TweetFollow Us on Twitter

Jul 94 Challenge
Volume Number:10
Issue Number:7
Column Tag:Programmers’ Challenge

Programmers’ Challenge

By Mike Scanlin, MacTech Magazine Regular Contributing Author

Note: Source code files accompanying article are located on MacTech CD-ROM or source code disks.

Color Space Conversion

Typically, when an RGB image is compressed into JPEG data, it is first converted into separate luminance (Y) and chrominance (U and V) components. Although JPEG doesn’t specify which color space conversion to use, a commonly used one is:

Y     0.29900000   0.58700000   0.11400000     R
U  = -0.16873590  -0.33126410   0.50000000  *  G
V     0.50000000  -0.41868760  -0.08131241     B

where R, G and B are unsigned chars (0..255). For the outputs, Y is an unsigned char (0..255) while U and V are signed chars (-128..127).

The prototype of the two functions you write are:


/* 1 */
void *RGBtoYUVInit(void);

void RGBtoYUV(rPtr, gPtr, bPtr, 
              yPtr, uPtr, vPtr,
              numPixels,privateDataPtr)
unsigned char *rPtr;
unsigned char *gPtr;
unsigned char *bPtr;
unsigned char *yPtr;
  signed char *uPtr;
  signed char *vPtr;
unsigned long numPixels;
         void *privateDataPtr;

This month you’re being given a chance to have a separate initialization routine that will not be timed (only the RGBtoYUV will count towards your time). It can create whatever lookup tables RGBtoYUV may need and return a pointer to that private data. The return value from RGBtoYUVInit will be passed to RGBtoYUV as the privateDataPtr parameter. You decide what it points to (if anything).

There are two key aspects to writing RGBtoYUV. The first is that it has to be fast (as always). The second, though, is that it has to be accurate (or else when someone reconstructs the image with the inverse conversion image quality will be lost). Even though the outputs are only 8 bits, the matrix coefficients require much more than that to represent. Your output values must equal what you would get if you carried out the matrix math with complete precision and then rounded the results down to 8 bits as the last step (with .5 rounding down to zero). For instance, if R = 3, G = 17 and B = 23 then: Y = 3*.299 + 17*.587 + 23*.114 which is 13.498. When rounded this becomes 13 which is what you should return as part of the buffer that yPtr points to.

Each of the pointers to the RGB input data and YUV output data point to a buffer filled with data of one component (so there are 6 buffers total). numPixels is between 1 and 1,000,000 and is the size of each buffer. If numPixels were 100 then rPtr would point to 100 red values and gPtr and bPtr would point to 100 corresponding green and blue values. Your routine would then set the 100 bytes pointed to by yPtr to the appropriate Y values (and likewise for the U and V values, too).

The RGB and YUV buffers will be allocated for you. Your initialization routine may allocate up to 1MB of lookup tables if it wants to (it will be able to get a contiguous 1MB piece if it needs it).

TWO MONTHS AGO WINNER

We have a new first-time winner this month. Congrats to Troy Anderson (Paradise Valley, AZ) for his somewhat large but definitely fast entry in the Flip Horizontal challenge. He was faster than second place winner Bob Boonstra (Westford, MA) in every case that I tested. No small feat considering that Bob is a three-time Challenge winner. Troy also beat another three-time winner, Bill Karsh (Chicago, IL), in almost every test case. Unfortunately, Bill may have been too ecstatic with his win last month to test every possible case this month and unfortunately I had to disqualify his entry for lack of correctness.

Here are the code sizes and times. The time numbers represents the sum of the times for many different inputs (different depths, different rowBytes, etc). Numbers in parens after a person’s name indicate how many times that person has finished in the top 5 places of all previous Programmer Challenges, not including this one:

Name time code+data

Troy Anderson 759 2442

Bob Boonstra (8) 818 1564

Allen Stenger (5) 1069 1318

Michael Panchenko 2952 616

The best way to do well at the Flip Horizontal problem is to write dedicated code to handle each possible depth. That’s exactly what Troy did. He then went even further by special casing certain common cases, such as when rowBytes is a multiple of four.

Troy also solved the flip-byte problem (that exists when the depth is less than 8) the same way that almost everyone else did: with a lookup table for each case (1-bit, 2-bit and 4-bit). For example, when you’re flipping a bitmap horizontally it becomes necessary to flip all 8 bits in a byte. With a 256 element lookup table you can do this in a single lookup.

The 8-bit, 16-bit and 32-bit deep cases are all very similar. Troy reuses similar code by letting the preprocessor fill in the types of his variables (he uses the #define T for this purpose).

Another way of doing this, if the code is similar enough for each case, is to make the whole routine a macro and have it take a parameter which represents the type (byte, short, etc) that you want the code generated for. For instance, Bob Boonstra created this macro:


/* 2 */
/* Macro DoFlipHoriz 
 handles cases where a pixel is one byte, word, or longword in size.
 */
#define DoFlipHoriz(tp) \
{ \
/* loopCount=numCols/2 has already been calculated. */ \
  if (0 < loopCount) do { \
    register tp *p,*q; \
    p = (tp *)base; \
    q = p+numCols; \
    cCount = loopCount; \
    do { \
      register tp temp; \
      temp = *p; \
      *p++ = *--q; \
      *q = temp; \
    } while (--cCount); \
    base += rowBytes; \
  } while (--rCount); \
}
and then uses it like this in part of his solution:

    register short cCount,rCount,loopCount;
    rCount = numRows;
    loopCount = numCols>>1;
    if (8 == pixSize) DoFlipHoriz(uchar) 
    else if (16==pixSize) DoFlipHoriz(ushort)
    else /*if (32==pixSize)*/ DoFlipHoriz(ulong)

You’ll get 3 copies of the macro’s code, each for a different size pixel.
Here’s Troy’s winning solution:

// MacTech Magazine Programmers' Challenge
// May, 1994
// Submitted by Troy Anderson
// 
// Copyright (c) 1994 Troy L. Anderson

#include <QDOffscreen.h>

typedef unsigned char UCHAR;

prototypes
void FlipPixMapHorz( PixMapHandle thePixMapHndl);

static void Flip_Long(  PixMapHandle theMap, 
                        short rowBytes,
                        short depth,
                        Rect* area);

static void Flip_Word(  PixMapHandle theMap, 
                        short rowBytes,
                        short depth,
                        Rect* area);

static void ExchangeWords_Long( PixMapHandle theMap, 
                                short rowBytes,
                                short depth,
                                Rect* area);

static void ExchangeWords_Word( PixMapHandle theMap, 
                                short rowBytes,
                                short depth,
                                Rect* area);

static void ExchangeWords_Byte( PixMapHandle theMap, 
                                short rowBytes,
                                short depth,
                                Rect* area);


FlipPixMapHorz
// This could be made a bit faster by in-lining the functions, but this 
is much clearer,
// and not very much slower.
void FlipPixMapHorz( PixMapHandle thePixMapHndl)
{
  short   rowBytes = (**thePixMapHndl).rowBytes & 0x7fff;
  Boolean longAligned = rowBytes % 4 == 0;
  short   depth = (**thePixMapHndl).pixelSize;
  Rect    bounds = (**thePixMapHndl).bounds;
  
  switch( depth)
  {
    case  1:
    case  2:
    case  4:
      if (longAligned)
        Flip_Long(  thePixMapHndl, 
                    rowBytes,
                    depth,
                    &bounds);
      else
        Flip_Word(  thePixMapHndl,
                    rowBytes,
                    depth,
                    &bounds);
      break;

    case  8:
      ExchangeWords_Byte( thePixMapHndl,
                          rowBytes,
                          depth,
                          &bounds);
      break;
    
    case  16:
      ExchangeWords_Word( thePixMapHndl,
                          rowBytes,
                          depth,
                          &bounds);
      break;
      
    case  32:
      ExchangeWords_Long( thePixMapHndl,
                          rowBytes,
                          depth,
                          &bounds);
      break;
  }
}


ExchangeWords_Long
long word alignment version
static void ExchangeWords_Long( PixMapHandle theMap,
                                short rowBytes,
                                short depth,
                                Rect* area)
{
#undef T
#define T long

  short       rowCells = rowBytes / sizeof(T);
  short       numCells = ((area->right - area->left) * 
                      depth + sizeof(T)*8 - 1) / 
                      (sizeof(T)*8);
  T           temp;
  register T  *cellPtr1, *cellPtr2;
  T           *aRow;
  T           *firstRow = (T*)GetPixBaseAddr( theMap);
  T           *lastRow = firstRow + rowCells * 
                        (long)(area->bottom - area->top);

    // Flip the words in each row
  for ( aRow = firstRow; aRow < lastRow; aRow += rowCells)
    for ( cellPtr1 = aRow + numCells-1, cellPtr2 = aRow;
        cellPtr1 > cellPtr2; 
        cellPtr1--, cellPtr2++)
      temp = *cellPtr1, // swap them 
      *cellPtr1 = *cellPtr2, 
      *cellPtr2 = temp;
}


ExchangeWords
word alignment version
static void ExchangeWords_Word( PixMapHandle theMap,
                                short rowBytes,
                                short depth,
                                Rect* area)
{
#undef T
#define T short

  short       rowCells = rowBytes / sizeof(T);
  short       numCells = ((area->right - area->left) * 
                      depth + sizeof(T)*8 - 1) / 
                      (sizeof(T)*8);
  T           temp;
  register T  *cellPtr1, *cellPtr2;
  T           *aRow;
  T           *firstRow = (T*)GetPixBaseAddr( theMap);
  T           *lastRow = firstRow + rowCells * 
                        (long)(area->bottom - area->top);

    // Flip the words in each row
  for ( aRow = firstRow; aRow < lastRow; aRow += rowCells)
    for ( cellPtr1 = aRow + numCells-1, cellPtr2 = aRow;
        cellPtr1 > cellPtr2; 
        cellPtr1--, cellPtr2++)
      temp = *cellPtr1, // swap them 
      *cellPtr1 = *cellPtr2, 
      *cellPtr2 = temp;
}

ExchangeWords
byte alignment version
static void ExchangeWords_Byte( PixMapHandle theMap,
                                short rowBytes,
                                short depth,
                                Rect* area)
{
#undef T
#define T char

  short       rowCells = rowBytes / sizeof(T);
  short       numCells = ((area->right - area->left) * 
                      depth + sizeof(T)*8 - 1) / 
                      (sizeof(T)*8);
  T           temp;
  register T  *cellPtr1, *cellPtr2;
  T           *aRow;
  T           *firstRow = (T*)GetPixBaseAddr( theMap);
  T           *lastRow = firstRow + rowCells * 
                        (long)(area->bottom - area->top);

    // Flip the words in each row
  for ( aRow = firstRow; aRow < lastRow; aRow += rowCells)
    for ( cellPtr1 = aRow + numCells-1, cellPtr2 = aRow;
        cellPtr1 > cellPtr2; 
        cellPtr1--, cellPtr2++)
      temp = *cellPtr1, // swap them 
      *cellPtr1 = *cellPtr2, 
      *cellPtr2 = temp;
}


Inverse tables
// Inverse tables used to flip the bits in a byte - 
// index is input, value is inverse of index

// This is the 1-bit per pixel table
static char byteFlips1[] ={ 
  0x00, 0x80, 0x40, 0xc0, 0x20, 0xa0, 0x60, 0xe0, 
  0x10, 0x90, 0x50, 0xd0, 0x30, 0xb0, 0x70, 0xf0,
  0x08, 0x88, 0x48, 0xc8, 0x28, 0xa8, 0x68, 0xe8, 
  0x18, 0x98, 0x58, 0xd8, 0x38, 0xb8, 0x78, 0xf8,
  0x04, 0x84, 0x44, 0xc4, 0x24, 0xa4, 0x64, 0xe4, 
  0x14, 0x94, 0x54, 0xd4, 0x34, 0xb4, 0x74, 0xf4, 
  0x0c, 0x8c, 0x4c, 0xcc, 0x2c, 0xac, 0x6c, 0xec, 
  0x1c, 0x9c, 0x5c, 0xdc, 0x3c, 0xbc, 0x7c, 0xfc, 
  0x02, 0x82, 0x42, 0xc2, 0x22, 0xa2, 0x62, 0xe2, 
  0x12, 0x92, 0x52, 0xd2, 0x32, 0xb2, 0x72, 0xf2, 
  0x0a, 0x8a, 0x4a, 0xca, 0x2a, 0xaa, 0x6a, 0xea, 
  0x1a, 0x9a, 0x5a, 0xda, 0x3a, 0xba, 0x7a, 0xfa, 
  0x06, 0x86, 0x46, 0xc6, 0x26, 0xa6, 0x66, 0xe6, 
  0x16, 0x96, 0x56, 0xd6, 0x36, 0xb6, 0x76, 0xf6, 
  0x0e, 0x8e, 0x4e, 0xce, 0x2e, 0xae, 0x6e, 0xee, 
  0x1e, 0x9e, 0x5e, 0xde, 0x3e, 0xbe, 0x7e, 0xfe, 
  0x01, 0x81, 0x41, 0xc1, 0x21, 0xa1, 0x61, 0xe1, 
  0x11, 0x91, 0x51, 0xd1, 0x31, 0xb1, 0x71, 0xf1, 
  0x09, 0x89, 0x49, 0xc9, 0x29, 0xa9, 0x69, 0xe9, 
  0x19, 0x99, 0x59, 0xd9, 0x39, 0xb9, 0x79, 0xf9, 
  0x05, 0x85, 0x45, 0xc5, 0x25, 0xa5, 0x65, 0xe5, 
  0x15, 0x95, 0x55, 0xd5, 0x35, 0xb5, 0x75, 0xf5, 
  0x0d, 0x8d, 0x4d, 0xcd, 0x2d, 0xad, 0x6d, 0xed, 
  0x1d, 0x9d, 0x5d, 0xdd, 0x3d, 0xbd, 0x7d, 0xfd,
  0x03, 0x83, 0x43, 0xc3, 0x23, 0xa3, 0x63, 0xe3, 
  0x13, 0x93, 0x53, 0xd3, 0x33, 0xb3, 0x73, 0xf3,
  0x0b, 0x8b, 0x4b, 0xcb, 0x2b, 0xab, 0x6b, 0xeb, 
  0x1b, 0x9b, 0x5b, 0xdb, 0x3b, 0xbb, 0x7b, 0xfb, 
  0x07, 0x87, 0x47, 0xc7, 0x27, 0xa7, 0x67, 0xe7, 
  0x17, 0x97, 0x57, 0xd7, 0x37, 0xb7, 0x77, 0xf7, 
  0x0f, 0x8f, 0x4f, 0xcf, 0x2f, 0xaf, 0x6f, 0xef, 
  0x1f, 0x9f, 0x5f, 0xdf, 0x3f, 0xbf, 0x7f, 0xff  };
              
// This is the 2-bits per pixel table
static char byteFlips2[] ={ 
  0x00, 0x40, 0x80, 0xc0, 0x10, 0x50, 0x90, 0xd0, 
  0x20, 0x60, 0xa0, 0xe0, 0x30, 0x70, 0xb0, 0xf0,
  0x04, 0x44, 0x84, 0xc4, 0x14, 0x54, 0x94, 0xd4, 
  0x24, 0x64, 0xa4, 0xe4, 0x34, 0x74, 0xb4, 0xf4,
  0x08, 0x48, 0x88, 0xc8, 0x18, 0x58, 0x98, 0xd8, 
  0x28, 0x68, 0xa8, 0xe8, 0x38, 0x78, 0xb8, 0xf8, 
  0x0c, 0x4c, 0x8c, 0xcc, 0x1c, 0x5c, 0x9c, 0xdc, 
  0x2c, 0x6c, 0xac, 0xec, 0x3c, 0x7c, 0xbc, 0xfc, 
  0x01, 0x41, 0x81, 0xc1, 0x11, 0x51, 0x91, 0xd1, 
  0x21, 0x61, 0xa1, 0xe1, 0x31, 0x71, 0xb1, 0xf1, 
  0x05, 0x45, 0x85, 0xc5, 0x15, 0x55, 0x95, 0xd5, 
  0x25, 0x65, 0xa5, 0xe5, 0x35, 0x75, 0xb5, 0xf5, 
  0x09, 0x49, 0x89, 0xc9, 0x19, 0x59, 0x99, 0xd9, 
  0x29, 0x69, 0xa9, 0xe9, 0x39, 0x79, 0xb9, 0xf9, 
  0x0d, 0x4d, 0x8d, 0xcd, 0x1d, 0x5d, 0x9d, 0xdd, 
  0x2d, 0x6d, 0xad, 0xed, 0x3d, 0x7d, 0xbd, 0xfd, 
  0x02, 0x42, 0x82, 0xc2, 0x12, 0x52, 0x92, 0xd2, 
  0x22, 0x62, 0xa2, 0xe2, 0x32, 0x72, 0xb2, 0xf2, 
  0x06, 0x46, 0x86, 0xc6, 0x16, 0x56, 0x96, 0xd6, 
  0x26, 0x66, 0xa6, 0xe6, 0x36, 0x76, 0xb6, 0xf6, 
  0x0a, 0x4a, 0x8a, 0xca, 0x1a, 0x5a, 0x9a, 0xda, 
  0x2a, 0x6a, 0xaa, 0xea, 0x3a, 0x7a, 0xba, 0xfa, 
  0x0e, 0x4e, 0x8e, 0xce, 0x1e, 0x5e, 0x9e, 0xde, 
  0x2e, 0x6e, 0xae, 0xee, 0x3e, 0x7e, 0xbe, 0xfe, 
  0x03, 0x43, 0x83, 0xc3, 0x13, 0x53, 0x93, 0xd3, 
  0x23, 0x63, 0xa3, 0xe3, 0x33, 0x73, 0xb3, 0xf3, 
  0x07, 0x47, 0x87, 0xc7, 0x17, 0x57, 0x97, 0xd7, 
  0x27, 0x67, 0xa7, 0xe7, 0x37, 0x77, 0xb7, 0xf7, 
  0x0b, 0x4b, 0x8b, 0xcb, 0x1b, 0x5b, 0x9b, 0xdb, 
  0x2b, 0x6b, 0xab, 0xeb, 0x3b, 0x7b, 0xbb, 0xfb, 
  0x0f, 0x4f, 0x8f, 0xcf, 0x1f, 0x5f, 0x9f, 0xdf, 
  0x2f, 0x6f, 0xaf, 0xef, 0x3f, 0x7f, 0xbf, 0xff  };
            
// This is the 4-bits per pixel table
static char byteFlips4[] ={ 
  0x00, 0x10, 0x20, 0x30, 0x40, 0x50, 0x60, 0x70, 
  0x80, 0x90, 0xa0, 0xb0, 0xc0, 0xd0, 0xe0, 0xf0,
  0x01, 0x11, 0x21, 0x31, 0x41, 0x51, 0x61, 0x71, 
  0x81, 0x91, 0xa1, 0xb1, 0xc1, 0xd1, 0xe1, 0xf1, 
  0x02, 0x12, 0x22, 0x32, 0x42, 0x52, 0x62, 0x72, 
  0x82, 0x92, 0xa2, 0xb2, 0xc2, 0xd2, 0xe2, 0xf2, 
  0x03, 0x13, 0x23, 0x33, 0x43, 0x53, 0x63, 0x73, 
  0x83, 0x93, 0xa3, 0xb3, 0xc3, 0xd3, 0xe3, 0xf3, 
  0x04, 0x14, 0x24, 0x34, 0x44, 0x54, 0x64, 0x74, 
  0x84, 0x94, 0xa4, 0xb4, 0xc4, 0xd4, 0xe4, 0xf4, 
  0x05, 0x15, 0x25, 0x35, 0x45, 0x55, 0x65, 0x75, 
  0x85, 0x95, 0xa5, 0xb5, 0xc5, 0xd5, 0xe5, 0xf5, 
  0x06, 0x16, 0x26, 0x36, 0x46, 0x56, 0x66, 0x76, 
  0x86, 0x96, 0xa6, 0xb6, 0xc6, 0xd6, 0xe6, 0xf6, 
  0x07, 0x17, 0x27, 0x37, 0x47, 0x57, 0x67, 0x77, 
  0x87, 0x97, 0xa7, 0xb7, 0xc7, 0xd7, 0xe7, 0xf7, 
  0x08, 0x18, 0x28, 0x38, 0x48, 0x58, 0x68, 0x78, 
  0x88, 0x98, 0xa8, 0xb8, 0xc8, 0xd8, 0xe8, 0xf8, 
  0x09, 0x19, 0x29, 0x39, 0x49, 0x59, 0x69, 0x79, 
  0x89, 0x99, 0xa9, 0xb9, 0xc9, 0xd9, 0xe9, 0xf9, 
  0x0a, 0x1a, 0x2a, 0x3a, 0x4a, 0x5a, 0x6a, 0x7a, 
  0x8a, 0x9a, 0xaa, 0xba, 0xca, 0xda, 0xea, 0xfa, 
  0x0b, 0x1b, 0x2b, 0x3b, 0x4b, 0x5b, 0x6b, 0x7b, 
  0x8b, 0x9b, 0xab, 0xbb, 0xcb, 0xdb, 0xeb, 0xfb, 
  0x0c, 0x1c, 0x2c, 0x3c, 0x4c, 0x5c, 0x6c, 0x7c, 
  0x8c, 0x9c, 0xac, 0xbc, 0xcc, 0xdc, 0xec, 0xfc, 
  0x0d, 0x1d, 0x2d, 0x3d, 0x4d, 0x5d, 0x6d, 0x7d, 
  0x8d, 0x9d, 0xad, 0xbd, 0xcd, 0xdd, 0xed, 0xfd, 
  0x0e, 0x1e, 0x2e, 0x3e, 0x4e, 0x5e, 0x6e, 0x7e, 
  0x8e, 0x9e, 0xae, 0xbe, 0xce, 0xde, 0xee, 0xfe, 
  0x0f, 0x1f, 0x2f, 0x3f, 0x4f, 0x5f, 0x6f, 0x7f, 
  0x8f, 0x9f, 0xaf, 0xbf, 0xcf, 0xdf, 0xef, 0xff  };


Flip_Long
static void Flip_Long(  PixMapHandle theMap, 
                        short rowBytes,
                        short depth,
                        Rect* area)
{
#undef T
#define T long

  register UCHAR  temp;
  short           rowCells = rowBytes / sizeof(T);
  long            bitsPerRow = (area->right - area->left) *
                          (long)depth - 1;
  short           numCells = (bitsPerRow + sizeof(T)*8) /
                          (sizeof(T)*8);
  T*              cellPtr;
  T*              aRow;
  T*              firstRow = (T*)GetPixBaseAddr( theMap);
  T*              lastRow = firstRow + rowCells * 
                      (long)(area->bottom - area->top);
  
  register T*     cellPtr1, *cellPtr2;

  short           numBitsToShift = ((sizeof(T)*8) -
                      (bitsPerRow % (sizeof(T)*8) + 1));
  T               shiftMask;
  T*              shiftCellPtr;
  char*           flipTable;
  
  

  switch(depth)
  {
    case 1:
      flipTable = byteFlips1;
      break;
    case 2:
      flipTable = byteFlips2;
      break;
    case 4:
      flipTable = byteFlips4;
      break;
  }
            

  if (numBitsToShift)
  {
    shiftMask = (1L << numBitsToShift) - 1;

    for ( aRow = firstRow; 
        aRow < lastRow;
        aRow += rowCells)
    {
      // With each pair of cells in the row (one on the left, the other 
on the right),
      // flip the pixels in the individual cells and swap the cells with 
one another.
      for ( cellPtr1 = aRow + numCells - 1, cellPtr2 = aRow;
          cellPtr1 > cellPtr2;
          cellPtr1--, cellPtr2++)
      {
        temp = ((UCHAR*)cellPtr1)[0];
        ((UCHAR*)cellPtr1)[0] = 
            flipTable[((UCHAR*)cellPtr2)[3]];
        ((UCHAR*)cellPtr2)[3] = flipTable[temp];
        
        temp = ((UCHAR*)cellPtr1)[1];
        ((UCHAR*)cellPtr1)[1] = 
            flipTable[((UCHAR*)cellPtr2)[2]];
        ((UCHAR*)cellPtr2)[2] = flipTable[temp];
        
        temp = ((UCHAR*)cellPtr1)[2];
        ((UCHAR*)cellPtr1)[2] = 
            flipTable[((UCHAR*)cellPtr2)[1]];
        ((UCHAR*)cellPtr2)[1] = flipTable[temp];
        
        temp = ((UCHAR*)cellPtr1)[3];
        ((UCHAR*)cellPtr1)[3] = 
            flipTable[((UCHAR*)cellPtr2)[0]];
        ((UCHAR*)cellPtr2)[0] = flipTable[temp];
      }
      
      // If there's an odd number of cells in the row,  there is one 
cell we haven't
      // touched.   It needs to be flipped.
      if (cellPtr1 == cellPtr2)
      {
        temp = ((UCHAR*)cellPtr1)[0];
        ((UCHAR*)cellPtr1)[0] = 
            flipTable[((UCHAR*)cellPtr1)[3]];
        ((UCHAR*)cellPtr1)[3] = flipTable[temp];
        
        temp = ((UCHAR*)cellPtr1)[1];
        ((UCHAR*)cellPtr1)[1] = 
            flipTable[((UCHAR*)cellPtr1)[2]];
        ((UCHAR*)cellPtr1)[2] = flipTable[temp];
      }

      // Slide the pixels to the left
      for ( shiftCellPtr = aRow;
          shiftCellPtr < aRow + rowCells;
          shiftCellPtr++)
      {
        // shift the bits over
        *shiftCellPtr <<= numBitsToShift;
          
        // bring in the bits from the next cell - garbage will be brought 
in during
        // the last iteration, but it’s put into the last cell, outside 
the bounds of the 
        // image (but still in the data area)
        *shiftCellPtr |= shiftMask & 
                        (*(shiftCellPtr+1) >> 
                          (sizeof(T)*8 - numBitsToShift));
      }
    }
  }
  else  // no need to shift pixels, otherwise, just the same as previous 
loop
    for ( aRow = firstRow; aRow < lastRow; aRow += rowCells)
    {
      // With each pair of cells in the row (one on the  left, the other 
on the right),
      // flip the pixels in the individual cells and swap the cells with 
one another.
      for ( cellPtr1 = aRow + numCells - 1, cellPtr2 = aRow;
            cellPtr1 > cellPtr2;
            cellPtr1--, cellPtr2++)
      {
        temp = ((UCHAR*)cellPtr1)[0];
        ((UCHAR*)cellPtr1)[0] =
            flipTable[((UCHAR*)cellPtr2)[3]];
        ((UCHAR*)cellPtr2)[3] = flipTable[temp];
        
        temp = ((UCHAR*)cellPtr1)[1];
        ((UCHAR*)cellPtr1)[1] = 
            flipTable[((UCHAR*)cellPtr2)[2]];
        ((UCHAR*)cellPtr2)[2] = flipTable[temp];
        
        temp = ((UCHAR*)cellPtr1)[2];
        ((UCHAR*)cellPtr1)[2] = 
            flipTable[((UCHAR*)cellPtr2)[1]];
        ((UCHAR*)cellPtr2)[1] = flipTable[temp];
        
        temp = ((UCHAR*)cellPtr1)[3];
        ((UCHAR*)cellPtr1)[3] = 
            flipTable[((UCHAR*)cellPtr2)[0]];
        ((UCHAR*)cellPtr2)[0] = flipTable[temp];
      }
      
      // If there are an odd number of cells in the row,
      // there is one cell we haven't touched.
      // It needs to be flipped.
      if (cellPtr1 == cellPtr2)
      {
        temp = ((UCHAR*)cellPtr1)[0];
        ((UCHAR*)cellPtr1)[0] = 
            flipTable[((UCHAR*)cellPtr1)[3]];
        ((UCHAR*)cellPtr1)[3] = flipTable[temp];
        
        temp = ((UCHAR*)cellPtr1)[1];
        ((UCHAR*)cellPtr1)[1] = 
            flipTable[((UCHAR*)cellPtr1)[2]];
        ((UCHAR*)cellPtr1)[2] = flipTable[temp];
      }
    }
  }
}


Flip_Word
static void Flip_Word(  PixMapHandle theMap, 
                        short rowBytes,
                        short depth,
                        Rect* area)
{
#undef T
#define T short

  register UCHAR  temp;
  short           rowCells = rowBytes / sizeof(T);
  long            bitsPerRow = (area->right - area->left) *
                          (long)depth - 1;
  short           numCells = (bitsPerRow + sizeof(T)*8) /
                          (sizeof(T)*8);
  T*              cellPtr;
  T*              aRow;
  T*              firstRow = (T*)GetPixBaseAddr( theMap);
  T*              lastRow = firstRow + rowCells * 
                      (long)(area->bottom - area->top);
  
  register T*     cellPtr1, *cellPtr2;

  short           numBitsToShift = ((sizeof(T)*8) -
                      (bitsPerRow % (sizeof(T)*8) + 1));
  T               shiftMask;
  T*              shiftCellPtr;
  char*           flipTable;
  
  

  switch(depth)
  {
    case 1:
      flipTable = byteFlips1;
      break;
    case 2:
      flipTable = byteFlips2;
      break;
    case 4:
      flipTable = byteFlips4;
      break;
  }
            

  if (numBitsToShift)
  {
    shiftMask = (1L << numBitsToShift) - 1;

    for ( aRow = firstRow; aRow < lastRow; aRow += rowCells)
    {
      // With each pair of cells in the row (one on the left, the other 
on the right),
      // flip the pixels in the individual cells and swap the cells with 
one another.
      for ( cellPtr1 = aRow + numCells - 1, cellPtr2 = aRow;
          cellPtr1 > cellPtr2;
          cellPtr1--, cellPtr2++)
      {
        temp = ((UCHAR*)cellPtr1)[0];
        ((UCHAR*)cellPtr1)[0] = 
            flipTable[((UCHAR*)cellPtr2)[1]];
        ((UCHAR*)cellPtr2)[1] = flipTable[temp];
        
        temp = ((UCHAR*)cellPtr1)[1];
        ((UCHAR*)cellPtr1)[1] =
            flipTable[((UCHAR*)cellPtr2)[0]];
        ((UCHAR*)cellPtr2)[0] = flipTable[temp];
      }
      
      // If there's an odd number of cells in the row, there is one cell 
we haven't
      // touched.   It needs to be flipped.
      if (cellPtr1 == cellPtr2)
      {
        temp = ((UCHAR*)cellPtr1)[0];
        ((UCHAR*)cellPtr1)[0] = 
            flipTable[((UCHAR*)cellPtr1)[1]];
        ((UCHAR*)cellPtr1)[1] = 
            flipTable[temp];
      }

      // Slide the pixels to the left
      for ( shiftCellPtr = aRow;
          shiftCellPtr < aRow + rowCells;
          shiftCellPtr++)
      {
      // shift the bits over
        *shiftCellPtr <<= numBitsToShift;
          
      // bring in the bits from the next cell - garbage will be brought 
in during last 
      // iteration, but it’s put into the last
        // cell, outside the bounds of the image (but still in the data 
area)
        *shiftCellPtr |= shiftMask & 
                        (*(shiftCellPtr+1) >> 
                          (sizeof(T)*8 - numBitsToShift));
      }
    }
  }
  else  // no need to shift pixels, otherwise,  just the same as previous 
loop
    for ( aRow = firstRow; aRow < lastRow; aRow += rowCells)
    {
      // With each pair of cells in the row (one on the 
      // left, the other on the right), flip the pixels
      // in the individual cells and swap the cells with
       // one another.
      for ( cellPtr1 = aRow + numCells - 1, cellPtr2 = aRow;
            cellPtr1 > cellPtr2;
            cellPtr1--, cellPtr2++)
      {
        temp = ((UCHAR*)cellPtr1)[0];
        ((UCHAR*)cellPtr1)[0] = 
            flipTable[((UCHAR*)cellPtr2)[1]];
        ((UCHAR*)cellPtr2)[1] = flipTable[temp];
        
        temp = ((UCHAR*)cellPtr1)[1];
        ((UCHAR*)cellPtr1)[1] = 
            flipTable[((UCHAR*)cellPtr2)[0]];
        ((UCHAR*)cellPtr2)[0] = flipTable[temp];
      }
      
      // If there are an odd number of cells in the row,
      // there is one cell we haven't touched.
      // It needs to be flipped.
      if (cellPtr1 == cellPtr2)
      {
        temp = ((UCHAR*)cellPtr1)[0];
        ((UCHAR*)cellPtr1)[0] = 
            flipTable[((UCHAR*)cellPtr1)[1]];
        ((UCHAR*)cellPtr1)[1] = flipTable[temp];
      }
    }
  }
}
 

Community Search:
MacTech Search:

Software Updates via MacUpdate

Parallels Desktop 12.0.0 - Run Windows a...
Parallels allows you to run Windows and Mac applications side by side. Choose your view to make Windows invisible while still using its applications, or keep the familiar Windows background and... Read more
Firefox 48.0.2 - Fast, safe Web browser.
Firefox offers a fast, safe Web browsing experience. Browse quickly, securely, and effortlessly. With its industry-leading features, Firefox is the choice of Web development professionals and casual... Read more
Apple iOS 9.3.5 - The latest version of...
iOS is the world’s most advanced mobile operating system, and it’s the foundation of iPhone, iPad, and iPod touch. It comes with a collection of apps and features that let you do the everyday things... Read more
Spotify 1.0.36.124. - Stream music, crea...
Spotify is a streaming music service that gives you on-demand access to millions of songs. Whether you like driving rock, silky R&B, or grandiose classical music, Spotify's massive catalogue puts... Read more
Apple iOS 9.3.5 - The latest version of...
iOS is the world’s most advanced mobile operating system, and it’s the foundation of iPhone, iPad, and iPod touch. It comes with a collection of apps and features that let you do the everyday things... Read more
Parallels Desktop 12.0.0 - Run Windows a...
Parallels allows you to run Windows and Mac applications side by side. Choose your view to make Windows invisible while still using its applications, or keep the familiar Windows background and... Read more
Spotify 1.0.36.124. - Stream music, crea...
Spotify is a streaming music service that gives you on-demand access to millions of songs. Whether you like driving rock, silky R&B, or grandiose classical music, Spotify's massive catalogue puts... Read more
Firefox 48.0.2 - Fast, safe Web browser.
Firefox offers a fast, safe Web browsing experience. Browse quickly, securely, and effortlessly. With its industry-leading features, Firefox is the choice of Web development professionals and casual... Read more
BBEdit 11.6.1 - Powerful text and HTML e...
BBEdit is the leading professional HTML and text editor for the Mac. Specifically crafted in response to the needs of Web authors and software developers, this award-winning product provides a... Read more
OmniGraffle Pro 6.6.1 - Create diagrams,...
OmniGraffle Pro helps you draw beautiful diagrams, family trees, flow charts, org charts, layouts, and (mathematically speaking) any other directed or non-directed graphs. We've had people use... Read more

Cartoon Network Superstar Soccer: Goal!!...
Cartoon Network Superstar Soccer: Goal!!! – Multiplayer Sports Game Starring Your Favorite Characters 1.0 Device: iOS Universal Category: Games Price: $2.99, Version: 1.0 (iTunes) Description: Become a soccer superstar with your... | Read more »
NFL Huddle: What's new in Topps NFL...
Can you smell that? It's the scent of pigskin in the air, which either means that cliches be damned, pigs are flying in your neck of the woods, or the new NFL season is right around the corner. [Read more] | Read more »
FarmVille: Tropic Escape tips, tricks, a...
Maybe farming is passé in mobile games now. Ah, but farming -- and doing a lot of a other things too -- in an island paradise might be a little different. At least you can work on your tan and sip some pina coladas while tending to your crops. [... | Read more »
Become the King of Avalon in FunPlus’ la...
King Arthur is dead. Considering the legend dates back to the 5th century, it would be surprising if he wasn’t. But in the context of real-time MMO game King of Avalon: Dragon Warfare, Arthur’s death plunges the kingdom into chaos. Evil sorceress... | Read more »
Nightgate (Games)
Nightgate 1.0 Device: iOS Universal Category: Games Price: $2.99, Version: 1.0 (iTunes) Description: *** Launch Sale: 25% OFF for a limited time! *** In the year 2398, after a great war, a network of intelligent computers known as... | Read more »
3 best fantasy football apps to get you...
Last season didn't go the way you wanted it to in fantasy football. You were super happy following your drafts or auctions, convinced you had outsmarted everyone. You were all set to hustle on the waiver wire, work out some sweet trades, and make... | Read more »
Pokemon GO update: Take me to your leade...
The Team Leaders in Pokemon GO have had it pretty easy up until now. They show up when players reach level 5, make their cases for joining their respective teams, and that's pretty much it. Light work, as Floyd Mayweather might say. [Read more] | Read more »
Ruismaker FM (Music)
Ruismaker FM 1.0 Device: iOS Universal Category: Music Price: $4.99, Version: 1.0 (iTunes) Description: Following up on the success of Ruismaker, here's her crazy twin-sister, designed for people who want to design their own... | Read more »
Space Marshals 2 (Games)
Space Marshals 2 1.0.15 Device: iOS iPhone Category: Games Price: $5.99, Version: 1.0.15 (iTunes) Description: The sci-fi wild west adventure in outer space continues with Space Marshals 2. This tactical top-down shooter puts you in... | Read more »
Dungeon Warfare (Games)
Dungeon Warfare 1.0 Device: iOS Universal Category: Games Price: $3.99, Version: 1.0 (iTunes) Description: Dungeon Warfare is a challenging tower defense game where you become a dungeon lord to defend your dungeon against greedy... | Read more »

Price Scanner via MacPrices.net

BookBook Releases SurfacePad, BookBook &...
BookBook has released three new covers just for iPad Pro: SurfacePad, BookBook and BookBook Rutledge Edition. BookBook for iPad Pro is a gorgeous leather case reminiscent of a vintage sketchbook.... Read more
Clean Text 1.0 for iOS Reduces Text Cleanup a...
Apimac today announced availability of Clean Text for iOS, a tool for webmasters, graphic designers, developers and magazine editors to reduce text cleanup and editing time, and also for any iPhone... Read more
27-inch iMacs on sale for up to $220 off MSRP
B&H Photo has 27″ Apple iMacs on sale for up to $200 off MSRP including free shipping plus NY sales tax only: - 27″ 3.3GHz iMac 5K: $2099 $200 off MSRP - 27″ 3.2GHz/1TB Fusion iMac 5K: $1899 $100... Read more
Apple refurbished 13-inch MacBook Airs availa...
Apple has Certified Refurbished 2016 and 2015 13″ MacBook Airs now available starting at $849. An Apple one-year warranty is included with each MacBook, and shipping is free: - 2016 13″ 1.6GHz/8GB/... Read more
Apple refurbished iPad mini 2s available for...
Apple is offering Certified Refurbished iPad mini 2s for up to $80 off the cost of new minis. An Apple one-year warranty is included with each model, and shipping is free: - 16GB iPad mini 2 WiFi: $... Read more
Save up to $600 with Apple refurbished Mac Pr...
Apple has Certified Refurbished Mac Pros available for up to $600 off the cost of new models. An Apple one-year warranty is included with each Mac Pro, and shipping is free. The following... Read more
Mac Pros on sale for $200 off MSRP
B&H Photo has Mac Pros on sale for $200 off MSRP. Shipping is free, and B&H charges sales tax in NY only: - 3.7GHz 4-core Mac Pro: $2799, $200 off MSRP - 3.5GHz 6-core Mac Pro: $3799, $200... Read more
Will We See A 10.5″ iPad Pro in 2017? – The ‘...
A MacRumors report, cites a research note from KGI Securities analyst Ming-Chi Kuo, saying a new size iPad model is in the works. According to the highly respected Cho, who has a strong track record... Read more
IOGEAR USB-C Docking Station Transforms Lapto...
IOGEAR has announced the launch of its innovative USB-C Docking Station with Power Delivery which turns USB-C enabled laptops into desktop workstations. The new IOGEAR USB-C Docking Station features... Read more
12-inch Retina MacBooks on sale for up to $10...
Amazon has 2016 12″ Apple Retina MacBooks on sale for $100 off MSRP. Shipping is free: - 12″ 1.1GHz Space Gray Retina MacBook: $1199 $100 off MSRP - 12″ 1.1GHz Silver Retina MacBook: $1224.99 $75 off... Read more

Jobs Board

*Apple* Engineer - Softthink Solutions, Inc....
Job Description:- Proven experience in administering IOS and OSX Apple devices in enterprises - Experience in administering Apple devices in Windows environments Read more
*Apple* Professional Learning Specialist - A...
# Apple Professional Learning Specialist Job Number: 51234243 Portland, Maine, Maine, United States Posted: Aug. 18, 2016 Weekly Hours: 40.00 **Job Summary** The Read more
*Apple* Mobile Master - Best Buy (United Sta...
What does a Best Buy Apple Mobile Master do? At Best Buy, our mission is to leverage the unique talents and passions of our employees to inspire, delight, and enrich Read more
*Apple* Retail - Multiple Positions Akron, O...
Job Description: Sales Specialist - Retail Customer Service and Sales Transform Apple Store visitors into loyal Apple customers. When customers enter the store, Read more
Simply Mac *Apple* Specialist- Repair Techn...
…The Technician is a master at working with our customers to diagnose and repair Apple devices in a manner that exceeds the expectations set forth by Apple Read more
All contents are Copyright 1984-2011 by Xplain Corporation. All rights reserved. Theme designed by Icreon.