TweetFollow Us on Twitter

Jul 94 Challenge
Volume Number:10
Issue Number:7
Column Tag:Programmers’ Challenge

Programmers’ Challenge

By Mike Scanlin, MacTech Magazine Regular Contributing Author

Note: Source code files accompanying article are located on MacTech CD-ROM or source code disks.

Color Space Conversion

Typically, when an RGB image is compressed into JPEG data, it is first converted into separate luminance (Y) and chrominance (U and V) components. Although JPEG doesn’t specify which color space conversion to use, a commonly used one is:

Y     0.29900000   0.58700000   0.11400000     R
U  = -0.16873590  -0.33126410   0.50000000  *  G
V     0.50000000  -0.41868760  -0.08131241     B

where R, G and B are unsigned chars (0..255). For the outputs, Y is an unsigned char (0..255) while U and V are signed chars (-128..127).

The prototype of the two functions you write are:


/* 1 */
void *RGBtoYUVInit(void);

void RGBtoYUV(rPtr, gPtr, bPtr, 
              yPtr, uPtr, vPtr,
              numPixels,privateDataPtr)
unsigned char *rPtr;
unsigned char *gPtr;
unsigned char *bPtr;
unsigned char *yPtr;
  signed char *uPtr;
  signed char *vPtr;
unsigned long numPixels;
         void *privateDataPtr;

This month you’re being given a chance to have a separate initialization routine that will not be timed (only the RGBtoYUV will count towards your time). It can create whatever lookup tables RGBtoYUV may need and return a pointer to that private data. The return value from RGBtoYUVInit will be passed to RGBtoYUV as the privateDataPtr parameter. You decide what it points to (if anything).

There are two key aspects to writing RGBtoYUV. The first is that it has to be fast (as always). The second, though, is that it has to be accurate (or else when someone reconstructs the image with the inverse conversion image quality will be lost). Even though the outputs are only 8 bits, the matrix coefficients require much more than that to represent. Your output values must equal what you would get if you carried out the matrix math with complete precision and then rounded the results down to 8 bits as the last step (with .5 rounding down to zero). For instance, if R = 3, G = 17 and B = 23 then: Y = 3*.299 + 17*.587 + 23*.114 which is 13.498. When rounded this becomes 13 which is what you should return as part of the buffer that yPtr points to.

Each of the pointers to the RGB input data and YUV output data point to a buffer filled with data of one component (so there are 6 buffers total). numPixels is between 1 and 1,000,000 and is the size of each buffer. If numPixels were 100 then rPtr would point to 100 red values and gPtr and bPtr would point to 100 corresponding green and blue values. Your routine would then set the 100 bytes pointed to by yPtr to the appropriate Y values (and likewise for the U and V values, too).

The RGB and YUV buffers will be allocated for you. Your initialization routine may allocate up to 1MB of lookup tables if it wants to (it will be able to get a contiguous 1MB piece if it needs it).

TWO MONTHS AGO WINNER

We have a new first-time winner this month. Congrats to Troy Anderson (Paradise Valley, AZ) for his somewhat large but definitely fast entry in the Flip Horizontal challenge. He was faster than second place winner Bob Boonstra (Westford, MA) in every case that I tested. No small feat considering that Bob is a three-time Challenge winner. Troy also beat another three-time winner, Bill Karsh (Chicago, IL), in almost every test case. Unfortunately, Bill may have been too ecstatic with his win last month to test every possible case this month and unfortunately I had to disqualify his entry for lack of correctness.

Here are the code sizes and times. The time numbers represents the sum of the times for many different inputs (different depths, different rowBytes, etc). Numbers in parens after a person’s name indicate how many times that person has finished in the top 5 places of all previous Programmer Challenges, not including this one:

Name time code+data

Troy Anderson 759 2442

Bob Boonstra (8) 818 1564

Allen Stenger (5) 1069 1318

Michael Panchenko 2952 616

The best way to do well at the Flip Horizontal problem is to write dedicated code to handle each possible depth. That’s exactly what Troy did. He then went even further by special casing certain common cases, such as when rowBytes is a multiple of four.

Troy also solved the flip-byte problem (that exists when the depth is less than 8) the same way that almost everyone else did: with a lookup table for each case (1-bit, 2-bit and 4-bit). For example, when you’re flipping a bitmap horizontally it becomes necessary to flip all 8 bits in a byte. With a 256 element lookup table you can do this in a single lookup.

The 8-bit, 16-bit and 32-bit deep cases are all very similar. Troy reuses similar code by letting the preprocessor fill in the types of his variables (he uses the #define T for this purpose).

Another way of doing this, if the code is similar enough for each case, is to make the whole routine a macro and have it take a parameter which represents the type (byte, short, etc) that you want the code generated for. For instance, Bob Boonstra created this macro:


/* 2 */
/* Macro DoFlipHoriz 
 handles cases where a pixel is one byte, word, or longword in size.
 */
#define DoFlipHoriz(tp) \
{ \
/* loopCount=numCols/2 has already been calculated. */ \
  if (0 < loopCount) do { \
    register tp *p,*q; \
    p = (tp *)base; \
    q = p+numCols; \
    cCount = loopCount; \
    do { \
      register tp temp; \
      temp = *p; \
      *p++ = *--q; \
      *q = temp; \
    } while (--cCount); \
    base += rowBytes; \
  } while (--rCount); \
}
and then uses it like this in part of his solution:

    register short cCount,rCount,loopCount;
    rCount = numRows;
    loopCount = numCols>>1;
    if (8 == pixSize) DoFlipHoriz(uchar) 
    else if (16==pixSize) DoFlipHoriz(ushort)
    else /*if (32==pixSize)*/ DoFlipHoriz(ulong)

You’ll get 3 copies of the macro’s code, each for a different size pixel.
Here’s Troy’s winning solution:

// MacTech Magazine Programmers' Challenge
// May, 1994
// Submitted by Troy Anderson
// 
// Copyright (c) 1994 Troy L. Anderson

#include <QDOffscreen.h>

typedef unsigned char UCHAR;

prototypes
void FlipPixMapHorz( PixMapHandle thePixMapHndl);

static void Flip_Long(  PixMapHandle theMap, 
                        short rowBytes,
                        short depth,
                        Rect* area);

static void Flip_Word(  PixMapHandle theMap, 
                        short rowBytes,
                        short depth,
                        Rect* area);

static void ExchangeWords_Long( PixMapHandle theMap, 
                                short rowBytes,
                                short depth,
                                Rect* area);

static void ExchangeWords_Word( PixMapHandle theMap, 
                                short rowBytes,
                                short depth,
                                Rect* area);

static void ExchangeWords_Byte( PixMapHandle theMap, 
                                short rowBytes,
                                short depth,
                                Rect* area);


FlipPixMapHorz
// This could be made a bit faster by in-lining the functions, but this 
is much clearer,
// and not very much slower.
void FlipPixMapHorz( PixMapHandle thePixMapHndl)
{
  short   rowBytes = (**thePixMapHndl).rowBytes & 0x7fff;
  Boolean longAligned = rowBytes % 4 == 0;
  short   depth = (**thePixMapHndl).pixelSize;
  Rect    bounds = (**thePixMapHndl).bounds;
  
  switch( depth)
  {
    case  1:
    case  2:
    case  4:
      if (longAligned)
        Flip_Long(  thePixMapHndl, 
                    rowBytes,
                    depth,
                    &bounds);
      else
        Flip_Word(  thePixMapHndl,
                    rowBytes,
                    depth,
                    &bounds);
      break;

    case  8:
      ExchangeWords_Byte( thePixMapHndl,
                          rowBytes,
                          depth,
                          &bounds);
      break;
    
    case  16:
      ExchangeWords_Word( thePixMapHndl,
                          rowBytes,
                          depth,
                          &bounds);
      break;
      
    case  32:
      ExchangeWords_Long( thePixMapHndl,
                          rowBytes,
                          depth,
                          &bounds);
      break;
  }
}


ExchangeWords_Long
long word alignment version
static void ExchangeWords_Long( PixMapHandle theMap,
                                short rowBytes,
                                short depth,
                                Rect* area)
{
#undef T
#define T long

  short       rowCells = rowBytes / sizeof(T);
  short       numCells = ((area->right - area->left) * 
                      depth + sizeof(T)*8 - 1) / 
                      (sizeof(T)*8);
  T           temp;
  register T  *cellPtr1, *cellPtr2;
  T           *aRow;
  T           *firstRow = (T*)GetPixBaseAddr( theMap);
  T           *lastRow = firstRow + rowCells * 
                        (long)(area->bottom - area->top);

    // Flip the words in each row
  for ( aRow = firstRow; aRow < lastRow; aRow += rowCells)
    for ( cellPtr1 = aRow + numCells-1, cellPtr2 = aRow;
        cellPtr1 > cellPtr2; 
        cellPtr1--, cellPtr2++)
      temp = *cellPtr1, // swap them 
      *cellPtr1 = *cellPtr2, 
      *cellPtr2 = temp;
}


ExchangeWords
word alignment version
static void ExchangeWords_Word( PixMapHandle theMap,
                                short rowBytes,
                                short depth,
                                Rect* area)
{
#undef T
#define T short

  short       rowCells = rowBytes / sizeof(T);
  short       numCells = ((area->right - area->left) * 
                      depth + sizeof(T)*8 - 1) / 
                      (sizeof(T)*8);
  T           temp;
  register T  *cellPtr1, *cellPtr2;
  T           *aRow;
  T           *firstRow = (T*)GetPixBaseAddr( theMap);
  T           *lastRow = firstRow + rowCells * 
                        (long)(area->bottom - area->top);

    // Flip the words in each row
  for ( aRow = firstRow; aRow < lastRow; aRow += rowCells)
    for ( cellPtr1 = aRow + numCells-1, cellPtr2 = aRow;
        cellPtr1 > cellPtr2; 
        cellPtr1--, cellPtr2++)
      temp = *cellPtr1, // swap them 
      *cellPtr1 = *cellPtr2, 
      *cellPtr2 = temp;
}

ExchangeWords
byte alignment version
static void ExchangeWords_Byte( PixMapHandle theMap,
                                short rowBytes,
                                short depth,
                                Rect* area)
{
#undef T
#define T char

  short       rowCells = rowBytes / sizeof(T);
  short       numCells = ((area->right - area->left) * 
                      depth + sizeof(T)*8 - 1) / 
                      (sizeof(T)*8);
  T           temp;
  register T  *cellPtr1, *cellPtr2;
  T           *aRow;
  T           *firstRow = (T*)GetPixBaseAddr( theMap);
  T           *lastRow = firstRow + rowCells * 
                        (long)(area->bottom - area->top);

    // Flip the words in each row
  for ( aRow = firstRow; aRow < lastRow; aRow += rowCells)
    for ( cellPtr1 = aRow + numCells-1, cellPtr2 = aRow;
        cellPtr1 > cellPtr2; 
        cellPtr1--, cellPtr2++)
      temp = *cellPtr1, // swap them 
      *cellPtr1 = *cellPtr2, 
      *cellPtr2 = temp;
}


Inverse tables
// Inverse tables used to flip the bits in a byte - 
// index is input, value is inverse of index

// This is the 1-bit per pixel table
static char byteFlips1[] ={ 
  0x00, 0x80, 0x40, 0xc0, 0x20, 0xa0, 0x60, 0xe0, 
  0x10, 0x90, 0x50, 0xd0, 0x30, 0xb0, 0x70, 0xf0,
  0x08, 0x88, 0x48, 0xc8, 0x28, 0xa8, 0x68, 0xe8, 
  0x18, 0x98, 0x58, 0xd8, 0x38, 0xb8, 0x78, 0xf8,
  0x04, 0x84, 0x44, 0xc4, 0x24, 0xa4, 0x64, 0xe4, 
  0x14, 0x94, 0x54, 0xd4, 0x34, 0xb4, 0x74, 0xf4, 
  0x0c, 0x8c, 0x4c, 0xcc, 0x2c, 0xac, 0x6c, 0xec, 
  0x1c, 0x9c, 0x5c, 0xdc, 0x3c, 0xbc, 0x7c, 0xfc, 
  0x02, 0x82, 0x42, 0xc2, 0x22, 0xa2, 0x62, 0xe2, 
  0x12, 0x92, 0x52, 0xd2, 0x32, 0xb2, 0x72, 0xf2, 
  0x0a, 0x8a, 0x4a, 0xca, 0x2a, 0xaa, 0x6a, 0xea, 
  0x1a, 0x9a, 0x5a, 0xda, 0x3a, 0xba, 0x7a, 0xfa, 
  0x06, 0x86, 0x46, 0xc6, 0x26, 0xa6, 0x66, 0xe6, 
  0x16, 0x96, 0x56, 0xd6, 0x36, 0xb6, 0x76, 0xf6, 
  0x0e, 0x8e, 0x4e, 0xce, 0x2e, 0xae, 0x6e, 0xee, 
  0x1e, 0x9e, 0x5e, 0xde, 0x3e, 0xbe, 0x7e, 0xfe, 
  0x01, 0x81, 0x41, 0xc1, 0x21, 0xa1, 0x61, 0xe1, 
  0x11, 0x91, 0x51, 0xd1, 0x31, 0xb1, 0x71, 0xf1, 
  0x09, 0x89, 0x49, 0xc9, 0x29, 0xa9, 0x69, 0xe9, 
  0x19, 0x99, 0x59, 0xd9, 0x39, 0xb9, 0x79, 0xf9, 
  0x05, 0x85, 0x45, 0xc5, 0x25, 0xa5, 0x65, 0xe5, 
  0x15, 0x95, 0x55, 0xd5, 0x35, 0xb5, 0x75, 0xf5, 
  0x0d, 0x8d, 0x4d, 0xcd, 0x2d, 0xad, 0x6d, 0xed, 
  0x1d, 0x9d, 0x5d, 0xdd, 0x3d, 0xbd, 0x7d, 0xfd,
  0x03, 0x83, 0x43, 0xc3, 0x23, 0xa3, 0x63, 0xe3, 
  0x13, 0x93, 0x53, 0xd3, 0x33, 0xb3, 0x73, 0xf3,
  0x0b, 0x8b, 0x4b, 0xcb, 0x2b, 0xab, 0x6b, 0xeb, 
  0x1b, 0x9b, 0x5b, 0xdb, 0x3b, 0xbb, 0x7b, 0xfb, 
  0x07, 0x87, 0x47, 0xc7, 0x27, 0xa7, 0x67, 0xe7, 
  0x17, 0x97, 0x57, 0xd7, 0x37, 0xb7, 0x77, 0xf7, 
  0x0f, 0x8f, 0x4f, 0xcf, 0x2f, 0xaf, 0x6f, 0xef, 
  0x1f, 0x9f, 0x5f, 0xdf, 0x3f, 0xbf, 0x7f, 0xff  };
              
// This is the 2-bits per pixel table
static char byteFlips2[] ={ 
  0x00, 0x40, 0x80, 0xc0, 0x10, 0x50, 0x90, 0xd0, 
  0x20, 0x60, 0xa0, 0xe0, 0x30, 0x70, 0xb0, 0xf0,
  0x04, 0x44, 0x84, 0xc4, 0x14, 0x54, 0x94, 0xd4, 
  0x24, 0x64, 0xa4, 0xe4, 0x34, 0x74, 0xb4, 0xf4,
  0x08, 0x48, 0x88, 0xc8, 0x18, 0x58, 0x98, 0xd8, 
  0x28, 0x68, 0xa8, 0xe8, 0x38, 0x78, 0xb8, 0xf8, 
  0x0c, 0x4c, 0x8c, 0xcc, 0x1c, 0x5c, 0x9c, 0xdc, 
  0x2c, 0x6c, 0xac, 0xec, 0x3c, 0x7c, 0xbc, 0xfc, 
  0x01, 0x41, 0x81, 0xc1, 0x11, 0x51, 0x91, 0xd1, 
  0x21, 0x61, 0xa1, 0xe1, 0x31, 0x71, 0xb1, 0xf1, 
  0x05, 0x45, 0x85, 0xc5, 0x15, 0x55, 0x95, 0xd5, 
  0x25, 0x65, 0xa5, 0xe5, 0x35, 0x75, 0xb5, 0xf5, 
  0x09, 0x49, 0x89, 0xc9, 0x19, 0x59, 0x99, 0xd9, 
  0x29, 0x69, 0xa9, 0xe9, 0x39, 0x79, 0xb9, 0xf9, 
  0x0d, 0x4d, 0x8d, 0xcd, 0x1d, 0x5d, 0x9d, 0xdd, 
  0x2d, 0x6d, 0xad, 0xed, 0x3d, 0x7d, 0xbd, 0xfd, 
  0x02, 0x42, 0x82, 0xc2, 0x12, 0x52, 0x92, 0xd2, 
  0x22, 0x62, 0xa2, 0xe2, 0x32, 0x72, 0xb2, 0xf2, 
  0x06, 0x46, 0x86, 0xc6, 0x16, 0x56, 0x96, 0xd6, 
  0x26, 0x66, 0xa6, 0xe6, 0x36, 0x76, 0xb6, 0xf6, 
  0x0a, 0x4a, 0x8a, 0xca, 0x1a, 0x5a, 0x9a, 0xda, 
  0x2a, 0x6a, 0xaa, 0xea, 0x3a, 0x7a, 0xba, 0xfa, 
  0x0e, 0x4e, 0x8e, 0xce, 0x1e, 0x5e, 0x9e, 0xde, 
  0x2e, 0x6e, 0xae, 0xee, 0x3e, 0x7e, 0xbe, 0xfe, 
  0x03, 0x43, 0x83, 0xc3, 0x13, 0x53, 0x93, 0xd3, 
  0x23, 0x63, 0xa3, 0xe3, 0x33, 0x73, 0xb3, 0xf3, 
  0x07, 0x47, 0x87, 0xc7, 0x17, 0x57, 0x97, 0xd7, 
  0x27, 0x67, 0xa7, 0xe7, 0x37, 0x77, 0xb7, 0xf7, 
  0x0b, 0x4b, 0x8b, 0xcb, 0x1b, 0x5b, 0x9b, 0xdb, 
  0x2b, 0x6b, 0xab, 0xeb, 0x3b, 0x7b, 0xbb, 0xfb, 
  0x0f, 0x4f, 0x8f, 0xcf, 0x1f, 0x5f, 0x9f, 0xdf, 
  0x2f, 0x6f, 0xaf, 0xef, 0x3f, 0x7f, 0xbf, 0xff  };
            
// This is the 4-bits per pixel table
static char byteFlips4[] ={ 
  0x00, 0x10, 0x20, 0x30, 0x40, 0x50, 0x60, 0x70, 
  0x80, 0x90, 0xa0, 0xb0, 0xc0, 0xd0, 0xe0, 0xf0,
  0x01, 0x11, 0x21, 0x31, 0x41, 0x51, 0x61, 0x71, 
  0x81, 0x91, 0xa1, 0xb1, 0xc1, 0xd1, 0xe1, 0xf1, 
  0x02, 0x12, 0x22, 0x32, 0x42, 0x52, 0x62, 0x72, 
  0x82, 0x92, 0xa2, 0xb2, 0xc2, 0xd2, 0xe2, 0xf2, 
  0x03, 0x13, 0x23, 0x33, 0x43, 0x53, 0x63, 0x73, 
  0x83, 0x93, 0xa3, 0xb3, 0xc3, 0xd3, 0xe3, 0xf3, 
  0x04, 0x14, 0x24, 0x34, 0x44, 0x54, 0x64, 0x74, 
  0x84, 0x94, 0xa4, 0xb4, 0xc4, 0xd4, 0xe4, 0xf4, 
  0x05, 0x15, 0x25, 0x35, 0x45, 0x55, 0x65, 0x75, 
  0x85, 0x95, 0xa5, 0xb5, 0xc5, 0xd5, 0xe5, 0xf5, 
  0x06, 0x16, 0x26, 0x36, 0x46, 0x56, 0x66, 0x76, 
  0x86, 0x96, 0xa6, 0xb6, 0xc6, 0xd6, 0xe6, 0xf6, 
  0x07, 0x17, 0x27, 0x37, 0x47, 0x57, 0x67, 0x77, 
  0x87, 0x97, 0xa7, 0xb7, 0xc7, 0xd7, 0xe7, 0xf7, 
  0x08, 0x18, 0x28, 0x38, 0x48, 0x58, 0x68, 0x78, 
  0x88, 0x98, 0xa8, 0xb8, 0xc8, 0xd8, 0xe8, 0xf8, 
  0x09, 0x19, 0x29, 0x39, 0x49, 0x59, 0x69, 0x79, 
  0x89, 0x99, 0xa9, 0xb9, 0xc9, 0xd9, 0xe9, 0xf9, 
  0x0a, 0x1a, 0x2a, 0x3a, 0x4a, 0x5a, 0x6a, 0x7a, 
  0x8a, 0x9a, 0xaa, 0xba, 0xca, 0xda, 0xea, 0xfa, 
  0x0b, 0x1b, 0x2b, 0x3b, 0x4b, 0x5b, 0x6b, 0x7b, 
  0x8b, 0x9b, 0xab, 0xbb, 0xcb, 0xdb, 0xeb, 0xfb, 
  0x0c, 0x1c, 0x2c, 0x3c, 0x4c, 0x5c, 0x6c, 0x7c, 
  0x8c, 0x9c, 0xac, 0xbc, 0xcc, 0xdc, 0xec, 0xfc, 
  0x0d, 0x1d, 0x2d, 0x3d, 0x4d, 0x5d, 0x6d, 0x7d, 
  0x8d, 0x9d, 0xad, 0xbd, 0xcd, 0xdd, 0xed, 0xfd, 
  0x0e, 0x1e, 0x2e, 0x3e, 0x4e, 0x5e, 0x6e, 0x7e, 
  0x8e, 0x9e, 0xae, 0xbe, 0xce, 0xde, 0xee, 0xfe, 
  0x0f, 0x1f, 0x2f, 0x3f, 0x4f, 0x5f, 0x6f, 0x7f, 
  0x8f, 0x9f, 0xaf, 0xbf, 0xcf, 0xdf, 0xef, 0xff  };


Flip_Long
static void Flip_Long(  PixMapHandle theMap, 
                        short rowBytes,
                        short depth,
                        Rect* area)
{
#undef T
#define T long

  register UCHAR  temp;
  short           rowCells = rowBytes / sizeof(T);
  long            bitsPerRow = (area->right - area->left) *
                          (long)depth - 1;
  short           numCells = (bitsPerRow + sizeof(T)*8) /
                          (sizeof(T)*8);
  T*              cellPtr;
  T*              aRow;
  T*              firstRow = (T*)GetPixBaseAddr( theMap);
  T*              lastRow = firstRow + rowCells * 
                      (long)(area->bottom - area->top);
  
  register T*     cellPtr1, *cellPtr2;

  short           numBitsToShift = ((sizeof(T)*8) -
                      (bitsPerRow % (sizeof(T)*8) + 1));
  T               shiftMask;
  T*              shiftCellPtr;
  char*           flipTable;
  
  

  switch(depth)
  {
    case 1:
      flipTable = byteFlips1;
      break;
    case 2:
      flipTable = byteFlips2;
      break;
    case 4:
      flipTable = byteFlips4;
      break;
  }
            

  if (numBitsToShift)
  {
    shiftMask = (1L << numBitsToShift) - 1;

    for ( aRow = firstRow; 
        aRow < lastRow;
        aRow += rowCells)
    {
      // With each pair of cells in the row (one on the left, the other 
on the right),
      // flip the pixels in the individual cells and swap the cells with 
one another.
      for ( cellPtr1 = aRow + numCells - 1, cellPtr2 = aRow;
          cellPtr1 > cellPtr2;
          cellPtr1--, cellPtr2++)
      {
        temp = ((UCHAR*)cellPtr1)[0];
        ((UCHAR*)cellPtr1)[0] = 
            flipTable[((UCHAR*)cellPtr2)[3]];
        ((UCHAR*)cellPtr2)[3] = flipTable[temp];
        
        temp = ((UCHAR*)cellPtr1)[1];
        ((UCHAR*)cellPtr1)[1] = 
            flipTable[((UCHAR*)cellPtr2)[2]];
        ((UCHAR*)cellPtr2)[2] = flipTable[temp];
        
        temp = ((UCHAR*)cellPtr1)[2];
        ((UCHAR*)cellPtr1)[2] = 
            flipTable[((UCHAR*)cellPtr2)[1]];
        ((UCHAR*)cellPtr2)[1] = flipTable[temp];
        
        temp = ((UCHAR*)cellPtr1)[3];
        ((UCHAR*)cellPtr1)[3] = 
            flipTable[((UCHAR*)cellPtr2)[0]];
        ((UCHAR*)cellPtr2)[0] = flipTable[temp];
      }
      
      // If there's an odd number of cells in the row,  there is one 
cell we haven't
      // touched.   It needs to be flipped.
      if (cellPtr1 == cellPtr2)
      {
        temp = ((UCHAR*)cellPtr1)[0];
        ((UCHAR*)cellPtr1)[0] = 
            flipTable[((UCHAR*)cellPtr1)[3]];
        ((UCHAR*)cellPtr1)[3] = flipTable[temp];
        
        temp = ((UCHAR*)cellPtr1)[1];
        ((UCHAR*)cellPtr1)[1] = 
            flipTable[((UCHAR*)cellPtr1)[2]];
        ((UCHAR*)cellPtr1)[2] = flipTable[temp];
      }

      // Slide the pixels to the left
      for ( shiftCellPtr = aRow;
          shiftCellPtr < aRow + rowCells;
          shiftCellPtr++)
      {
        // shift the bits over
        *shiftCellPtr <<= numBitsToShift;
          
        // bring in the bits from the next cell - garbage will be brought 
in during
        // the last iteration, but it’s put into the last cell, outside 
the bounds of the 
        // image (but still in the data area)
        *shiftCellPtr |= shiftMask & 
                        (*(shiftCellPtr+1) >> 
                          (sizeof(T)*8 - numBitsToShift));
      }
    }
  }
  else  // no need to shift pixels, otherwise, just the same as previous 
loop
    for ( aRow = firstRow; aRow < lastRow; aRow += rowCells)
    {
      // With each pair of cells in the row (one on the  left, the other 
on the right),
      // flip the pixels in the individual cells and swap the cells with 
one another.
      for ( cellPtr1 = aRow + numCells - 1, cellPtr2 = aRow;
            cellPtr1 > cellPtr2;
            cellPtr1--, cellPtr2++)
      {
        temp = ((UCHAR*)cellPtr1)[0];
        ((UCHAR*)cellPtr1)[0] =
            flipTable[((UCHAR*)cellPtr2)[3]];
        ((UCHAR*)cellPtr2)[3] = flipTable[temp];
        
        temp = ((UCHAR*)cellPtr1)[1];
        ((UCHAR*)cellPtr1)[1] = 
            flipTable[((UCHAR*)cellPtr2)[2]];
        ((UCHAR*)cellPtr2)[2] = flipTable[temp];
        
        temp = ((UCHAR*)cellPtr1)[2];
        ((UCHAR*)cellPtr1)[2] = 
            flipTable[((UCHAR*)cellPtr2)[1]];
        ((UCHAR*)cellPtr2)[1] = flipTable[temp];
        
        temp = ((UCHAR*)cellPtr1)[3];
        ((UCHAR*)cellPtr1)[3] = 
            flipTable[((UCHAR*)cellPtr2)[0]];
        ((UCHAR*)cellPtr2)[0] = flipTable[temp];
      }
      
      // If there are an odd number of cells in the row,
      // there is one cell we haven't touched.
      // It needs to be flipped.
      if (cellPtr1 == cellPtr2)
      {
        temp = ((UCHAR*)cellPtr1)[0];
        ((UCHAR*)cellPtr1)[0] = 
            flipTable[((UCHAR*)cellPtr1)[3]];
        ((UCHAR*)cellPtr1)[3] = flipTable[temp];
        
        temp = ((UCHAR*)cellPtr1)[1];
        ((UCHAR*)cellPtr1)[1] = 
            flipTable[((UCHAR*)cellPtr1)[2]];
        ((UCHAR*)cellPtr1)[2] = flipTable[temp];
      }
    }
  }
}


Flip_Word
static void Flip_Word(  PixMapHandle theMap, 
                        short rowBytes,
                        short depth,
                        Rect* area)
{
#undef T
#define T short

  register UCHAR  temp;
  short           rowCells = rowBytes / sizeof(T);
  long            bitsPerRow = (area->right - area->left) *
                          (long)depth - 1;
  short           numCells = (bitsPerRow + sizeof(T)*8) /
                          (sizeof(T)*8);
  T*              cellPtr;
  T*              aRow;
  T*              firstRow = (T*)GetPixBaseAddr( theMap);
  T*              lastRow = firstRow + rowCells * 
                      (long)(area->bottom - area->top);
  
  register T*     cellPtr1, *cellPtr2;

  short           numBitsToShift = ((sizeof(T)*8) -
                      (bitsPerRow % (sizeof(T)*8) + 1));
  T               shiftMask;
  T*              shiftCellPtr;
  char*           flipTable;
  
  

  switch(depth)
  {
    case 1:
      flipTable = byteFlips1;
      break;
    case 2:
      flipTable = byteFlips2;
      break;
    case 4:
      flipTable = byteFlips4;
      break;
  }
            

  if (numBitsToShift)
  {
    shiftMask = (1L << numBitsToShift) - 1;

    for ( aRow = firstRow; aRow < lastRow; aRow += rowCells)
    {
      // With each pair of cells in the row (one on the left, the other 
on the right),
      // flip the pixels in the individual cells and swap the cells with 
one another.
      for ( cellPtr1 = aRow + numCells - 1, cellPtr2 = aRow;
          cellPtr1 > cellPtr2;
          cellPtr1--, cellPtr2++)
      {
        temp = ((UCHAR*)cellPtr1)[0];
        ((UCHAR*)cellPtr1)[0] = 
            flipTable[((UCHAR*)cellPtr2)[1]];
        ((UCHAR*)cellPtr2)[1] = flipTable[temp];
        
        temp = ((UCHAR*)cellPtr1)[1];
        ((UCHAR*)cellPtr1)[1] =
            flipTable[((UCHAR*)cellPtr2)[0]];
        ((UCHAR*)cellPtr2)[0] = flipTable[temp];
      }
      
      // If there's an odd number of cells in the row, there is one cell 
we haven't
      // touched.   It needs to be flipped.
      if (cellPtr1 == cellPtr2)
      {
        temp = ((UCHAR*)cellPtr1)[0];
        ((UCHAR*)cellPtr1)[0] = 
            flipTable[((UCHAR*)cellPtr1)[1]];
        ((UCHAR*)cellPtr1)[1] = 
            flipTable[temp];
      }

      // Slide the pixels to the left
      for ( shiftCellPtr = aRow;
          shiftCellPtr < aRow + rowCells;
          shiftCellPtr++)
      {
      // shift the bits over
        *shiftCellPtr <<= numBitsToShift;
          
      // bring in the bits from the next cell - garbage will be brought 
in during last 
      // iteration, but it’s put into the last
        // cell, outside the bounds of the image (but still in the data 
area)
        *shiftCellPtr |= shiftMask & 
                        (*(shiftCellPtr+1) >> 
                          (sizeof(T)*8 - numBitsToShift));
      }
    }
  }
  else  // no need to shift pixels, otherwise,  just the same as previous 
loop
    for ( aRow = firstRow; aRow < lastRow; aRow += rowCells)
    {
      // With each pair of cells in the row (one on the 
      // left, the other on the right), flip the pixels
      // in the individual cells and swap the cells with
       // one another.
      for ( cellPtr1 = aRow + numCells - 1, cellPtr2 = aRow;
            cellPtr1 > cellPtr2;
            cellPtr1--, cellPtr2++)
      {
        temp = ((UCHAR*)cellPtr1)[0];
        ((UCHAR*)cellPtr1)[0] = 
            flipTable[((UCHAR*)cellPtr2)[1]];
        ((UCHAR*)cellPtr2)[1] = flipTable[temp];
        
        temp = ((UCHAR*)cellPtr1)[1];
        ((UCHAR*)cellPtr1)[1] = 
            flipTable[((UCHAR*)cellPtr2)[0]];
        ((UCHAR*)cellPtr2)[0] = flipTable[temp];
      }
      
      // If there are an odd number of cells in the row,
      // there is one cell we haven't touched.
      // It needs to be flipped.
      if (cellPtr1 == cellPtr2)
      {
        temp = ((UCHAR*)cellPtr1)[0];
        ((UCHAR*)cellPtr1)[0] = 
            flipTable[((UCHAR*)cellPtr1)[1]];
        ((UCHAR*)cellPtr1)[1] = flipTable[temp];
      }
    }
  }
}
 

Community Search:
MacTech Search:

Software Updates via MacUpdate

Sandvox 2.10.2 - Easily build eye-catchi...
Sandvox is for Mac users who want to create a professional looking website quickly and easily. With Sandvox, you don't need to be a Web genius to build a stylish, feature-rich, standards-compliant... Read more
LibreOffice 5.0.1.2 - Free, open-source...
LibreOffice is an office suite (word processor, spreadsheet, presentations, drawing tool) compatible with other major office suites. The Document Foundation is coordinating development and... Read more
f.lux 36.1 - Adjusts the color of your d...
f.lux makes the color of your computer's display adapt to the time of day, warm at night and like sunlight during the day. Ever notice how people texting at night have that eerie blue glow? Or wake... Read more
VirtualBox 5.0.2 - x86 virtualization so...
VirtualBox is a family of powerful x86 virtualization products for enterprise as well as home use. Not only is VirtualBox an extremely feature rich, high performance product for enterprise customers... Read more
File Juicer 4.43 - Extract images, video...
File Juicer is a drag-and-drop can opener and data archaeologist. Its specialty is to find and extract images, video, audio, or text from files which are hard to open in other ways. In computer... Read more
Apple MainStage 3.2 - Live performance t...
MainStage 3 makes it easy to bring to the stage all the same instruments and effects that you love in your recording. Everything from the Sound Library and Smart Controls you're familiar with from... Read more
formZ 8.5 - Solid and surface modeler. (...
formZ pro is a powerful 3D design application featuring a variety of modeling personalities and tools with an easy to use interface to express and communicate your imagination. It is based on... Read more
PopChar 7.2 - Floating window shows avai...
We're also selling a 5-license family pack for only $25.99! PopChar helps you get the most out of your font collection. With its crystal-clear interface, PopChar provides a frustration-free way to... Read more
FileMaker Pro 14.0.2 - Powerful, easy-to...
FileMaker Pro is powerful, easy-to-use software used to create custom solutions for your business that run on iPad, iPhone, Windows, Mac and the web. Use FileMaker Pro to manage and share information... Read more
djay Pro 1.2 - Transform your Mac into a...
djay Pro provides a complete toolkit for performing DJs. Its unique modern interface is built around a sophisticated integration with iTunes and Spotify, giving you instant access to millions of... Read more

ReBoard: Revolutionary Keyboard (Utilit...
ReBoard: Revolutionary Keyboard 1.0 Device: iOS Universal Category: Utilities Price: $1.99, Version: 1.0 (iTunes) Description: Do everything within the keyboard without switching apps! If you are in WhatsApp, how do you schedule a... | Read more »
Tiny Empire (Games)
Tiny Empire 1.1.3 Device: iOS Universal Category: Games Price: $2.99, Version: 1.1.3 (iTunes) Description: Launch cannonballs and blow tiny orcs into thousands of pieces in this intuitive fantasy-themed puzzle shooter! Embark on an... | Read more »
Astropad Mini (Productivity)
Astropad Mini 1.0 Device: iOS iPhone Category: Productivity Price: $4.99, Version: 1.0 (iTunes) Description: *** 50% off introductory price! ​*** Get the high-end experience of a Wacom tablet at a fraction of the price with Astropad... | Read more »
Emo Chorus (Music)
Emo Chorus 1.0.0 Device: iOS Universal Category: Music Price: $1.99, Version: 1.0.0 (iTunes) Description: Realistic Choir simulator ranging from simple Chorus emulation to full ensemble Choir with 128 members. ### introductory offer... | Read more »
Forest Spirit (Games)
Forest Spirit 1.0.5 Device: iOS Universal Category: Games Price: $2.99, Version: 1.0.5 (iTunes) Description: | Read more »
Ski Safari 2 (Games)
Ski Safari 2 1.0 Device: iOS Universal Category: Games Price: $1.99, Version: 1.0 (iTunes) Description: The world's most fantastical, fun, family-friendly skiing game is back and better than ever! Play as Sven's sister Evana, share... | Read more »
Lara Croft GO (Games)
Lara Croft GO 1.0.47768 Device: iOS Universal Category: Games Price: $4.99, Version: 1.0.47768 (iTunes) Description: Lara Croft GO is a turn based puzzle-adventure set in a long-forgotten world. Explore the ruins of an ancient... | Read more »
Whispering Willows (Games)
Whispering Willows 1.23 Device: iOS Universal Category: Games Price: $4.99, Version: 1.23 (iTunes) Description: **LAUNCH SALE 50% OFF** - Whispering Willows is on sale for 50% off ($4.99) until September 9th. | Read more »
Calvino Noir (Games)
Calvino Noir 1.1 Device: iOS iPhone Category: Games Price: $3.99, Version: 1.1 (iTunes) Description: The film noir stealth game. Calvino Noir is the exploratory, sneaking adventure through the 1930s European criminal underworld.... | Read more »
Angel Sword (Games)
Angel Sword 1.0 Device: iOS Universal Category: Games Price: $6.99, Version: 1.0 (iTunes) Description: Prepare to adventure in the most epic full scale multiplayer 3D RPG for mobile! Experience amazing detailed graphics in full HD.... | Read more »

Price Scanner via MacPrices.net

Tablet Screen Sizes Expanding as iPad Pro App...
Larger screen sizes are gaining favor as the tablet transforms into a productivity device, with shipments growing 185 percent year-over-year in 2015. According to a new Strategy Analytics’ Tablet... Read more
Today Only: Save US$50 on Adobe Elements 13;...
Keep the memories. lose the distractions. Summer’s winding down and it’s time to turn almost perfect shots into picture perfect memories with Elements 13. And get the power to edit both photos and... Read more
1.4GHz Mac mini on sale for $449, save $50
Best Buy has the 1.4GHz Mac mini on sale for $50 off MSRP on their online store. Choose free shipping or free local store pickup (if available). Price for online orders only, in-store price may vary... Read more
12-inch 1.1GHz Gold MacBook on sale for $1149...
B&H Photo has the 12″ 1.1GHz Gold Retina MacBook on sale for $1149.99 including free shipping plus NY sales tax only. Their price is $150 off MSRP, and it’s the lowest price available for this... Read more
27-inch 3.3GHz 5K iMac on sale for $1849, sav...
Best Buy has the 27″ 3.3GHz 5K iMac on sale for $1849.99. Their price is $150 off MSRP, and it’s the lowest price available for this model. Choose free shipping or free local store pickup (if... Read more
Worldwide Tablet Shipments Expected to Declin...
Does Apple badly need a touchscreen convertible/hybrid laptop MacBook? Yes, judging from a new market forecast from the International Data Corporation (IDC) Worldwide Quarterly Tablet Tracker, which... Read more
Continued PC Shipment Shrinkage Expected Thro...
Worldwide PC shipments are expected to fall by -8.7 percent in 2015 and not stabilize until 2017, according to the latest International Data Corporation (IDC) Worldwide Quarterly PC Tracker data. The... Read more
Imminent iPhone 6s Announcement Leads To 103%...
NextWorth Solutions, with its online and in-store electronics trade-in programs including http://NextWorth.com, reports that it has experienced a 103 percent surge in quoted trade-in values over the... Read more
Weekend Deal: 13-inch Retina MacBook Pros for...
Save up to $100 on the purchase of a new 2015 13″ Retina MacBook Pro at the following resellers this weekend. Shipping is free with each model: 2.7GHz/128GB MSRP $1299 2.7GHz/... Read more
13-inch 2.5GHz MacBook Pro on sale for $999,...
B&H Photo has the 13″ 2.5GHz MacBook Pro on sale for $999.99 including free shipping plus NY sales tax only. Their price is $100 off MSRP. Read more

Jobs Board

Product Design Engineer - *Apple* Watch - A...
**Job Summary** Product Design Engineer Job Description As a member of Apple 's Watch product design team, you will help to create the next generation of the world's Read more
*Apple* Retail - Multiple Positions (US) - A...
Sales Specialist - Retail Customer Service and Sales Transform Apple Store visitors into loyal Apple customers. When customers enter the store, you're also the Read more
Software QA Engineer, *Apple* Pay Security...
Changing the world is all in a day039s work at Apple . If you love innovation, here039s your chance to make a career of it. You039ll work hard. But the job comes with Read more
*Apple* Retail - Multiple Positions (US) - A...
Sales Specialist - Retail Customer Service and Sales Transform Apple Store visitors into loyal Apple customers. When customers enter the store, you're also the Read more
*Apple* Solutions Consultant - Retail Sales...
**Job Summary** As an Apple Solutions Consultant (ASC) you are the link between our customers and our products. Your role is to drive the Apple business in a retail Read more
All contents are Copyright 1984-2011 by Xplain Corporation. All rights reserved. Theme designed by Icreon.