TweetFollow Us on Twitter

Jul 94 Challenge
Volume Number:10
Issue Number:7
Column Tag:Programmers’ Challenge

Programmers’ Challenge

By Mike Scanlin, MacTech Magazine Regular Contributing Author

Note: Source code files accompanying article are located on MacTech CD-ROM or source code disks.

Color Space Conversion

Typically, when an RGB image is compressed into JPEG data, it is first converted into separate luminance (Y) and chrominance (U and V) components. Although JPEG doesn’t specify which color space conversion to use, a commonly used one is:

Y     0.29900000   0.58700000   0.11400000     R
U  = -0.16873590  -0.33126410   0.50000000  *  G
V     0.50000000  -0.41868760  -0.08131241     B

where R, G and B are unsigned chars (0..255). For the outputs, Y is an unsigned char (0..255) while U and V are signed chars (-128..127).

The prototype of the two functions you write are:


/* 1 */
void *RGBtoYUVInit(void);

void RGBtoYUV(rPtr, gPtr, bPtr, 
              yPtr, uPtr, vPtr,
              numPixels,privateDataPtr)
unsigned char *rPtr;
unsigned char *gPtr;
unsigned char *bPtr;
unsigned char *yPtr;
  signed char *uPtr;
  signed char *vPtr;
unsigned long numPixels;
         void *privateDataPtr;

This month you’re being given a chance to have a separate initialization routine that will not be timed (only the RGBtoYUV will count towards your time). It can create whatever lookup tables RGBtoYUV may need and return a pointer to that private data. The return value from RGBtoYUVInit will be passed to RGBtoYUV as the privateDataPtr parameter. You decide what it points to (if anything).

There are two key aspects to writing RGBtoYUV. The first is that it has to be fast (as always). The second, though, is that it has to be accurate (or else when someone reconstructs the image with the inverse conversion image quality will be lost). Even though the outputs are only 8 bits, the matrix coefficients require much more than that to represent. Your output values must equal what you would get if you carried out the matrix math with complete precision and then rounded the results down to 8 bits as the last step (with .5 rounding down to zero). For instance, if R = 3, G = 17 and B = 23 then: Y = 3*.299 + 17*.587 + 23*.114 which is 13.498. When rounded this becomes 13 which is what you should return as part of the buffer that yPtr points to.

Each of the pointers to the RGB input data and YUV output data point to a buffer filled with data of one component (so there are 6 buffers total). numPixels is between 1 and 1,000,000 and is the size of each buffer. If numPixels were 100 then rPtr would point to 100 red values and gPtr and bPtr would point to 100 corresponding green and blue values. Your routine would then set the 100 bytes pointed to by yPtr to the appropriate Y values (and likewise for the U and V values, too).

The RGB and YUV buffers will be allocated for you. Your initialization routine may allocate up to 1MB of lookup tables if it wants to (it will be able to get a contiguous 1MB piece if it needs it).

TWO MONTHS AGO WINNER

We have a new first-time winner this month. Congrats to Troy Anderson (Paradise Valley, AZ) for his somewhat large but definitely fast entry in the Flip Horizontal challenge. He was faster than second place winner Bob Boonstra (Westford, MA) in every case that I tested. No small feat considering that Bob is a three-time Challenge winner. Troy also beat another three-time winner, Bill Karsh (Chicago, IL), in almost every test case. Unfortunately, Bill may have been too ecstatic with his win last month to test every possible case this month and unfortunately I had to disqualify his entry for lack of correctness.

Here are the code sizes and times. The time numbers represents the sum of the times for many different inputs (different depths, different rowBytes, etc). Numbers in parens after a person’s name indicate how many times that person has finished in the top 5 places of all previous Programmer Challenges, not including this one:

Name time code+data

Troy Anderson 759 2442

Bob Boonstra (8) 818 1564

Allen Stenger (5) 1069 1318

Michael Panchenko 2952 616

The best way to do well at the Flip Horizontal problem is to write dedicated code to handle each possible depth. That’s exactly what Troy did. He then went even further by special casing certain common cases, such as when rowBytes is a multiple of four.

Troy also solved the flip-byte problem (that exists when the depth is less than 8) the same way that almost everyone else did: with a lookup table for each case (1-bit, 2-bit and 4-bit). For example, when you’re flipping a bitmap horizontally it becomes necessary to flip all 8 bits in a byte. With a 256 element lookup table you can do this in a single lookup.

The 8-bit, 16-bit and 32-bit deep cases are all very similar. Troy reuses similar code by letting the preprocessor fill in the types of his variables (he uses the #define T for this purpose).

Another way of doing this, if the code is similar enough for each case, is to make the whole routine a macro and have it take a parameter which represents the type (byte, short, etc) that you want the code generated for. For instance, Bob Boonstra created this macro:


/* 2 */
/* Macro DoFlipHoriz 
 handles cases where a pixel is one byte, word, or longword in size.
 */
#define DoFlipHoriz(tp) \
{ \
/* loopCount=numCols/2 has already been calculated. */ \
  if (0 < loopCount) do { \
    register tp *p,*q; \
    p = (tp *)base; \
    q = p+numCols; \
    cCount = loopCount; \
    do { \
      register tp temp; \
      temp = *p; \
      *p++ = *--q; \
      *q = temp; \
    } while (--cCount); \
    base += rowBytes; \
  } while (--rCount); \
}
and then uses it like this in part of his solution:

    register short cCount,rCount,loopCount;
    rCount = numRows;
    loopCount = numCols>>1;
    if (8 == pixSize) DoFlipHoriz(uchar) 
    else if (16==pixSize) DoFlipHoriz(ushort)
    else /*if (32==pixSize)*/ DoFlipHoriz(ulong)

You’ll get 3 copies of the macro’s code, each for a different size pixel.
Here’s Troy’s winning solution:

// MacTech Magazine Programmers' Challenge
// May, 1994
// Submitted by Troy Anderson
// 
// Copyright (c) 1994 Troy L. Anderson

#include <QDOffscreen.h>

typedef unsigned char UCHAR;

prototypes
void FlipPixMapHorz( PixMapHandle thePixMapHndl);

static void Flip_Long(  PixMapHandle theMap, 
                        short rowBytes,
                        short depth,
                        Rect* area);

static void Flip_Word(  PixMapHandle theMap, 
                        short rowBytes,
                        short depth,
                        Rect* area);

static void ExchangeWords_Long( PixMapHandle theMap, 
                                short rowBytes,
                                short depth,
                                Rect* area);

static void ExchangeWords_Word( PixMapHandle theMap, 
                                short rowBytes,
                                short depth,
                                Rect* area);

static void ExchangeWords_Byte( PixMapHandle theMap, 
                                short rowBytes,
                                short depth,
                                Rect* area);


FlipPixMapHorz
// This could be made a bit faster by in-lining the functions, but this 
is much clearer,
// and not very much slower.
void FlipPixMapHorz( PixMapHandle thePixMapHndl)
{
  short   rowBytes = (**thePixMapHndl).rowBytes & 0x7fff;
  Boolean longAligned = rowBytes % 4 == 0;
  short   depth = (**thePixMapHndl).pixelSize;
  Rect    bounds = (**thePixMapHndl).bounds;
  
  switch( depth)
  {
    case  1:
    case  2:
    case  4:
      if (longAligned)
        Flip_Long(  thePixMapHndl, 
                    rowBytes,
                    depth,
                    &bounds);
      else
        Flip_Word(  thePixMapHndl,
                    rowBytes,
                    depth,
                    &bounds);
      break;

    case  8:
      ExchangeWords_Byte( thePixMapHndl,
                          rowBytes,
                          depth,
                          &bounds);
      break;
    
    case  16:
      ExchangeWords_Word( thePixMapHndl,
                          rowBytes,
                          depth,
                          &bounds);
      break;
      
    case  32:
      ExchangeWords_Long( thePixMapHndl,
                          rowBytes,
                          depth,
                          &bounds);
      break;
  }
}


ExchangeWords_Long
long word alignment version
static void ExchangeWords_Long( PixMapHandle theMap,
                                short rowBytes,
                                short depth,
                                Rect* area)
{
#undef T
#define T long

  short       rowCells = rowBytes / sizeof(T);
  short       numCells = ((area->right - area->left) * 
                      depth + sizeof(T)*8 - 1) / 
                      (sizeof(T)*8);
  T           temp;
  register T  *cellPtr1, *cellPtr2;
  T           *aRow;
  T           *firstRow = (T*)GetPixBaseAddr( theMap);
  T           *lastRow = firstRow + rowCells * 
                        (long)(area->bottom - area->top);

    // Flip the words in each row
  for ( aRow = firstRow; aRow < lastRow; aRow += rowCells)
    for ( cellPtr1 = aRow + numCells-1, cellPtr2 = aRow;
        cellPtr1 > cellPtr2; 
        cellPtr1--, cellPtr2++)
      temp = *cellPtr1, // swap them 
      *cellPtr1 = *cellPtr2, 
      *cellPtr2 = temp;
}


ExchangeWords
word alignment version
static void ExchangeWords_Word( PixMapHandle theMap,
                                short rowBytes,
                                short depth,
                                Rect* area)
{
#undef T
#define T short

  short       rowCells = rowBytes / sizeof(T);
  short       numCells = ((area->right - area->left) * 
                      depth + sizeof(T)*8 - 1) / 
                      (sizeof(T)*8);
  T           temp;
  register T  *cellPtr1, *cellPtr2;
  T           *aRow;
  T           *firstRow = (T*)GetPixBaseAddr( theMap);
  T           *lastRow = firstRow + rowCells * 
                        (long)(area->bottom - area->top);

    // Flip the words in each row
  for ( aRow = firstRow; aRow < lastRow; aRow += rowCells)
    for ( cellPtr1 = aRow + numCells-1, cellPtr2 = aRow;
        cellPtr1 > cellPtr2; 
        cellPtr1--, cellPtr2++)
      temp = *cellPtr1, // swap them 
      *cellPtr1 = *cellPtr2, 
      *cellPtr2 = temp;
}

ExchangeWords
byte alignment version
static void ExchangeWords_Byte( PixMapHandle theMap,
                                short rowBytes,
                                short depth,
                                Rect* area)
{
#undef T
#define T char

  short       rowCells = rowBytes / sizeof(T);
  short       numCells = ((area->right - area->left) * 
                      depth + sizeof(T)*8 - 1) / 
                      (sizeof(T)*8);
  T           temp;
  register T  *cellPtr1, *cellPtr2;
  T           *aRow;
  T           *firstRow = (T*)GetPixBaseAddr( theMap);
  T           *lastRow = firstRow + rowCells * 
                        (long)(area->bottom - area->top);

    // Flip the words in each row
  for ( aRow = firstRow; aRow < lastRow; aRow += rowCells)
    for ( cellPtr1 = aRow + numCells-1, cellPtr2 = aRow;
        cellPtr1 > cellPtr2; 
        cellPtr1--, cellPtr2++)
      temp = *cellPtr1, // swap them 
      *cellPtr1 = *cellPtr2, 
      *cellPtr2 = temp;
}


Inverse tables
// Inverse tables used to flip the bits in a byte - 
// index is input, value is inverse of index

// This is the 1-bit per pixel table
static char byteFlips1[] ={ 
  0x00, 0x80, 0x40, 0xc0, 0x20, 0xa0, 0x60, 0xe0, 
  0x10, 0x90, 0x50, 0xd0, 0x30, 0xb0, 0x70, 0xf0,
  0x08, 0x88, 0x48, 0xc8, 0x28, 0xa8, 0x68, 0xe8, 
  0x18, 0x98, 0x58, 0xd8, 0x38, 0xb8, 0x78, 0xf8,
  0x04, 0x84, 0x44, 0xc4, 0x24, 0xa4, 0x64, 0xe4, 
  0x14, 0x94, 0x54, 0xd4, 0x34, 0xb4, 0x74, 0xf4, 
  0x0c, 0x8c, 0x4c, 0xcc, 0x2c, 0xac, 0x6c, 0xec, 
  0x1c, 0x9c, 0x5c, 0xdc, 0x3c, 0xbc, 0x7c, 0xfc, 
  0x02, 0x82, 0x42, 0xc2, 0x22, 0xa2, 0x62, 0xe2, 
  0x12, 0x92, 0x52, 0xd2, 0x32, 0xb2, 0x72, 0xf2, 
  0x0a, 0x8a, 0x4a, 0xca, 0x2a, 0xaa, 0x6a, 0xea, 
  0x1a, 0x9a, 0x5a, 0xda, 0x3a, 0xba, 0x7a, 0xfa, 
  0x06, 0x86, 0x46, 0xc6, 0x26, 0xa6, 0x66, 0xe6, 
  0x16, 0x96, 0x56, 0xd6, 0x36, 0xb6, 0x76, 0xf6, 
  0x0e, 0x8e, 0x4e, 0xce, 0x2e, 0xae, 0x6e, 0xee, 
  0x1e, 0x9e, 0x5e, 0xde, 0x3e, 0xbe, 0x7e, 0xfe, 
  0x01, 0x81, 0x41, 0xc1, 0x21, 0xa1, 0x61, 0xe1, 
  0x11, 0x91, 0x51, 0xd1, 0x31, 0xb1, 0x71, 0xf1, 
  0x09, 0x89, 0x49, 0xc9, 0x29, 0xa9, 0x69, 0xe9, 
  0x19, 0x99, 0x59, 0xd9, 0x39, 0xb9, 0x79, 0xf9, 
  0x05, 0x85, 0x45, 0xc5, 0x25, 0xa5, 0x65, 0xe5, 
  0x15, 0x95, 0x55, 0xd5, 0x35, 0xb5, 0x75, 0xf5, 
  0x0d, 0x8d, 0x4d, 0xcd, 0x2d, 0xad, 0x6d, 0xed, 
  0x1d, 0x9d, 0x5d, 0xdd, 0x3d, 0xbd, 0x7d, 0xfd,
  0x03, 0x83, 0x43, 0xc3, 0x23, 0xa3, 0x63, 0xe3, 
  0x13, 0x93, 0x53, 0xd3, 0x33, 0xb3, 0x73, 0xf3,
  0x0b, 0x8b, 0x4b, 0xcb, 0x2b, 0xab, 0x6b, 0xeb, 
  0x1b, 0x9b, 0x5b, 0xdb, 0x3b, 0xbb, 0x7b, 0xfb, 
  0x07, 0x87, 0x47, 0xc7, 0x27, 0xa7, 0x67, 0xe7, 
  0x17, 0x97, 0x57, 0xd7, 0x37, 0xb7, 0x77, 0xf7, 
  0x0f, 0x8f, 0x4f, 0xcf, 0x2f, 0xaf, 0x6f, 0xef, 
  0x1f, 0x9f, 0x5f, 0xdf, 0x3f, 0xbf, 0x7f, 0xff  };
              
// This is the 2-bits per pixel table
static char byteFlips2[] ={ 
  0x00, 0x40, 0x80, 0xc0, 0x10, 0x50, 0x90, 0xd0, 
  0x20, 0x60, 0xa0, 0xe0, 0x30, 0x70, 0xb0, 0xf0,
  0x04, 0x44, 0x84, 0xc4, 0x14, 0x54, 0x94, 0xd4, 
  0x24, 0x64, 0xa4, 0xe4, 0x34, 0x74, 0xb4, 0xf4,
  0x08, 0x48, 0x88, 0xc8, 0x18, 0x58, 0x98, 0xd8, 
  0x28, 0x68, 0xa8, 0xe8, 0x38, 0x78, 0xb8, 0xf8, 
  0x0c, 0x4c, 0x8c, 0xcc, 0x1c, 0x5c, 0x9c, 0xdc, 
  0x2c, 0x6c, 0xac, 0xec, 0x3c, 0x7c, 0xbc, 0xfc, 
  0x01, 0x41, 0x81, 0xc1, 0x11, 0x51, 0x91, 0xd1, 
  0x21, 0x61, 0xa1, 0xe1, 0x31, 0x71, 0xb1, 0xf1, 
  0x05, 0x45, 0x85, 0xc5, 0x15, 0x55, 0x95, 0xd5, 
  0x25, 0x65, 0xa5, 0xe5, 0x35, 0x75, 0xb5, 0xf5, 
  0x09, 0x49, 0x89, 0xc9, 0x19, 0x59, 0x99, 0xd9, 
  0x29, 0x69, 0xa9, 0xe9, 0x39, 0x79, 0xb9, 0xf9, 
  0x0d, 0x4d, 0x8d, 0xcd, 0x1d, 0x5d, 0x9d, 0xdd, 
  0x2d, 0x6d, 0xad, 0xed, 0x3d, 0x7d, 0xbd, 0xfd, 
  0x02, 0x42, 0x82, 0xc2, 0x12, 0x52, 0x92, 0xd2, 
  0x22, 0x62, 0xa2, 0xe2, 0x32, 0x72, 0xb2, 0xf2, 
  0x06, 0x46, 0x86, 0xc6, 0x16, 0x56, 0x96, 0xd6, 
  0x26, 0x66, 0xa6, 0xe6, 0x36, 0x76, 0xb6, 0xf6, 
  0x0a, 0x4a, 0x8a, 0xca, 0x1a, 0x5a, 0x9a, 0xda, 
  0x2a, 0x6a, 0xaa, 0xea, 0x3a, 0x7a, 0xba, 0xfa, 
  0x0e, 0x4e, 0x8e, 0xce, 0x1e, 0x5e, 0x9e, 0xde, 
  0x2e, 0x6e, 0xae, 0xee, 0x3e, 0x7e, 0xbe, 0xfe, 
  0x03, 0x43, 0x83, 0xc3, 0x13, 0x53, 0x93, 0xd3, 
  0x23, 0x63, 0xa3, 0xe3, 0x33, 0x73, 0xb3, 0xf3, 
  0x07, 0x47, 0x87, 0xc7, 0x17, 0x57, 0x97, 0xd7, 
  0x27, 0x67, 0xa7, 0xe7, 0x37, 0x77, 0xb7, 0xf7, 
  0x0b, 0x4b, 0x8b, 0xcb, 0x1b, 0x5b, 0x9b, 0xdb, 
  0x2b, 0x6b, 0xab, 0xeb, 0x3b, 0x7b, 0xbb, 0xfb, 
  0x0f, 0x4f, 0x8f, 0xcf, 0x1f, 0x5f, 0x9f, 0xdf, 
  0x2f, 0x6f, 0xaf, 0xef, 0x3f, 0x7f, 0xbf, 0xff  };
            
// This is the 4-bits per pixel table
static char byteFlips4[] ={ 
  0x00, 0x10, 0x20, 0x30, 0x40, 0x50, 0x60, 0x70, 
  0x80, 0x90, 0xa0, 0xb0, 0xc0, 0xd0, 0xe0, 0xf0,
  0x01, 0x11, 0x21, 0x31, 0x41, 0x51, 0x61, 0x71, 
  0x81, 0x91, 0xa1, 0xb1, 0xc1, 0xd1, 0xe1, 0xf1, 
  0x02, 0x12, 0x22, 0x32, 0x42, 0x52, 0x62, 0x72, 
  0x82, 0x92, 0xa2, 0xb2, 0xc2, 0xd2, 0xe2, 0xf2, 
  0x03, 0x13, 0x23, 0x33, 0x43, 0x53, 0x63, 0x73, 
  0x83, 0x93, 0xa3, 0xb3, 0xc3, 0xd3, 0xe3, 0xf3, 
  0x04, 0x14, 0x24, 0x34, 0x44, 0x54, 0x64, 0x74, 
  0x84, 0x94, 0xa4, 0xb4, 0xc4, 0xd4, 0xe4, 0xf4, 
  0x05, 0x15, 0x25, 0x35, 0x45, 0x55, 0x65, 0x75, 
  0x85, 0x95, 0xa5, 0xb5, 0xc5, 0xd5, 0xe5, 0xf5, 
  0x06, 0x16, 0x26, 0x36, 0x46, 0x56, 0x66, 0x76, 
  0x86, 0x96, 0xa6, 0xb6, 0xc6, 0xd6, 0xe6, 0xf6, 
  0x07, 0x17, 0x27, 0x37, 0x47, 0x57, 0x67, 0x77, 
  0x87, 0x97, 0xa7, 0xb7, 0xc7, 0xd7, 0xe7, 0xf7, 
  0x08, 0x18, 0x28, 0x38, 0x48, 0x58, 0x68, 0x78, 
  0x88, 0x98, 0xa8, 0xb8, 0xc8, 0xd8, 0xe8, 0xf8, 
  0x09, 0x19, 0x29, 0x39, 0x49, 0x59, 0x69, 0x79, 
  0x89, 0x99, 0xa9, 0xb9, 0xc9, 0xd9, 0xe9, 0xf9, 
  0x0a, 0x1a, 0x2a, 0x3a, 0x4a, 0x5a, 0x6a, 0x7a, 
  0x8a, 0x9a, 0xaa, 0xba, 0xca, 0xda, 0xea, 0xfa, 
  0x0b, 0x1b, 0x2b, 0x3b, 0x4b, 0x5b, 0x6b, 0x7b, 
  0x8b, 0x9b, 0xab, 0xbb, 0xcb, 0xdb, 0xeb, 0xfb, 
  0x0c, 0x1c, 0x2c, 0x3c, 0x4c, 0x5c, 0x6c, 0x7c, 
  0x8c, 0x9c, 0xac, 0xbc, 0xcc, 0xdc, 0xec, 0xfc, 
  0x0d, 0x1d, 0x2d, 0x3d, 0x4d, 0x5d, 0x6d, 0x7d, 
  0x8d, 0x9d, 0xad, 0xbd, 0xcd, 0xdd, 0xed, 0xfd, 
  0x0e, 0x1e, 0x2e, 0x3e, 0x4e, 0x5e, 0x6e, 0x7e, 
  0x8e, 0x9e, 0xae, 0xbe, 0xce, 0xde, 0xee, 0xfe, 
  0x0f, 0x1f, 0x2f, 0x3f, 0x4f, 0x5f, 0x6f, 0x7f, 
  0x8f, 0x9f, 0xaf, 0xbf, 0xcf, 0xdf, 0xef, 0xff  };


Flip_Long
static void Flip_Long(  PixMapHandle theMap, 
                        short rowBytes,
                        short depth,
                        Rect* area)
{
#undef T
#define T long

  register UCHAR  temp;
  short           rowCells = rowBytes / sizeof(T);
  long            bitsPerRow = (area->right - area->left) *
                          (long)depth - 1;
  short           numCells = (bitsPerRow + sizeof(T)*8) /
                          (sizeof(T)*8);
  T*              cellPtr;
  T*              aRow;
  T*              firstRow = (T*)GetPixBaseAddr( theMap);
  T*              lastRow = firstRow + rowCells * 
                      (long)(area->bottom - area->top);
  
  register T*     cellPtr1, *cellPtr2;

  short           numBitsToShift = ((sizeof(T)*8) -
                      (bitsPerRow % (sizeof(T)*8) + 1));
  T               shiftMask;
  T*              shiftCellPtr;
  char*           flipTable;
  
  

  switch(depth)
  {
    case 1:
      flipTable = byteFlips1;
      break;
    case 2:
      flipTable = byteFlips2;
      break;
    case 4:
      flipTable = byteFlips4;
      break;
  }
            

  if (numBitsToShift)
  {
    shiftMask = (1L << numBitsToShift) - 1;

    for ( aRow = firstRow; 
        aRow < lastRow;
        aRow += rowCells)
    {
      // With each pair of cells in the row (one on the left, the other 
on the right),
      // flip the pixels in the individual cells and swap the cells with 
one another.
      for ( cellPtr1 = aRow + numCells - 1, cellPtr2 = aRow;
          cellPtr1 > cellPtr2;
          cellPtr1--, cellPtr2++)
      {
        temp = ((UCHAR*)cellPtr1)[0];
        ((UCHAR*)cellPtr1)[0] = 
            flipTable[((UCHAR*)cellPtr2)[3]];
        ((UCHAR*)cellPtr2)[3] = flipTable[temp];
        
        temp = ((UCHAR*)cellPtr1)[1];
        ((UCHAR*)cellPtr1)[1] = 
            flipTable[((UCHAR*)cellPtr2)[2]];
        ((UCHAR*)cellPtr2)[2] = flipTable[temp];
        
        temp = ((UCHAR*)cellPtr1)[2];
        ((UCHAR*)cellPtr1)[2] = 
            flipTable[((UCHAR*)cellPtr2)[1]];
        ((UCHAR*)cellPtr2)[1] = flipTable[temp];
        
        temp = ((UCHAR*)cellPtr1)[3];
        ((UCHAR*)cellPtr1)[3] = 
            flipTable[((UCHAR*)cellPtr2)[0]];
        ((UCHAR*)cellPtr2)[0] = flipTable[temp];
      }
      
      // If there's an odd number of cells in the row,  there is one 
cell we haven't
      // touched.   It needs to be flipped.
      if (cellPtr1 == cellPtr2)
      {
        temp = ((UCHAR*)cellPtr1)[0];
        ((UCHAR*)cellPtr1)[0] = 
            flipTable[((UCHAR*)cellPtr1)[3]];
        ((UCHAR*)cellPtr1)[3] = flipTable[temp];
        
        temp = ((UCHAR*)cellPtr1)[1];
        ((UCHAR*)cellPtr1)[1] = 
            flipTable[((UCHAR*)cellPtr1)[2]];
        ((UCHAR*)cellPtr1)[2] = flipTable[temp];
      }

      // Slide the pixels to the left
      for ( shiftCellPtr = aRow;
          shiftCellPtr < aRow + rowCells;
          shiftCellPtr++)
      {
        // shift the bits over
        *shiftCellPtr <<= numBitsToShift;
          
        // bring in the bits from the next cell - garbage will be brought 
in during
        // the last iteration, but it’s put into the last cell, outside 
the bounds of the 
        // image (but still in the data area)
        *shiftCellPtr |= shiftMask & 
                        (*(shiftCellPtr+1) >> 
                          (sizeof(T)*8 - numBitsToShift));
      }
    }
  }
  else  // no need to shift pixels, otherwise, just the same as previous 
loop
    for ( aRow = firstRow; aRow < lastRow; aRow += rowCells)
    {
      // With each pair of cells in the row (one on the  left, the other 
on the right),
      // flip the pixels in the individual cells and swap the cells with 
one another.
      for ( cellPtr1 = aRow + numCells - 1, cellPtr2 = aRow;
            cellPtr1 > cellPtr2;
            cellPtr1--, cellPtr2++)
      {
        temp = ((UCHAR*)cellPtr1)[0];
        ((UCHAR*)cellPtr1)[0] =
            flipTable[((UCHAR*)cellPtr2)[3]];
        ((UCHAR*)cellPtr2)[3] = flipTable[temp];
        
        temp = ((UCHAR*)cellPtr1)[1];
        ((UCHAR*)cellPtr1)[1] = 
            flipTable[((UCHAR*)cellPtr2)[2]];
        ((UCHAR*)cellPtr2)[2] = flipTable[temp];
        
        temp = ((UCHAR*)cellPtr1)[2];
        ((UCHAR*)cellPtr1)[2] = 
            flipTable[((UCHAR*)cellPtr2)[1]];
        ((UCHAR*)cellPtr2)[1] = flipTable[temp];
        
        temp = ((UCHAR*)cellPtr1)[3];
        ((UCHAR*)cellPtr1)[3] = 
            flipTable[((UCHAR*)cellPtr2)[0]];
        ((UCHAR*)cellPtr2)[0] = flipTable[temp];
      }
      
      // If there are an odd number of cells in the row,
      // there is one cell we haven't touched.
      // It needs to be flipped.
      if (cellPtr1 == cellPtr2)
      {
        temp = ((UCHAR*)cellPtr1)[0];
        ((UCHAR*)cellPtr1)[0] = 
            flipTable[((UCHAR*)cellPtr1)[3]];
        ((UCHAR*)cellPtr1)[3] = flipTable[temp];
        
        temp = ((UCHAR*)cellPtr1)[1];
        ((UCHAR*)cellPtr1)[1] = 
            flipTable[((UCHAR*)cellPtr1)[2]];
        ((UCHAR*)cellPtr1)[2] = flipTable[temp];
      }
    }
  }
}


Flip_Word
static void Flip_Word(  PixMapHandle theMap, 
                        short rowBytes,
                        short depth,
                        Rect* area)
{
#undef T
#define T short

  register UCHAR  temp;
  short           rowCells = rowBytes / sizeof(T);
  long            bitsPerRow = (area->right - area->left) *
                          (long)depth - 1;
  short           numCells = (bitsPerRow + sizeof(T)*8) /
                          (sizeof(T)*8);
  T*              cellPtr;
  T*              aRow;
  T*              firstRow = (T*)GetPixBaseAddr( theMap);
  T*              lastRow = firstRow + rowCells * 
                      (long)(area->bottom - area->top);
  
  register T*     cellPtr1, *cellPtr2;

  short           numBitsToShift = ((sizeof(T)*8) -
                      (bitsPerRow % (sizeof(T)*8) + 1));
  T               shiftMask;
  T*              shiftCellPtr;
  char*           flipTable;
  
  

  switch(depth)
  {
    case 1:
      flipTable = byteFlips1;
      break;
    case 2:
      flipTable = byteFlips2;
      break;
    case 4:
      flipTable = byteFlips4;
      break;
  }
            

  if (numBitsToShift)
  {
    shiftMask = (1L << numBitsToShift) - 1;

    for ( aRow = firstRow; aRow < lastRow; aRow += rowCells)
    {
      // With each pair of cells in the row (one on the left, the other 
on the right),
      // flip the pixels in the individual cells and swap the cells with 
one another.
      for ( cellPtr1 = aRow + numCells - 1, cellPtr2 = aRow;
          cellPtr1 > cellPtr2;
          cellPtr1--, cellPtr2++)
      {
        temp = ((UCHAR*)cellPtr1)[0];
        ((UCHAR*)cellPtr1)[0] = 
            flipTable[((UCHAR*)cellPtr2)[1]];
        ((UCHAR*)cellPtr2)[1] = flipTable[temp];
        
        temp = ((UCHAR*)cellPtr1)[1];
        ((UCHAR*)cellPtr1)[1] =
            flipTable[((UCHAR*)cellPtr2)[0]];
        ((UCHAR*)cellPtr2)[0] = flipTable[temp];
      }
      
      // If there's an odd number of cells in the row, there is one cell 
we haven't
      // touched.   It needs to be flipped.
      if (cellPtr1 == cellPtr2)
      {
        temp = ((UCHAR*)cellPtr1)[0];
        ((UCHAR*)cellPtr1)[0] = 
            flipTable[((UCHAR*)cellPtr1)[1]];
        ((UCHAR*)cellPtr1)[1] = 
            flipTable[temp];
      }

      // Slide the pixels to the left
      for ( shiftCellPtr = aRow;
          shiftCellPtr < aRow + rowCells;
          shiftCellPtr++)
      {
      // shift the bits over
        *shiftCellPtr <<= numBitsToShift;
          
      // bring in the bits from the next cell - garbage will be brought 
in during last 
      // iteration, but it’s put into the last
        // cell, outside the bounds of the image (but still in the data 
area)
        *shiftCellPtr |= shiftMask & 
                        (*(shiftCellPtr+1) >> 
                          (sizeof(T)*8 - numBitsToShift));
      }
    }
  }
  else  // no need to shift pixels, otherwise,  just the same as previous 
loop
    for ( aRow = firstRow; aRow < lastRow; aRow += rowCells)
    {
      // With each pair of cells in the row (one on the 
      // left, the other on the right), flip the pixels
      // in the individual cells and swap the cells with
       // one another.
      for ( cellPtr1 = aRow + numCells - 1, cellPtr2 = aRow;
            cellPtr1 > cellPtr2;
            cellPtr1--, cellPtr2++)
      {
        temp = ((UCHAR*)cellPtr1)[0];
        ((UCHAR*)cellPtr1)[0] = 
            flipTable[((UCHAR*)cellPtr2)[1]];
        ((UCHAR*)cellPtr2)[1] = flipTable[temp];
        
        temp = ((UCHAR*)cellPtr1)[1];
        ((UCHAR*)cellPtr1)[1] = 
            flipTable[((UCHAR*)cellPtr2)[0]];
        ((UCHAR*)cellPtr2)[0] = flipTable[temp];
      }
      
      // If there are an odd number of cells in the row,
      // there is one cell we haven't touched.
      // It needs to be flipped.
      if (cellPtr1 == cellPtr2)
      {
        temp = ((UCHAR*)cellPtr1)[0];
        ((UCHAR*)cellPtr1)[0] = 
            flipTable[((UCHAR*)cellPtr1)[1]];
        ((UCHAR*)cellPtr1)[1] = flipTable[temp];
      }
    }
  }
}
 
AAPL
$524.94
Apple Inc.
+5.93
MSFT
$40.01
Microsoft Corpora
-0.39
GOOG
$536.10
Google Inc.
-20.44

MacTech Search:
Community Search:

Software Updates via MacUpdate

Tweetbot 1.5.1 - Popular iOS twitter cli...
Tweetbot is a full-featured OS X Twitter client with a lot of personality. Whether it's the meticulously-crafted interface, sounds and animation, or features like multiple timelines and column views... Read more
Mac DVDRipper Pro 4.1.7 - Copy, backup,...
Mac DVDRipper Pro is the DVD backup solution that lets you protect your DVDs from scratches, save your batteries by reading your movies from your hard disk, manage your collection with just a few... Read more
PDFpenPro 6.2 - Advanced PDF toolkit for...
PDFpenPro allows users to edit PDF's easily. Add text, images and signatures. Fill out PDF forms. Merge or split PDF documents. Reorder and delete pages. Even correct text and edit graphics! Create... Read more
PDFpen 6.2 - Edit and annotate PDFs with...
PDFpen allows users to easily edit PDF's. Add text, images and signatures. Fill out PDF forms. Merge or split PDF documents. Reorder and delete pages. Even correct text and edit graphics! Features... Read more
Monolingual 1.5.9 - Remove unwanted OS X...
Monolingual is a program for removing unnecesary language resources from OS X, in order to reclaim several hundred megabytes of disk space. It requires a 64-bit capable Intel-based Mac and at least... Read more
Maya 2015 - Professional 3D modeling and...
Maya is an award-winning software and powerful, integrated 3D modeling, animation, visual effects, and rendering solution. Because Maya is based on an open architecture, all your work can be scripted... Read more
Starcraft II: Wings of Liberty 1.1.1.180...
Download the patch by launching the Starcraft II game and downloading it through the Battle.net connection within the app. Starcraft II: Wings of Liberty is a strategy game played in real-time. You... Read more
Sibelius 7.5.0 - Music notation solution...
Sibelius is the world's best-selling music notation software for Mac. It is as intuitive to use as a pen, yet so powerful that it does most things in less than the blink of an eye. The demo includes... Read more
Typinator 5.9 - Speedy and reliable text...
Typinator turbo-charges your typing productivity. Type a little. Typinator does the rest. We've all faced projects that require repetitive typing tasks. With Typinator, you can store commonly used... Read more
MYStuff Pro 2.0.16 - Create inventories...
MYStuff Pro is the most flexible way to create detail-rich inventories for your home or small business. Add items to MYStuff by dragging and dropping existing information, uploading new images, or... Read more

Latest Forum Discussions

See All

Have a Special Dead Trigger 2 Easter Bas...
Have a Special Dead Trigger 2 Easter Basket Full of Goodies, Courtesy of Madfinger Games Posted by Rob Rich on April 18th, 2014 [ permalink ] Dead Trigger 2 | Read more »
Zynga Launches Brand New Farmville Exper...
Zynga Launches Brand New Farmville Experience with Farmville 2: Country Escape Posted by Tre Lawrence on April 18th, 2014 [ permalink ] | Read more »
David. Review
David. Review By Cata Modorcea on April 18th, 2014 Our Rating: :: MINIMALISTIC IN A DIFFERENT WAYUniversal App - Designed for iPhone and iPad David is a minimalistic game wrapped inside of a soothing atmosphere in which the hero... | Read more »
Eyefi Unveils New Eyefi Cloud Service Th...
Eyefi Unveils New Eyefi Cloud Service That Allows Users to Share Media Across Personal Devices Posted by Tre Lawrence on April 18th, 2014 [ permalink ] | Read more »
Tales from the Dragon Mountain: The Lair...
Tales from the Dragon Mountain: The Lair Review By Jennifer Allen on April 18th, 2014 Our Rating: :: STEADY ADVENTURINGiPad Only App - Designed for the iPad Treading a safe path, Tales from the Dragon Mountain: The Lair is a... | Read more »
Yahoo Updates Flickr App with Advanced E...
Yahoo Updates Flickr App with Advanced Editing Features and More Posted by Tre Lawrence on April 18th, 2014 [ permalink ] | Read more »
My Incredible Body - A Kid's App to...
My Incredible Body - A Kid's App to Learn about the Human Body 1.1.00 Device: iOS Universal Category: Education Price: $2.99, Version: 1.1.00 (iTunes) Description: Wouldn’t it be cool to look inside yourself and see what was going on... | Read more »
Trials Frontier Review
Trials Frontier Review By Carter Dotson on April 18th, 2014 Our Rating: :: A ROUGH LANDINGUniversal App - Designed for iPhone and iPad Trials Frontier finally brings the famed stunt racing franchise to mobile, but how much does its... | Read more »
Evernote Business Notebook by Moleskin I...
Evernote Business Notebook by Moleskin Introduced – Support Available in Evernote for iOS Posted by Tre Lawrence on April 18th, 2014 [ permalink ] | Read more »
Sparkle Unleashed Review
Sparkle Unleashed Review By Jennifer Allen on April 18th, 2014 Our Rating: :: CLASSY MARBLE FLINGINGUniversal App - Designed for iPhone and iPad It’s a concept we’ve seen before, but Sparkle Unleashed is a solidly enjoyable orb... | Read more »

Price Scanner via MacPrices.net

iMacs on sale for up to $160 off MSRP this we...
Best Buy has iMacs on sale for up to $160 off MSRP for a limited time. Choose free home shipping or free instant local store pickup (if available). Prices are valid for online orders only, in-store... Read more
iPad Airs on sale this weekend for up to $100...
Best Buy has WiFi iPad Airs on sale for $50 off MSRP and WiFi + Cellular iPad Airs on sale for $100 off MSRP on their online store for a limited time, with prices now starting at $449. Choose free... Read more
Apple restocks refurbished Mac minis starting...
The Apple Store has restocked Apple Certified Refurbished Mac minis for up to $150 off the cost of new models. Apple’s one-year warranty is included with each mini, and shipping is free: - 2.5GHz Mac... Read more
Hyundai Brings Apple CarPlay To The 2015 Sona...
Hyundai Motor America has announced it will bring Apple CarPlay functionality to the 2015 Sonata. CarPlay is pitched as a smarter, safer and easier way to use iPhone in the car and gives iPhone users... Read more
Updated iPads Coming Sooner Than We Had Thoug...
MacRumors, cites KGI securities analyst Ming Chi Kuo, well-respected as an Apple product prognisticator, saying that Apple will introduce an upgraded iPad Air and iPad mini in 2014/Q3, meaning the... Read more
Toshiba Unveils New High And Low End Laptop M...
Toshiba has announced new laptop models covering both the high-end and low-end of the notebook computer spectrum. Toshiba 4K Ultra HD Laptop Toshiba’s new Satellite P55t features one of the world’s... Read more
Save up to $270 with Apple refurbished 13-inc...
The Apple Store has Apple Certified Refurbished October 2013 13″ Retina MacBook Pros available starting at $1099, with models up to $270 off MSRP. Apple’s one-year warranty is standard, and shipping... Read more
Apple now offering refurbished iPad mini with...
The Apple Store has Certified Refurbished 2nd generation iPad minis with Retina Displays now available starting at $339. Apple’s one-year warranty is included with each model, and shipping is free.... Read more
Microsoft Blinks – Drops Microsoft Office 365...
Microsoft has dropped the annual subscription fee for Microsoft Office 365 Personal – which is needed in order to create and edit documents in Microsoft Office for iPad. However, Apple’s iOS and OS X... Read more
New AVG Vault Apps for iOS and Android Help K...
AVG Technologies N.V. an online security company for 177 million active users, has announced the launch of its latest mobile application, AVG Vault. The free app introduces an innovative user... Read more

Jobs Board

*Apple* Solutions Consultant (ASC) - Apple (...
**Job Summary** The ASC is an Apple employee who serves as an Apple brand ambassador and influencer in a Reseller's store. The ASC's role is to grow Apple Read more
*Apple* Retail - Manager - Holyoke - Apple I...
Job Summary Keeping an Apple Store thriving requires a diverse set of leadership skills, and as a Manager, you’re a master of them all. In the store’s fast-paced, Read more
*Apple* Retail - Manager - Apple (United Sta...
Job SummaryKeeping an Apple Store thriving requires a diverse set of leadership skills, and as a Manager, you're a master of them all. In the store's fast-paced, dynamic Read more
*Apple* Solutions Consultant (ASC) - Apple (...
**Job Summary** The ASC is an Apple employee who serves as an Apple brand ambassador and influencer in a Reseller's store. The ASC's role is to grow Apple Read more
*Apple* Retail - Market Leader - Cincinnati...
…challenges of developing individuals, building teams, and affecting growth across Apple Stores. You demonstrate successful leadership ability - focusing on excellence Read more
All contents are Copyright 1984-2011 by Xplain Corporation. All rights reserved. Theme designed by Icreon.