TweetFollow Us on Twitter

Feb 96 Challenge
Volume Number:12
Issue Number:2
Column Tag:Programmer’s Challenge

Programmer’s Challenge

By Bob Boonstra, Westford, Massachusetts

Note: Source code files accompanying article are located on MacTech CD-ROM or source code disks.

Intersecting Rectangles

The Challenge this month is to write a routine that will accept a list of rectangles and calculate a result based on the intersections of those rectangles. Specifically, your code will return a list of non-overlapping rectangles that contain all points enclosed by an odd (or even) number of the input rectangles. The prototype for the code you should write is:

void RectangleIntersections(
 const Rect inputRects[], /* list if input rectangles */
 const long numRectsIn,   /* number of inputRects */
 Rect outputRects[], /* preallocated storage for output */
 long *numRectsOut,/* number of outputRects returned */
 const Boolean oddParity  /* see text for explanation */
);

The parameter oddParity indicates whether you are to return rectangles containing points enclosed by an odd number of the numRectsIn inputRects rectangles (oddParity==true) or by an even (nonzero) number of rectangles (oddParity==false). Sufficient storage for the output will be preallocated for you and pointed to by outputRects.

As an example, if you were given these inputRects:

 {0,10,20,30}, {5,15,20,30}

and oddParity were true, you might return the following list of outputRects:

 {0,10,5,15}, {0,15,5,30}, {5,10,15,20}

It would also be correct to return a result that combined the first of these rectangles with either of the other two. If oddParity were false, you would return the following list for the example input:

 {5,15,20,30}

The outputRects must be non-empty and non-overlapping. In the example, it would be incorrect to return the following for the odd parity case:

 {0,10,5,30} {0,10,20,15}

The outputRects you generate must also be maximal, in the sense that each edge of each of the outputRects should pass through a vertex of one of the inputRects. That is, for example, I don’t want you to return a 1¥1 rectangle representing each point enclosed in the desired number of inputRects. Before returning, set *numRectsOut to indicate the number of outputRects you generated.

If you need auxiliary storage, you may allocate any reasonable amount within your code using toolbox routines or malloc, but you must deallocate that storage before returning. (No memory leaks! - I’ll be calling your code many times.)

This native PowerPC Challenge will be scored using the latest Metrowerks compiler, with the winner determined by execution time. If you have any questions, or would like some test data for your code, please send me e-mail at one of the Programmer’s Challenge addresses, or directly to bob_boonstra@mactech.com. Test data will also be sent to the Programmer’s Challenge mailing list, which you can join by sending a message to autoshare@mactech.com with the SUBJECT line “sub challenge YourName”, substituting your real name for YourName.

Two Months Ago Winner

Eight of the 13 solutions submitted for the Find Again And Again Challenge worked correctly. Congratulations to Gustav Larsson (Mountain View, CA) for submitting an entry that was significantly faster than the others. The problem was to write a text search engine optimized to operate repeatedly on the same block of text. A variety of optimization techniques were represented in the solutions, a couple of which are highlighted in the table of results below. Several people optimized for the case where the same word was repeatedly searched for. Some of my tests included this case, and those results are in the columns headed “repeat.” The “random” columns shows results for tests that searched for random occurrences of random words. Each of the tests were run under conditions where only 64KB of auxiliary storage was available, and where much more memory was available. These conditions were weighted 20% and 80% respectively in calculating the total time, since the problem statement promised that ample memory would usually be provided. You can see that Gustav’s solution performed reasonably well when memory was scarce, and very well when memory was plentiful.

Gustav’s solution hashes as many words of the input text as possible in the initialization routine. He uses the Boyer-Moore-Horspool algorithm to find words in any text that was not parsed during initialization. Other features of the approach are described in the well-commented code.

Here are the times and code sizes for entries that passed by tests. Numbers in parentheses after a person’s name indicate that person’s cumulative point total for all previous Challenges, not including this one.

64K Memory >>64K Memory code

Name repeat random repeat random time size

Gustav Larsson (67) 1814 3773 62 111 1255 3584

Tom Saxton 46 16400 197 459 3814 2000

Xan Gregg (81) 27 2907 1316 2835 3907 1664

Kevin Cutts (46) 1760 3234 1760 2809 4654 1600

Joseph Ku 8856 14570 121 509 5189 1584

David Cary 60 22665 499 1000 5745 2124

Eric Lengyel (40) 34 10221 29 4697 5831 1188

Ernst Munter (110) 2036 2053 2287 4603 6330 2976

Top Contestants of All time

Here are the Top Contestants for the Programmer’s Challenges to date, including everyone who has accumulated more than 20 points. The numbers below include points awarded for this month’s entrants.

Rank Name Points Rank Name Points

1. [Name deleted] 176 11. Mallett, Jeff 44

2. Munter, Ernst 110 12. Kasparian, Raffi 42

3. Gregg, Xan 88 13. Vineyard, Jeremy 42

4. Larsson, Gustav 87 14. Lengyel, Eric 40

5. Karsh, Bill 80 15. Darrah, Dave 31

6. Stenger, Allen 65 16. Landry, Larry 29

7. Riha, Stepan 51 17. Elwertowski, Tom 24

8. Cutts, Kevin 50 18. Lee, Johnny 22

9. Goebel, James 49 19. Noll, Robert 22

10. Nepsund, Ronald 47

There are three ways to earn points: (1) scoring in the top 5 of any Challenge, (2) being the first person to find a bug in a published winning solution or, (3) being the first person to suggest a Challenge that I use. The points you can win are:

1st place 20 points 5th place 2 points

2nd place 10 points finding bug 2 points

3rd place 7 points suggesting Challenge 2 points

4th place 4 points

Here is Gustav’s winning solution:

Find Again and Again

Copyright © 1995 Gustav Larsson

Constants & Types
#define ALPHABET_SIZE 256
#define ALLOC_SIZE(n) ((n+3) & -4L) /* next multiple of 4 */
#define HASH_BUCKETS 1024           /* must be power of 2 */
#define HASH_MASK (HASH_BUCKETS - 1)
#define NO_NULL_CHAR 'A'
#define NULL 0

typedef unsigned char  uchar;
typedef unsigned short ushort;
typedef unsigned long  ulong;

typedef struct Word Word;
typedef struct Occurrence Occurrence;
typedef struct Private Private;

/* 
  A block of occurrence positions.  We pack in as many occurrences as possible into 
  a single block, from 3 to 6 depending on textLength.

  The first entry in the block is always used.  The remaining entries are in use if they 
  are not zero.  These facts are used several places to simplify the code.
*/
struct Occurrence {
  Occurrence *next;
  union {
    ushort pos2[6];   /* 2 bytes/occurrence */
    struct {
      ushort lo[4];
      uchar  hi[4];
    } pos3;           /* 3 bytes/occurrence */
    long pos4[3];     /* 4 bytes/occurrence */
  } p;
};

/*
  There is one Word struct for each distinct word.  The word’s length is stored in the 
  top eight bits of the hash value.  There’s no need to store the characters in the word 
  since we can just look at the first occurrence (first entry in Word.first).
*/
struct Word {
  Word        *next;
  ulong       hash;
  Occurrence  *last;
  Occurrence  first;
};

/*
  The structure of our private storage.  The hashCodes[] array serves two purposes: it 
  distinguishes alphanumeric from non-alphanumeric characters, and it provides a 
  non-zero hash code for each alphanumeric character.  The endParsedText field will 
  be -1 if there was enough private memory to parse all the text.  Otherwise, it points to 
  the start of the unparsed text.  nullChar is used by the BMH_Search() function when 
  we must search unparsed text for an occurrence.
*/
struct Private {
  ulong hashCodes [ ALPHABET_SIZE ];
  Word  *hashTable [ HASH_BUCKETS ];
  long  endParsedText;  /* start of parsed text */
  long  posBytes;       /* POS_x_BYTES, below */
  char  nullChar;       /* char not appearing in the text */
  long  heap;           /* start of private heap  */
};

Macros
/*
  These macros simplify access to the occurrence positions stored in an Occurrence 
  struct.  Posbytes is a macro argument that is usually set to private->posBytes.  
  However, you can also use a constant for posbytes, which lets the compiler choose 
  the right case at compile time, producing smaller and faster code.
*/
#define POS_2_BYTES 1   /* word position fits in 2 bytes */
#define POS_3_BYTES 0   /* fits in 3 bytes; usual case */
#define POS_4_BYTES 2   /* fits in 4 bytes */

#define GET_POS(pos,occur,index,posbytes)           \
  {                                                 \
    if ( (posbytes) == POS_3_BYTES )                \
      pos = ((long)(occur)->p.pos3.hi[index] << 16) \
          + (occur)->p.pos3.lo[index];              \
    else if ( (posbytes) == POS_2_BYTES )           \
      pos = (occur)->p.pos2[index];                 \
    else                                            \
      pos = (occur)->p.pos4[index];                 \
  }

#define SET_POS(pos,occur,index,posbytes)       \
  {                                             \
    if ( (posbytes) == POS_3_BYTES )            \
    {                                           \
      (occur)->p.pos3.hi[index] = (pos) >> 16;  \
      (occur)->p.pos3.lo[index] = (pos);        \
    }                                           \
    else if ( (posbytes) == POS_2_BYTES )       \
      (occur)->p.pos2[index] = pos;             \
    else                                        \
      (occur)->p.pos4[index] = pos;             \
  }

InitFind
void InitFind (
  char *textToSearch,
  long textLength,
  void *privateStorage,
  long storageSize
)
{
  Private *private = privateStorage;

  private->endParsedText =
    InitFindBody(
        (uchar *)textToSearch,
        textLength,
        privateStorage,
        (uchar *)privateStorage + storageSize
    );

  if ( private->endParsedText != -1 )
    private->nullChar =
      PickNullChar(
            private,
            (uchar *)textToSearch + private->endParsedText,
            (uchar *)textToSearch + textLength );
  else
    private->nullChar = NO_NULL_CHAR;
}

InitFindBody
/*
  This function does most of the work for InitFind().  The arguments have been recast 
  into a more useful form; uchar and ulong are used a lot so that we don’t have to 
  worry about the sign, especially when indexing private->hashCodes[].

  The return value is the character position when the unparsed text begins (if we run 
  out of private storage), or -1 if all the text was parsed.
*/
static long InitFindBody (
  uchar   *textToSearch,
  long    textLength,
  Private *private,
  uchar   *endPrivateStorage
)
{
  uchar       *alloc, *textPos, *textEnd, *wordStart;
  long        wordLength;
  ulong       hash, code;
  Word        *word;
  Occurrence  *occur;

/*
  Init table of hash codes.  The remaining entries are guaranteed to be initialized to 
  zero.  The hash codes were chosen so that any two codes differ by at least five bits.
  */
  {
    ulong *table = private->hashCodes;  /* reduces typing */

    table['0'] = 0xFFC0;  table['5'] = 0xF492;
    table['1'] = 0xFE07;  table['6'] = 0xF31E;
    table['2'] = 0xF98B;  table['7'] = 0xF2D9;
    table['3'] = 0xF84C;  table['8'] = 0xCF96;
    table['4'] = 0xF555;  table['9'] = 0xCE51;

    table['A'] = 0xC9DD;  table['N'] = 0xA245;
    table['B'] = 0xC81A;  table['O'] = 0x9F0A;
    table['C'] = 0xC503;  table['P'] = 0x9ECD;
    table['D'] = 0xC4C4;  table['Q'] = 0x9941;
    table['E'] = 0xC348;  table['R'] = 0x9886;
    table['F'] = 0xC28F;  table['S'] = 0x959F;
    table['G'] = 0xAF5C;  table['T'] = 0x9458;
    table['H'] = 0xAE9B;  table['U'] = 0x93D4;
    table['I'] = 0xA917;  table['V'] = 0x9213;
    table['J'] = 0xA8D0;  table['W'] = 0x6DD3;
    table['K'] = 0xA5C9;  table['X'] = 0x6C14;
    table['L'] = 0xA40E;  table['Y'] = 0x6B98;
    table['M'] = 0xA382;  table['Z'] = 0x6A5F;

    table['a'] = 0x6746;  table['n'] = 0x3C88;
    table['b'] = 0x6681;  table['o'] = 0x3B04;
    table['c'] = 0x610D;  table['p'] = 0x3AC3;
    table['d'] = 0x60CA;  table['q'] = 0x37DA;
    table['e'] = 0x5D85;  table['r'] = 0x361D;
    table['f'] = 0x5C42;  table['s'] = 0x3191;
    table['g'] = 0x5BCE;  table['t'] = 0x3056;
    table['h'] = 0x5A09;  table['u'] = 0x0D19;
    table['i'] = 0x5710;  table['v'] = 0x0CDE;
    table['j'] = 0x56D7;  table['w'] = 0x0B52;
    table['k'] = 0x515B;  table['x'] = 0x0A95;
    table['l'] = 0x509C;  table['y'] = 0x078C;
    table['m'] = 0x3D4F;  table['z'] = 0x064B;
  }

  /*  Determine the number of bytes needed to store each occurrence position. */
  if ( textLength <= 0x10000L )
    private->posBytes = POS_2_BYTES;
  else if ( textLength <= 0x1000000L )
    private->posBytes = POS_3_BYTES;
  else
    private->posBytes = POS_4_BYTES;

  /* Set up variables to handle allocation of private storage. */
  alloc = (uchar *)&private->heap;

  /* Parse the text */
  textPos = textToSearch;
  textEnd = textPos + textLength;

  while ( textPos != textEnd )
  {
    /* Search for start of word */
    while ( private->hashCodes[*textPos] == 0 )
    {
      textPos++;
      if ( textPos == textEnd )
        return -1;  /* parse all text */
    }
    wordStart = textPos;

    /* Search for end of word; generate hash value too */
    hash = 0;
    while ( textPos != textEnd &&
            (code = private->hashCodes[ *textPos ]) != 0 )
    {
      hash = (hash << 1) ^ code;
      textPos++;
    }
    wordLength = textPos - wordStart;
    hash = (hash & 0xFFFFFF) | (wordLength << 24);

    /*
      Record the occurrence.  First we see if a Word struct exists for this word and 
      whether we need to allocate a new Occurrence struct.
    */
    word = LookupWord(
                private,
                (char *)textToSearch,
                (char *)wordStart,
                wordLength,
                hash );
    if ( word )
    {
      long allocateNewBlock, blockSize, i, pos;

      /*
        This word has occurred before, so it already has a Word struct.  See if there’s 
        room in the last Occurrence block for another entry.  Remember that entry #0 in 
        the Occurrence block is always in use, so we can start checking at entry #1 for a 
        non-zero entry.
      */
      occur = word->last;
      allocateNewBlock = TRUE;
      switch ( private->posBytes )
      {
        case POS_2_BYTES:  blockSize = 6; break;
        case POS_3_BYTES:  blockSize = 4; break;
        case POS_4_BYTES:  blockSize = 3; break;
      }

      for ( i = 1; i < blockSize; i++ )
      {
        GET_POS( pos, occur, i, private->posBytes )
        if ( pos == 0 )
        {
          SET_POS( wordStart - textToSearch, occur, i,
                   private->posBytes )
          allocateNewBlock = FALSE;
          break;
        }
      }

      if ( allocateNewBlock )
      {
        /* Block is full.  Allocate new Occurrence block */
        occur = (Occurrence *) alloc;
        alloc += ALLOC_SIZE( sizeof(Occurrence) );
        if ( alloc >= endPrivateStorage )
          return wordStart-textToSearch; /* out of memory */

        /* Init the new struct and link it to the end of the occurence list. */
        SET_POS( wordStart - textToSearch, occur, 0,
                 private->posBytes )
        word->last->next = occur;
        word->last = occur;
      }
    }
    else
    {
      long i;

/* This is a new word.  Allocate a new Word struct, which contains an Occurrence 
    struct too.  */
      word = (Word *) alloc;
      alloc += ALLOC_SIZE( sizeof(Word) );
      if ( alloc >= endPrivateStorage )
        return wordStart-textToSearch ;  /* out of memory */

      /*  Link it to the start of the Word list, coming off the hash table. */
      word->next = private->hashTable[ hash & HASH_MASK ];
      private->hashTable[ hash & HASH_MASK ] = word;

      /* Init the Word struct */
      word->hash = hash;
      word->last = &word->first;

      /* Init the Occurrence struct */
      SET_POS( wordStart - textToSearch, &word->first, 0,
               private->posBytes )
    }
  }

  /* Finished parsing text */
  return -1;
}

FindWordOccurrence
long FindWordOccurrence (
  char *wordToFind,
  long wordLength,
  long occurrenceToFind,
  char *textToSearch,
  long textLength,
  void *privateStorage,
  long storageSize
)
{
  Private *private = privateStorage;
  Word  *word;
  ulong hash;

  /* Make occurenceToFind zero-based */
  occurrenceToFind--;

  /* Generate hash value for word to find */
  hash = 0;
  {
    long remain = wordLength;
    uchar *p = (uchar *) wordToFind;
    while ( remain > 0 )
    {
      hash = (hash << 1) ^ private->hashCodes[*p++];
      remain--;
    }
    hash = (hash & 0xFFFFFF) | (wordLength << 24);
  }

  /* Look for word/occurrence in hash table */
  word = LookupWord( private, textToSearch, wordToFind,
                     wordLength, hash );
  if ( word )
  {
    Occurrence *occur = &word->first;
    long blockSize, pos, i;

    /* Word exists in hash table, so go down the occurrence list.  */
    switch ( private->posBytes )
    {
      case POS_2_BYTES: blockSize = 6;  break;
      case POS_3_BYTES: blockSize = 4;  break;
      case POS_4_BYTES: blockSize = 3;  break;
    }

    while ( occur && occurrenceToFind >= blockSize )
    {
      occurrenceToFind -= blockSize;
      occur = occur->next;
    }

    if ( occur )
    {
      GET_POS( pos, occur, occurrenceToFind,
               private->posBytes )
      if ( occurrenceToFind == 0 || pos != 0 )
        return pos;
      occurrenceToFind -= blockSize;
    }

    occur = word->last;
    for ( i = 0; i < blockSize; i++ )
    {
      GET_POS( pos, occur, i, private->posBytes )
      if ( pos == 0 )
        occurrenceToFind++;
    }
  }

  /* Not in parsed text, so check the unparsed text */
  if ( private->endParsedText != -1 )
  {
    char *p;
    if ( wordLength > 3 )
      p = BMH_Search(
              private->hashCodes,
              wordToFind,
              wordLength,
              occurrenceToFind,
              textToSearch + private->endParsedText,
              textToSearch + textLength,
              private->nullChar );
    else
      p = SimpleSearch(
              private->hashCodes,
              wordToFind,
              wordLength,
              occurrenceToFind,
              textToSearch + private->endParsedText,
              textToSearch + textLength );
    if (p)
      return (p - textToSearch);
  }

  /* Not found */
  return -1;
}

LookupWord 
/* Look up a word in the hash table */
static Word *LookupWord (
  Private *private,
  char    *textToSearch,
  char    *wordText,
  long    wordLength,
  ulong   hash
)
{
  Word *word = private->hashTable[ hash & HASH_MASK ];
  while ( word )
  {
    if ( word->hash == hash )
    {
      char *w1, *w2;
      long pos, remain = wordLength;

      /*
        The hash values match, so compare characters to make sure it’s the right word.  
        We already know the word length is correct since the length is contained
        in the upper eight bits of the hash value.
      */
      GET_POS( pos, &word->first, 0, private->posBytes )
      w1 = textToSearch + pos;
      w2 = wordText;
      while ( remain-- > 0 && *w1++ == *w2++ )
        ;
      if ( remain == -1 )
        return word;
    }
    word = word->next;
  }
  return NULL;
}

PickNullChar 
/*
  Find a character that doesn’t appear anywhere in the unparsed text.  BMH_Search() is 
  faster if such a character can be found.
*/
static char PickNullChar (
  Private *private,
  uchar   *textStart,
  uchar   *textEnd
)
{
  long i;
  uchar *p, occurs[ ALPHABET_SIZE ];

  for ( i = 0; i < ALPHABET_SIZE; i++ )
    occurs[i] = FALSE;

  for ( p = textStart; p < textEnd; p++ )
    occurs[*p] = TRUE;

  for ( i = 0; i < ALPHABET_SIZE; i++ )
    if ( occurs[i] == FALSE && private->hashCodes[i] == 0 )
      return i;

  return NO_NULL_CHAR;
}

BMH_Search
/*
  Search the unparsed text using the Boyer-Moore-Horspool algorithm.  Ideally a null 
  character is supplied (one that appears in neither the search string nor the text being 
  searched).  This allows the inner loop to be faster.
*/
static char *BMH_Search (
  ulong *hashCodes,       /* private->hashCodes     */
  char  *wordToFind,
  long  wordLength,
  long  occurrenceToFind, /* 0 is first occurrence  */
  char  *textStart,       /* start of unparsed text */
  char  *textEnd,         /* end of unparsed text   */
  char  nullChar          /* private->nullChar      */
)
{
  long  i;
  char  *text, *wordEnd;
  char  word[256];
  long  offset[ ALPHABET_SIZE ];

  /*
    Copy the search string to a private buffer, where
    the first character is the null character.
  */
  word[0] = nullChar;
  for ( i = 0; i < wordLength; i++ )
    word[i+1] = wordToFind[i];

  /* Set up the offset[] lookup table */
  for ( i = 0; i < ALPHABET_SIZE; i++ )
    offset[i] = wordLength;

  for ( i = 1; i < wordLength; i++ )
    offset[ word[i] ] = wordLength - i;

  /* Let the search begin... */
  wordEnd = word + wordLength;
  text = textStart + wordLength - 1;

  if ( nullChar == NO_NULL_CHAR )
  {
    /* No null character, so use a slower inner loop */
    while ( text < textEnd )
    {
      long i;
      char *p, *q;
      for ( i = wordLength, p = wordEnd, q = text;
            i > 0 && *p == *q;
            i--, p--, q-- )
        ;
/*If i == 0, we have found the search string.  Now we make sure that it is delimited.*/
      if ( i == 0 && hashCodes[*q] == 0 &&
           (text+1 == textEnd || hashCodes[text[1]] == 0) )
      {
        if ( occurrenceToFind == 0 )
          return q+1;
        occurrenceToFind--;
      }

      text += offset[*text];
    }
  }
  else
  {
    /* There is a null character (usual case), 
        so we can use a faster and simpler inner loop. */
    while ( text < textEnd )
    {
      char *p, *q;
      for ( p = wordEnd, q = text; *p == *q; p--, q-- )
        ;
      if ( p == word && hashCodes[*q] == 0 &&
           (text+1 == textEnd || hashCodes[text[1]] == 0) )
      {
        if ( occurrenceToFind == 0 )
          return q+1;
        occurrenceToFind--;
      }
      text += offset[*text];
    }
  }
  return NULL;
}

SimpleSearch
/*
  Search the unparsed text using a simple search algorithm.  Note that wordLength 
  must be 1, 2, or 3.  This algorithm runs faster than BMH_Search() for small search 
  strings.
*/
static char *SimpleSearch(
  ulong *hashCodes,       /* private->hashCodes      */
  char  *wordToFind,
  long  wordLength,       /* 1..3                    */
  long  occurrenceToFind, /* 0 is 1st occurrence     */
  char  *textStart,       /* start of unparsed text  */
  char  *textEnd          /* end of all text         */
)
{
  char *text, first;

  first = wordToFind[0];
  text = textStart;

  if ( wordLength == 1 )
  {
    while ( text < textEnd )
    {
      while ( text < textEnd && *text != first )
        text++;
      if ( hashCodes[*(text-1)] == 0 &&
           hashCodes[text[wordLength]] == 0 )
      {
        if ( occurrenceToFind == 0 )
          return text;
        occurrenceToFind--;
      }
    text++;
    }
  }
  else if ( wordLength == 2 )
  {
    while ( text < textEnd )
    {
      while ( text < textEnd && *text != first )
        text++;
      if ( text[1] == wordToFind[1] &&
           hashCodes[*(text-1)] == 0 &&
           hashCodes[text[wordLength]] == 0 )
      {
        if ( occurrenceToFind == 0 )
          return text;
        occurrenceToFind--;
      }
    text++;
    }
  }
  else /* wordLength == 3 */
  {
    while ( text < textEnd )
    {
      while ( text < textEnd && *text != first )
        text++;
      if ( text[1] == wordToFind[1] &&
           text[2] == wordToFind[2] &&
           hashCodes[*(text-1)] == 0 &&
           hashCodes[text[wordLength]] == 0 )
      {
        if ( occurrenceToFind == 0 )
          return text;
        occurrenceToFind--;
      }
    text++;
    }
  }
  return NULL;
}

 

Community Search:
MacTech Search:

Software Updates via MacUpdate

Hopper Disassembler 4.3.10- - Binary dis...
Hopper Disassembler is a binary disassembler, decompiler, and debugger for 32- and 64-bit executables. It will let you disassemble any binary you want, and provide you all the information about its... Read more
Hopper Disassembler 4.3.10- - Binary dis...
Hopper Disassembler is a binary disassembler, decompiler, and debugger for 32- and 64-bit executables. It will let you disassemble any binary you want, and provide you all the information about its... Read more
Paparazzi! 1.0b7 - Make user-defined siz...
Paparazzi! is a small utility for OS X that makes screenshots of webpages. This very simple tool takes screenshots of websites which do not fit on one screen. You specify the desired width, minimal... Read more
Amadeus Pro 2.4.4 - Multitrack sound rec...
Amadeus Pro lets you use your Mac for any audio-related task, such as live audio recording, digitizing tapes and records, converting between a variety of sound formats, etc. Thanks to its outstanding... Read more
Google Chrome 63.0.3239.108 - Modern and...
Google Chrome is a Web browser by Google, created to be a modern platform for Web pages and applications. It utilizes very fast loading of Web pages and has a V8 engine, which is a custom built... Read more
Apple Configurator 2.6 - Configure and d...
Apple Configurator makes it easy to deploy iPad, iPhone, iPod touch, and Apple TV devices in your school or business. Use Apple Configurator to quickly configure large numbers of devices connected to... Read more
WhatRoute 2.0.26 - Geographically trace...
WhatRoute is designed to find the names of all the routers an IP packet passes through on its way from your Mac to a destination host. It also measures the round-trip time from your Mac to the router... Read more
Remotix 5.0.4 - Access all your computer...
Remotix is a fast and powerful application to easily access multiple Macs (and PCs) from your own Mac. Features Complete Apple Screen Sharing support - including Mac OS X login, clipboard... Read more
WhatRoute 2.0.26 - Geographically trace...
WhatRoute is designed to find the names of all the routers an IP packet passes through on its way from your Mac to a destination host. It also measures the round-trip time from your Mac to the router... Read more
Google Chrome 63.0.3239.108 - Modern and...
Google Chrome is a Web browser by Google, created to be a modern platform for Web pages and applications. It utilizes very fast loading of Web pages and has a V8 engine, which is a custom built... Read more

Latest Forum Discussions

See All

WWE Mayhem guide - beginner tips and tri...
WWE Mayhem brings all of the familiar faces from your favorite wrestling league to mobile in this exciting new fighting game. Build up a team of your favorite WWE superstars and fight your way to the championship title, or battle against your... | Read more »
The best new games we played this week -...
We've made it through another week, so let's treat ourselves to some of the best new games to launch in the past few days. It was another exciting week with some long-awaited indie games making their debut, and some big console titles making the... | Read more »
Match blocks to pull off dance moves in...
Ferdinand: Unstoppabull is a brand new match three puzzler based on the animated movie of (almost) the same name. As you can expect, you have to match blocks together to complete a bunch of puzzling levels and earn a high score. [Read more] | Read more »
Lineage 2: Revolution’s end of year upda...
Now available in 54 countries worldwide, Lineage 2: Revolution is continuing its global quest to be the most popular mobile MMORPG by launching a jam-packed end of year update. Complete with many subtle tweaks to help improve users’ online... | Read more »
The 5 best Star Wars games on iOS
The time has almost come.Star Wars: The Last Jedifinally hits theaters in the cinematic event that might be bigger than Christmas. To celebrate, we're taking a look at the best--and only the best--Star Warsmobile games to date. [Read more] | Read more »
Life Is Strange (Games)
Life Is Strange 1.1 Device: iOS Universal Category: Games Price: $2.99, Version: 1.1 (iTunes) Description: Life Is Strange is a five part episodic game that sets out to revolutionize story-based choice and consequence games by... | Read more »
Oddworld: New 'n' Tasty (Game...
Oddworld: New 'n' Tasty 1.0 Device: iOS Universal Category: Games Price: $7.99, Version: 1.0 (iTunes) Description: ** PLEASE NOTE: Requires 3.6GB free space to install. Runs at variable resolutions based on device capabilities.... | Read more »
Gorogoa (Games)
Gorogoa 1.0 Device: iOS Universal Category: Games Price: $4.99, Version: 1.0 (iTunes) Description: Gorogoa is an elegant evolution of the puzzle genre, told through a beautifully hand-drawn story designed and illustrated by Jason... | Read more »
Why Guns of Boom will be big for mobile...
Earlier this week, Game Insight, the minds that brought you Guns of Boom, revealed plans for an esports mode in the popular FPS title, with big implications for the game's future. Guns of Boom has been quite popular for some time now, so it's... | Read more »
The best mobile games to play on lazy ho...
With the holidays in full swing, there's hopefully going to be a lot of time off work lazing around the house. With all of that free time, it's a perfect opportunity to catch up on some mobile games that you might have missed out on earlier this... | Read more »

Price Scanner via MacPrices.net

The lowest prices on Apple 13″ MacBook Pros t...
Save $300-$300 on the purchase of a 2017 13″ MacBook Pro this weekend with Certified Refurbished models at Apple. In many cases, Apple’s refurbished prices are the lowest available for each model... Read more
Lowest prices of the Holiday season: 15″ Appl...
Save $360-$420 on the purchase of a 2017 15″ MacBook Pro with Certified Refurbished models at Apple. In many cases, Apple’s refurbished prices are the lowest available for each model from any... Read more
Apple discounts Beats products by up to 30% t...
Apple has Beats by Dr. Dre (BeatsX, Powerbeats3 Wireless, and Beats Solo3 Wireless) on sale for up to 30% off their retail price from now until December 26th: – BeatsX: Was $149.95, now $99 –... Read more
Updated Price Trackers: Macs, iPads, iPhones,...
Scan our Apple Price Trackers for the latest information on sales, bundles, and availability on systems from Apple’s authorized internet/catalog resellers. We update the trackers continuously: – 15″... Read more
How to preorder a new iMac Pro and pay zero s...
B&H Photo and Adorama are accepting preorders on multiple configurations of the new Apple iMac Pro. Both resellers charge sales tax for residents of NY & NJ only, and shipping is free.... Read more
Apple Macs back in stock at Amazon with model...
Amazon has MacBook Pros, MacBook Airs, MacBooks, and iMacs on sale for up to $200 off MSRP as part of their Holiday/Christmas sale. Shipping is free. Note that stock of some Macs may come and go (and... Read more
Apple offering free overnight delivery on all...
Apple is now offering free overnight delivery on all in stock products until 3pm local time on December 22nd. This includes new as well as refurbished computers. Click here for more information. Read more
Beats Holiday sale at B&H, headphones and...
B&H Photo has Beats by Dr. Dre headphones, earphones, and speakers on sale for up to $80 off MSRP as part of their Holiday sale. Expedited shipping is free, and B&H charges sales tax to NY... Read more
Holiday sale: Apple resellers offer 2017 15″...
MacMall has 15″ MacBook Pros on sale for $220-$300 off MSRP, each including free shipping: – 15″ 2.8GHz MacBook Pro Space Gray (MPTR2LL/A): $2179, $220 off MSRP – 15″ 2.8GHz MacBook Pro Silver (... Read more
Holiday sale: Apple resellers offer 13″ MacBo...
B&H Photo has 13″ MacBook Pros on sale for up to $150 off MSRP. Shipping is free, and B&H charges sales tax for NY & NJ residents only: – 13-inch 2.3GHz/128GB Space Gray MacBook Pro (... Read more

Jobs Board

*Apple* Retail - Multiple Positions - Apple,...
Job Description: Sales Specialist - Retail Customer Service and Sales Transform Apple Store visitors into loyal Apple customers. When customers enter the store, Read more
*Apple* Retail - Multiple Positions - Apple,...
Job Description:SalesSpecialist - Retail Customer Service and SalesTransform Apple Store visitors into loyal Apple customers. When customers enter the store, Read more
*Apple* Retail - Multiple Positions - Apple,...
Job Description: Sales Specialist - Retail Customer Service and Sales Transform Apple Store visitors into loyal Apple customers. When customers enter the store, Read more
*Apple* Retail - Multiple Positions - Apple,...
Job Description:SalesSpecialist - Retail Customer Service and SalesTransform Apple Store visitors into loyal Apple customers. When customers enter the store, Read more
*Apple* Retail - Multiple Positions - Apple,...
Job Description: Sales Specialist - Retail Customer Service and Sales Transform Apple Store visitors into loyal Apple customers. When customers enter the store, Read more
All contents are Copyright 1984-2011 by Xplain Corporation. All rights reserved. Theme designed by Icreon.