TweetFollow Us on Twitter

Mar 94 Top 10
Volume Number:10
Issue Number:3
Column Tag:Think Top 10

Non-interrupt
Completion Routines

By Colen Garoutte-Carson, Symantec Technical Support, Symantec Corp.

This is a monthly column written by Symantec’s Technical Support Engineers intended to provide you with information on Symantec products. Each month we cover either a specific application of tools or a “Q&A” list.

Non-interrupt Completion Routines

If you’re using high-level Macintosh toolbox routines to manipulate files, devices, or drivers, chances are that you’re program could be executing much more efficiently.

The most efficient way to do any file or driver access is asynchronously. When you write to a file with the FSWrite routine, your application, as well as any background process, is suspended while FSWrite waits for the disk to seek to the appropriate sector. Upon reaching that sector, the drive controller issues an interrupt, which prompts the CPU to start writing to the file. The time lost while waiting for the disk to seek is time that could be better spent. When you write to a file asychronously, control returns to your program immediately. The only time taken is taken after the disk interrupt has been issued, at which time the operating system does the appropriate work, and, often, waits for yet another interrupt to be issued. The process of performing an asynchronous routine is entirely transparent to your application.

All high-level file and device IO related Macintosh toolbox routines have low-level counterparts. These routines begin with the letters “PB”, probably because they are each passed a structure called a parameter block. Rather than passing arguments necessary to complete an operation, fields of the parameter block are assigned values, and a pointer to that parameter block is passed to the PB routine. Parameter blocks are often used both to pass information to a PB routine, and return information to the calling routine.

The second, and final argument to a PB routine is a Boolean, which is set to false for synchronous, or true for asynchronous execution. All PB routines have only these two arguments.

Different PB routines require different types, and different sizes of parameter blocks. For example, the original set of Macintosh file IO routines, designed to be used on the original flat volume architecture, require a structure called a ParamBlockRec. In C and C++, a ParamBlockRec is actually a union of a number of other parameter blocks types. In Pascal, a cased record is used. Different PB routines require variables from different union members. PBRead and PBWrite require an IOParam parameter block. PBCreate and PBDelete require a FileParam parameter block. You can either use a ParamBlockRec structure for calling all of these routines, or the exact structure a particular routine requires. You can use the same ParamBlockRec for many different consecutive PB routines because it’s allocated to the size of the largest member of the union. But, if you use an IOParam, you will not be able to use it with any PB routines other than those which accept IOParam’s. For more information on the organization of the many types of Parameter Blocks, take a look at Inside Macintosh : Files, Inside Macintosh : Devices, or the Think Reference.

All parameter blocks begin with the same basic structure, a ParamBlockHeader. The first two fields of a ParamBlockHeader, qLink and qType, are also fields of a QElem structure. QElem structures are queue element structures used internally by a driver. QElem structures and parameter blocks are interchangeable. The QElem structures that a driver is using at any given moment are probably parameter blocks, passed to it by a PB routine.

Even if you are not using asynchronous IO, calling the low level PB routines instead of their high level counterparts can save time. High level routines in turn call PB routines. Filling out the parameter blocks and calling the PB routines yourself takes more code space, but saves a little bit of CPU time. Also, sometimes there can be more flexibility built into the PB version of a routine.

There are few functional differences between using PB routines synchronously and using the high level routines, but calling PB routines asynchronously adds some new considerations to your coding. The parameter block structure you pass to a PB routines must remain valid, and not move in memory until the PB routine is completed. This means that you cannot pass a pointer to a parameter block declared locally within your function if your function may be exited before the routine is completed. This also means that you cannot reuse a parameter block until the PB routine you’ve used it in last is completed. Attempting to reuse a parameter block, which is currently being used by another PB routine, would modify information which may still be in use. This could cause unpredictable results.

Once you know an asynchronous routine has completed, you can use the information it returns, if any, and reuse or deallocate the parameter block. Often it’s desirable to chain together a series of asynchronous routines. For example, you could open a file, write to the file, then close the file, all asynchronous. The completion of each of those operations could trigger the next.

There are two ways to find out if an asynchronous routine has completed. The most often used of which is a completion routine. There is a variable within the ParamBlockHeader called ioCompletion. This variable is a ProcPtr. If this variable is non-zero, it’s value will be used as an address and will be jumped to automatically when the asynchronous routine is completed.

At first glance, this appears to be the perfect solution to incorporating asynchronous routines into your program. Unfortunately, the completion routine may be executed at any time, including during interrupt time, or at a point in time when your application is not the current process your computer is handling. This means that you cannot call any routines which move memory. Well over half of the Macintosh Toolbox routines move memory, including most of the fundamental ones. This also means that, at the point your completion routine is called, your routine may not have access to your application’s global variables. There is a mechanism which allows you to gain access to your application’s global variables, but using it means you have to take yet another matter into consideration. You could potentially be modifying a global variable which another part of your code could be in the middle of using. This could be very hazardous unless you’ve written your code to take sudden changes in variables into consideration.

The second way to find out if an asynchronous routine has been completed is to poll the ioResult field of it’s parameter block. The ioResult field, like ioCompletion, is a variable within the ParamBlockHeader structure. While the asynchronous routine is executing, this variable has a positive value. When the asynchronous routine is completed, this variable holds an error code, which is a either a negative value, or zero (noErr).

Polling the ioResult field can be a lot more difficult than using a completion routine. In order to poll an ioResult field, you must have access to the parameter block. And, in order to really let the rest of your program continue to go about it’s business, you’d have to poll ioResult fields in your programs main loop, or at some other point in your code that gets executed repeatedly. In order to do this, you’d need access to all of your parameter blocks globally. And, if you did have access to all of them globally, you’d need a mechanism to find out which ones are being used, and which ones are idle. This is not very intuitive.

The best use for ioResult polling is for doing something in particular while you wait for your asynchronous routine to complete, not to make asynchronous routines transparent to the rest of your program. With ioResult polling, you could execute a routine asychronous, and use the little bit of time immediately after it’s started executing to update windows, etc, while you wait for it to complete. As far as the rest of your program is concerned, this might as well be considered sychronous execution.

For education purposes, we’re going to try to mix these two methods to develop a new means of handling asynchronous completion routines. A mechanism which we shall outline will allow you to provide a routine to be executed when the asynchronous routine is completed, yet will execute the routine during normal process time. This is done by polling the ioResult field until the asynchronous routine is complete, and then executing a specified completion routine.

This mechanism offers the best of both worlds, and the drawbacks of neither. You are not limited to non-memory moving routines, and you are able to specify an action be taken at the completion of an asynchronous routine. Because the completion routine is not executed at interrupt time, you’re free to deallocate the parameter block with DisposPtr, which would otherwise be off limits.

Our non-interrupt asynchronous completion routine mechanism will maintain a linked list of installed parameter blocks, periodically search this linked list for completed routines, and remove them from the list and execute their completion routines when completed.

First, let’s declare our linked list structure :


/* 1 */
typedef void (* CompletionProc)(ParmBlkPtr, long);

struct CompletionHandlerEntry {
 ParmBlkPtr pb;
 CompletionProc  doneProc;
 long   refCon;
 struct CompletionHandlerEntry** nextEntry;
};
typedef struct CompletionHandlerEntry CompletionHandlerEntry;

In Pascal, this would be :

/* 2 */
type
   CompletionHandlerEntryHand = ^CompletionHandlerEntryPtr;
   CompletionHandlerEntryPtr = ^CompletionHandlerEntry;
   CompletionHandlerEntry = record
      pb: ParmBlkPtr;
      doneProc: ProcPtr;
      refCon: longint;
      nextEntry: CompletionHandlerEntryHand;
   end;

Notice that in the C version of this structure we’ve declared a function pointer type. There is no equivalent to this in Pascal. We’ll discuss how the function is executed in Pascal later. Also, notice that in addition to storing the parameter block and completion routine, we are also storing a refCon variable in this structure. refCon is a commonly used name for a variable which the programmer can use for his or her own purposes. Because it’s a 4-byte value, you can allocate a pointer or a handle and safely store it in a refCon. This means that you can piggy-back any information you would like onto each parameter block in this completion routine mechanism.

Our program will have to maintain a linked list of these structures in order to implement this mechanism. The first entry in the list will have to be kept track of as a global variable, like so :

CompletionHandlerEntry **Asynchs;

In Pascal:

var
   Asynchs: CompletionHandlerEntryHand;

When the list is empty, this variable will be NULL (NIL, or zero). When there are entries in the list, this global variable will point the first entry. The list can be walked through by following the nextEntry pointer to the next entry in the list. The last entry in the list will have a nextEntry of NULL. At the start of your program you should make sure to initialize Asynchs to NULL.

Next we need to write two routines which act on these structures. One to allow you to add a parameter block to the list, and another to scan the list for completed routines. First, the routine to add the parameter block to the list :


/* 3 */
void InstallCompletion(ParmBlkPtr pb, CompletionProc theProc, 
 long refCon)
{
 CompletionHandlerEntry ** NewEntry;

 NewEntry = (CompletionHandlerEntry **)
 NewHandle(sizeof(CompletionHandlerEntry));
 if (NewEntry == NULL)
 {
 while (pb->ioParam.ioResult > 0)
 ;
 (*theProc)(pb, theProc);
 }
 else
 {
 (**NewEntry).pb = pb;
 (**NewEntry).doneProc = theProc;
 (**NewEntry).refCon = refCon;
 (**NewEntry).nextEntry = Asynchs;
 Asynchs = NewEntry;
 }
}

In Pascal :


/* 4 */
procedure InstallCompletion (pb: univ ParmBlkPtr;
   theProc: ProcPtr; refCon: longint);

var
   NewEntry: CompletionHandlerEntryHand;

begin
   Handle(NewEntry) := 
      NewHandle(sizeof(CompletionHandlerEntry));
   if NewEntry = nil then
      begin
         while pb^.ioResult > 0 do
            ;
         CallCompletion(pb, theProc);
      end
   else
      begin
         NewEntry^^.pb := pb;
         NewEntry^^.refCon := refCon;
         NewEntry^^.doneProc := theProc;
         NewEntry^^.NextOne := Asynchs;
         Asynchs := NewEntry;
      end;
end;


This routine will first allocate a new completion handler entry. If it fails, it will wait for the asynchronous routine to complete and then call the completion routine. This means the asynchronous routine will be performed pseudo-synchronously when memory is very low. If the allocation is successful, the completion handler entry is added to the beginning of our linked list.

There is room to expand upon this routine. It could be modified to use a default completion routine if a completion routine of NULL is passed to it. The default completion routine would probably only deallocate the parameter block. This routine could also be modified to save certain variables in the linked list structure to be restored when the completion routine is called. This could be very useful if you change your current resource file often. You could save the current resource fork when the asynchronous routine is installed, and restore it temporarily when the completion routine is called.

Next, we need a routine to scan this linked list for completed asynchronous routines, and execute their completion routines:


/* 4 */
void DoCompletions()
{
 CompletionHandlerEntry **curEntry = Asynchs;
 CompletionHandlerEntry **parentEntry = NULL;

 while (curEntry)
 {
 if ((**curEntry).pb->ioParam.ioResult <= 0)
 {
 if (parentEntry)
 (**parentEntry).nextEntry = (**curEntry).nextEntry;
 else
 Asynchs = (**curEntry).nextEntry;
 (*(**curEntry).doneProc) 
 ((**curEntry).pb, (**curEntry).refCon);
 DisposHandle((Handle)curEntry);
 curEntry = NULL;
 if (parentEntry)
 curEntry = (**parentEntry).nextEntry;
 else
 curEntry = Asynchs;
 }
 else
 {
 parentEntry = curEntry;
 curEntry = (**curEntry).nextEntry;
 }
 }
}

In Pascal :


/* 6 */
procedure CallDoneProc (pb: ParmBlkPtr; refCon: longint; 
   jmpAddr: ProcPtr);

inline
   $205F, $4E90;

procedure DoCompletions;

var
   curEntry: CompletionHandlerEntryHand;
   parentEntry: CompletionHandlerEntryHand;

begin
   curEntry = Asynchs;
   parentEntry = nil;
   while (curEntry <> nil) do
      begin
         if (curEntry^^.pb^.ioResult <= 0) then
            begin
               if (parentEntry <> nil) then
                  parentEntry^^.nextEntry :=
                     curEntry^^.nextEntry
               else
                  Asynchs := curEntry^^.nextEntry;
               CallDoneProc(curEntry^^.pb, curEntry^^.refCon, 
                  curEntry^^.doneProc);
               DisposHandle(Handle(curEntry));
               curEntry := nil;
               if (parentEntry <> nil) then
                  curEntry := parentEntry^^.nextEntry
               else
                  curEntry := Asynchs;
            end
         else
            begin
               parentEntry := curEntry;
               curEntry := curEntry^^.nextEntry;
            end;
      end;
end;

Notice the inline Pascal procedure. What it does is strip the last parameter off the stack, and jump to the address in memory that it represents with the rest of the parameters intact. Although this works, and is a commonly used way to execute ProcPtr’s in Pascal, the method we can use in C uses registers much more efficiently.

DoCompletions should be added to your event loop, or to some other point in your code which is executed repeatedly.

One important thing to note about this mechanism is that you cannot call InstallCompletion from within a completion routine. This is because of how the DoCompletion routine is organized. At the point your completion routine is being called, the linked list is being acted upon. Installing a new completion handler entry could cause the linked list to be incorrectly maintained. This can be fixed. Consider it an exercise to better familiarize yourself with the routines used in the mechanism. It would either be a matter of 1) keeping a list of completed asychronous routines, removing them from the linked list, then executing their completion routines, or 2) making DoCompletions execute in such a way that modifications to the linked list during the call to the completion routine are compensated for.

 

Community Search:
MacTech Search:

Software Updates via MacUpdate

Tweetbot 2.5.3 - Popular Twitter client.
Tweetbot is a full-featured OS X Twitter client with a lot of personality. Whether it's the meticulously-crafted interface, sounds and animation, or features like multiple timelines and column views... Read more
Hopper Disassembler 4.2.19- - Binary dis...
Hopper Disassembler is a binary disassembler, decompiler, and debugger for 32- and 64-bit executables. It will let you disassemble any binary you want, and provide you all the information about its... Read more
Monosnap 3.4.0 - Versatile screenshot ut...
Monosnap lets you capture screenshots, share files, and record video and .gifs! Capture Capture full screen, just part of the screen, or a selected window Make your crop area pixel perfect with our... Read more
Duet 1.6.5.5 - Use your iPad as an exter...
Duet is the first app that allows you to use your iDevice as an extra display for your Mac using the Lightning or 30-pin cable. Note: This app requires a $14.99 iOS companion app. Version 1.6.5.5:... Read more
Hopper Disassembler 4.2.19- - Binary dis...
Hopper Disassembler is a binary disassembler, decompiler, and debugger for 32- and 64-bit executables. It will let you disassemble any binary you want, and provide you all the information about its... Read more
Duet 1.6.5.5 - Use your iPad as an exter...
Duet is the first app that allows you to use your iDevice as an extra display for your Mac using the Lightning or 30-pin cable. Note: This app requires a $14.99 iOS companion app. Version 1.6.5.5:... Read more
Monosnap 3.4.0 - Versatile screenshot ut...
Monosnap lets you capture screenshots, share files, and record video and .gifs! Capture Capture full screen, just part of the screen, or a selected window Make your crop area pixel perfect with our... Read more
Tweetbot 2.5.3 - Popular Twitter client.
Tweetbot is a full-featured OS X Twitter client with a lot of personality. Whether it's the meticulously-crafted interface, sounds and animation, or features like multiple timelines and column views... Read more
Default Folder X 5.1.6 - Enhances Open a...
Default Folder X attaches a toolbar to the right side of the Open and Save dialogs in any OS X-native application. The toolbar gives you fast access to various folders and commands. You just click on... Read more
Evernote 6.12.3 - Create searchable note...
Evernote allows you to easily capture information in any environment using whatever device or platform you find most convenient, and makes this information accessible and searchable at anytime, from... Read more

The best new games we played this week -...
It's pretty much been one big release after another. We were privy to a bunch of surprises this week, with a lot of games we'd been waiting for quite some time dropping unexpectedly. We hope you're free this weekend, because there is a lot for... | Read more »
Stormbound: Kingdom Wars guide - how to...
Stormbound: Kingdom Wars is an excellent new RTS turned card battler out now on iOS and Android. Lovers of strategy will get a lot of enjoyment out of Stormbound's chess-like mechanics, and it's cardbased units are perfect for anyone who loves the... | Read more »
The best AR apps and games on iOS right...
iOS 11 has officially launched, and with it comes Apple's ARKit, a helpful framework that makes it easier than ever for developers to create mobile AR experiences. To celebrate the occassion, we're featuring some of the best AR apps and games on... | Read more »
Phoenix Wright: Ace Attorney - Spirit of...
Phoenix Wright: Ace Attorney - Spirit of Justice 1.00.00 Device: iOS Universal Category: Games Price: $.99, Version: 1.00.00 (iTunes) Description: ************************************************※IMPORTANT※・Please read the “When... | Read more »
Kpressor (Utilities)
Kpressor 1.0.0 Device: iOS Universal Category: Utilities Price: $4.99, Version: 1.0.0 (iTunes) Description: The ultimate ZIP compression application for iPhone and iPad. - Full integration of iOS 11 with support for multitasking.-... | Read more »
Find out how you can save £35 and win a...
Nothing raises excitement like a good competition, and we’re thrilled to announce our latest contest. We’ll be sending one lucky reader and a friend to the Summoners War World Arena Championship at Le Comedia in Paris on October 7th. It’s the... | Read more »
Another Lost Phone: Laura's Story...
Another Lost Phone: Laura's Story 1.0 Device: iOS Universal Category: Games Price: $2.99, Version: 1.0 (iTunes) Description: Another Lost Phone is a game about exploring the social life of a young woman whose phone you have just... | Read more »
The Witness (Games)
The Witness 1.0 Device: iOS Universal Category: Games Price: $9.99, Version: 1.0 (iTunes) Description: You wake up, alone, on a strange island full of puzzles that will challenge and surprise you. You don't remember who you are, and... | Read more »
Egg, Inc. guide - how to build your gold...
Egg, Inc.'s been around for some time now, but don't you believe for one second that this quirky clicker game has gone out of style. The game keeps popping up on Reddit and other community forums thanks to the outlandish gameplay (plus, the... | Read more »
The best deals on the App Store this wee...
Good news, everyone! Your favorite day of the week has arrived at last -- it's discount roundup day! This fine Wednesday evening we're gathering up the hottest deals on the App Store. We've got action platformers, we've got puzzle games, we've got... | Read more »

Price Scanner via MacPrices.net

Looking for a 2017 12″ Retina MacBook? Save $...
Apple has Certified Refurbished 2017 12″ Retina MacBooks available for $200-$240 off the cost of new models. Apple will include a standard one-year warranty with each MacBook, and shipping is free.... Read more
Apple Offering Up To $455 Credit Toward iPhon...
iPhone 8 and 8 Plus are now available at the Apple Store, and you can receive up to $375 credit toward a new iPhone purchase when you trade in your eligible smartphone. Photo Courtesy Apple Just... Read more
AnyTrans Offers iOS Users Three Ways For Movi...
iMobie Inc. today announceed AnyTrans v6.0.1, which now can help iOS users move all data to iPhone 8/8 Plus seamlessly. The software is available both on Mac and Windows and fully able to move all... Read more
Snag a 13-inch 2.3GHz MacBook Pro for $100 of...
B&H Photo has 2017 13″ 2.3GHz MacBook Pros in stock today and on sale for $100 off MSRP, each including free shipping plus NY & NJ sales tax only: – 13-inch 2.3GHz/128GB Space Gray MacBook... Read more
Verizon offers new iPhone 8 for $100-$300 off...
Verizon is offering the new iPhone 8 for up to $300 off MSRP with an eligible trade-in: • $300 off: iPhone 6S/6S Plus/7/7 Plus, Google Pixel XL, LG G6, Moto Z2 Force, Samsung Galaxy S7/S7 edge/S8/S8... Read more
Apple Refurbished 2017 13-inch MacBook Pros a...
Apple has Certified Refurbished 2017 13″ Touch Bar MacBook Pros in stock today and available for $200-$300 off MSRP. A standard Apple one-year warranty is included with each MacBook, and shipping is... Read more
OWC USB-C Travel Dock with 5 Ports Connectivi...
OWC have announced the new OWC USB-C Travel Dock, the latest addition to their line of connectivity solutions. The USB-C Travel Dock lets you connect its integrated USB-C cable to a Mac or PC laptop... Read more
Pelican Products, Inc. Unveils Cases For All...
Pelican Products, Inc. has announced the launch of its full line of cases including Voyager, Adventurer, Protector, Ambassador, Interceptor (for the Apple iPhone 8 and 8 Plus backwards compatible... Read more
$100 off new 2017 13-inch MacBook Airs
B&H Photo has 2017 13″ MacBook Airs on sale today for $100 off MSRP including free shipping. B&H charges NY & NJ sales tax only: – 13″ 1.8GHz/128GB MacBook Air (MQD32LL/A): $899, $100 off... Read more
Apple restocks Certified Refurbished 13-inch...
Apple has Certified Refurbished 2015 13″ MacBook Airs available starting at $719 and 2016 models available starting at $809. An Apple one-year warranty is included with each MacBook, and shipping is... Read more

Jobs Board

Instructional Designer, *Apple* Product Doc...
Job Summary The Apple Product Documentation team is looking for an instructional designer or a video editor to write user documentation for its professional video Read more
*Apple* Retail - Multiple Positions - Apple,...
Job Description: Sales Specialist - Retail Customer Service and Sales Transform Apple Store visitors into loyal Apple customers. When customers enter the store, Read more
Development Operations and Site Reliability E...
Development Operations and Site Reliability Engineer, Apple Payment Gateway Job Number: 57572631 Santa Clara Valley, California, United States Posted: Jul. 27, 2017 Read more
Specialist - Retail Customer Services and Sal...
The position listed below is not with Tennessee Interviews but with Apple , Inc. Tennessee Interviews is a private organization that works in collaboration with Read more
Specialist - Retail Customer Services and Sal...
The position listed below is not with South Carolina Interviews but with Apple , Inc. South Carolina Interviews is a private organization that works in collaboration Read more
All contents are Copyright 1984-2011 by Xplain Corporation. All rights reserved. Theme designed by Icreon.