToFind == 0 )
          return text;
        occurrenceToFind--;
      }
    text++;
    }
  }
  else /* wordLength == 3 */
  {
    while ( text < textEnd )
    {
      while ( text < textEnd && *text != first )
        text++;
      if ( text[1] == wordToFind[1] &&
           text[2] == wordToFind[2] &&
           hashCodes[*(text-1)] == 0 &&
           hashCodes[text[wordLength]] == 0 )
      {
        if ( occurrenceToFind == 0 )
          return text;
        occurrenceToFind--;
      }
    text++;
    }
  }
  return NULL;
}

 
AAPL
$108.00
Apple Inc.
+1.02
MSFT
$46.95
Microsoft Corpora
+0.90
GOOG
$559.08
Google Inc.
+8.77

MacTech Search:
Community Search:

Software Updates via MacUpdate

Vitamin-R 2.20b1 - Personal productivity...
Vitamin-R creates the optimal conditions for your brain to work at its best by structuring your work into short bursts of distraction-free, highly focused activity alternating with opportunities for... Read more
Dropbox 2.10.44 - Cloud synchronization...
Dropbox is an application that creates a special Finder folder that automatically syncs online and between your computers. It allows you to both backup files and keep them up-to-date between systems... Read more
Sandvox 2.9.2 - Easily build eye-catchin...
Sandvox is for Mac users who want to create a professional looking website quickly and easily. With Sandvox, you don't need to be a Web genius to build a stylish, feature-rich, standards-compliant... Read more
Cocktail 8.0.1 - General maintenance and...
Cocktail is a general purpose utility for OS X that lets you clean, repair and optimize your Mac. It is a powerful digital toolset that helps hundreds of thousands of Mac users around the world get... Read more
LibreOffice 4.3.3.2 - Free Open Source o...
LibreOffice is an office suite (word processor, spreadsheet, presentations, drawing tool) compatible with other major office suites. The Document Foundation is coordinating development and... Read more
VMware Fusion 7.0.1 - Run Windows apps a...
VMware Fusion allows you to create a Virtual Machine on your Mac and run Windows (including Windows 8.1) and Windows software on your Mac. Run your favorite Windows applications alongside Mac... Read more
OneNote 15.3.2 - Free digital notebook f...
OneNote is your very own digital notebook. With OneNote, you can capture that flash of genius, that moment of inspiration, or that list of errands that's too important to forget. Whether you're at... Read more
Audio Hijack Pro 2.11.4 - Record and enh...
Audio Hijack Pro drastically changes the way you use audio on your computer, giving you the freedom to listen to audio when you want and how you want. Record and enhance any audio with Audio Hijack... Read more
Iridient Developer 3.0.0 beta 3 - Powerf...
Iridient Developer (was RAW Developer) is a powerful image conversion application designed specifically for OS X. Iridient Developer gives advanced photographers total control over every aspect of... Read more
TextWrangler 4.5.11 - Free general purpo...
TextWrangler is the powerful general purpose text editor, and Unix and server administrator's tool. Oh, and also, like the best things in life, it's free. TextWrangler is the "little brother" to... Read more

Latest Forum Discussions

See All

Monster Flash Review
Monster Flash Review By Jordan Minor on October 31st, 2014 Our Rating: :: ALONE IN THE DARKUniversal App - Designed for iPhone and iPad Solid shooting and a surprising amount of spooky tension make Monster Flash a great portable... | Read more »
Retry Review
Retry Review By Rob Thomas on October 31st, 2014 Our Rating: :: SOARING HIGHUniversal App - Designed for iPhone and iPad Flappy who? Let Retry wash all those bad bird-related memories away on a cool retro-flavored flight… right... | Read more »
Dementia: Book of the Dead Review
Dementia: Book of the Dead Review By Lee Hamlet on October 31st, 2014 Our Rating: :: A TOUGH READUniversal App - Designed for iPhone and iPad A witch hunter is sent after a demonic book in the spooky but short-lived Dementia: Book... | Read more »
Card Dungeon, the Semi-Board Game Roguel...
Card Dungeon, the Semi-Board Game Roguelike, Has Been Renovated Posted by Jessica Fisher on October 31st, 2014 [ permalink ] | Read more »
Logitech Protection + Power iPhone5/5S C...
Made by: Logitech Price: $99.99 Hardware/iOS Integration Rating: 3 out of 5 stars Usability Rating: 0.5 out of 5 stars Reuse Value Rating: 0.75 out of 5 stars Build Quality Rating: 0.75 out of 5 stars Overall Rating: 1.25 out of 5 stars | Read more »
This Is Not a Test Goes Free, Permanentl...
This Is Not a Test Goes Free, Permanently Posted by Jessica Fisher on October 31st, 2014 [ permalink ] Universal App - Designed for iPhone and iPad | Read more »
Swap Heroes Review
Swap Heroes Review By Campbell Bird on October 31st, 2014 Our Rating: :: STRATEGIC SWAPPINGUniversal App - Designed for iPhone and iPad Rotate a cast of heroes to fend of waves of monsters in this difficult, puzzle rpg.   | Read more »
Night Sky Pro™ (Reference)
Night Sky Pro™ 3.0.1 Device: iOS Universal Category: Reference Price: $2.99, Version: 3.0.1 (iTunes) Description: Night Sky Pro™Wonder No More™ Night Sky Pro™ is the ultimate stargazing experience. From the creators of the original... | Read more »
Audio Defence : Zombie Arena (Games)
Audio Defence : Zombie Arena 1.0 Device: iOS Universal Category: Games Price: $4.99, Version: 1.0 (iTunes) Description: A zombie shooter audio game. Made from gut-wrenching 3D binaural sound, for a new kind of weird immersion. You... | Read more »
RPG Asdivine Hearts (Games)
RPG Asdivine Hearts 1.1.0 Device: iOS Universal Category: Games Price: $3.99, Version: 1.1.0 (iTunes) Description: SPECIAL PRICE50% OFF (USD 7.99 -> USD 3.99)!!! Travel alongside four companions and a cat in the adventure of a... | Read more »

Price Scanner via MacPrices.net

Tablets Ascendent Again; Global Tablet Market...
The worldwide tablet grew 11.5% year over year in the third quarter of 2014 (3Q14) with shipments reaching 53.8 million units according to preliminary data from the International Data Corporation (... Read more
Apple now offering refurbished 2014 13-inch R...
The Apple Store is now offering Apple Certified Refurbished 2014 13″ Retina MacBook Pros for up to $270 off the cost of new models. An Apple one-year warranty is included with each model, and... Read more
Apple Regains Momentum As Windows Stutters An...
The latest smartphone sales data from Kantar Worldpanel ComTech, for the three months to March 2014, shows Apple performing strongly in the first quarter of the year, with sales bouncing back in... Read more
Worldwide Smartphone Shipments Increase 25.2%...
New smartphone releases and an increased emphasis on emerging markets drove global smartphone shipments above 300 million units for the second consecutive quarter, according to preliminary data from... Read more
Apple now offering refurbished 2014 15-inch M...
The Apple Store is now offering Apple Certified Refurbished 2014 15″ Retina MacBook Pros for up to $400 off the cost of new models. An Apple one-year warranty is included with each model, and... Read more
Apple drops prices on refurbished 2013 Retina...
The Apple Store has dropped prices on 2013 Apple Certified Refurbished 13″ and 15″ Retina MacBook Pros, with Retina models now available starting at $999. Apple’s one-year warranty is standard, and... Read more
New 2.8GHz Mac mini on sale for $949, save $5...
Abt Electronics has the new 2.8GHz Mac mini in stock and on sale for $949.05 including free shipping. Their price is $50 off MSRP, and it’s the lowest price available for this model from any reseller... Read more
Sale! 3.7GHz Quad Core Mac Pro available for...
 B&H Photo has the 3.7GHz Quad Core Mac Pro on sale for $2649 including free shipping plus NY sales tax only. Their price is $350 off MSRP, and it’s the lowest price for this model from any... Read more
Mujjo Steps Up The Game With Refined Touchscr...
Netherlands based Mujjo have just launched their Refined Touchscreen Gloves, stepping up their game. The gloves feature a updated elegant design that takes these knitted gloves to the next level. A... Read more
Sale! Preorder the new 27-inch 5K iMac for $2...
 Abt Electronics has the new 27″ 3.5GHz 5K iMac on sale and available for preorder for $2374.05 including free shipping. Their price is $125 off MSRP, and it’s the lowest price available for this... Read more

Jobs Board

Position Opening at *Apple* - Apple (United...
…Summary** As a Specialist, you help create the energy and excitement around Apple products, providing the right solutions and getting products into customers' hands. You Read more
Position Opening at *Apple* - Apple (United...
**Job Summary** Being a Business Manager at an Apple Store means you're the catalyst for businesses to discover and leverage the power, ease, and flexibility of Apple Read more
Position Opening at *Apple* - Apple (United...
**Job Summary** As more and more people discover Apple , they visit our stores seeking ways to incorporate our products into their lives. It's your job, as a Store Read more
Position Opening at *Apple* - Apple (United...
**Job Summary** At the Apple Store, you connect business professionals and entrepreneurs with the tools they need in order to put Apple solutions to work in their Read more
Solutions Specialist with *Apple* Knowledge...
Company Description: We are an Apple Authorized Sales and Service Provider. We have been selling and servicing Apple computers in the Fairfield County area for over Read more
All contents are Copyright 1984-2011 by Xplain Corporation. All rights reserved. Theme designed by Icreon.