TweetFollow Us on Twitter

Simpsons Rule
Volume Number:9
Issue Number:10
Column Tag:Pascal workshop

Simpson’s Rule

An ingenious method for approximating integrals

By Marek Hajek, Incline Village, Nevada

Note: Source code files accompanying article are located on MacTech CD-ROM or source code disks.

About the author

Marek Hajek has been programming the Macintosh since 1989. He programmed two and a half years for Sierra Software Innovations where he wrote several in-house MacApp applications, participated in the development of SuperTEView, and the relational database engine - Inside Out II. Currently, he is receiving his bachelor's degree in Computer Science at the University of Nevada, Reno. He supports his college education by making useful programming tools - sorting/searching algorithms, and custom development. He welcomes your comments on this article either by phone at (702) 673-3341 or write to P.O. Box 7542, Incline Village, NV 89450.

Simpson's Rule, named after the great English mathematician Thomas Simpson, is an ingenious method for approximating integrals. If you don't know what integrals are used for, don't feel bad. Many college students who complete three semesters of calculus may be able to “compute” an integral, but won't know its practical application either. Computation of integrals is difficult to learn and easy to forget. [Many years out of school, I can attest to this! - Ed.]

Integrals are essential to the modern world. Practical applications of the integral are found in business, hydrostatics, highway construction, travel to the moon, solving of differential equations, and other branches of science. The first computer ever built was constructed to speed up ballistic missile trajectory calculations which meant solving a lot of integrals. [Given the forces imposed on a missile (gravity, thrust, wind resistance, etc.), integration is necessary to determine its path. - Tech. Ed.]

To illustrate the use of integrals, look at the curve in Figure 1.1a. The curve is described by the equation (1+X4). I want to compute the area of the shaded region. Notice, the area is between the curve, the x-axis, and the x-coordinates [-1,1]. The integral that will compute the area of the shaded region is in figure 1.1b. Anybody familiar with integrals will tell you that there is no known way to solve the integral abstractly (the quick and easy way).

Figure 1.1a

Figure 1.1b

If an integral can be solved on an abstract level, the computation is relatively easy. In practical applications, however, an integral can seldom be solved abstractly. That's where the Simpson's Rule finds its use. Thomas Simpson invented an equation, today called Simpson's Rule, which can be used to approximate an integral.

APPROXIMATION

The following line shows this equation in abstract form.

Looks complicated? First, take a look at figure 1.2.

Figure 1.2

In the approximation equation, the variables a and b are the boundaries of the integral and correspond to -1 and 1 in figure 1.1a. The variable n is the number of times the region under the curve is partitioned into smaller regions. You only have to know two things about n. First, the larger n is, the more accurate the approximation. And second, n must be a positive even integer (+2, 4, 6, ...). The function f(x) is the function you are integrating. In my example, it is (1+X4). Whenever you encounter f(x) in the equation, pass it the appropriate parameter. The parameters are the x-coordinates of the partitions (X0, X1, X2, X3, , Xn).

[Simpson’s rule approximates the function on each subinterval of the partition by a parabola that passes through the endpoints and the midpoint. The area under a parabola is easily calculated. Adding up these areas gives an estimate of the integral. - Tech. Ed.]

EXAMPLE COMPUTATION

To compute the integral in figure 1.1b, given four partitions (n=4), the approximation looks like this:

Simplified:

Simplified:

Result: 2.1791. . .

SIMPSON'S RULE - PASCAL

Figure 1.3

I translated Simpson's Rule into several pascal functions. To help you see what each function does, the equation is divided into three parts - Head, Twos/Fours, and First/Last (Figure 1.3). Have fun!

CODE LISTING

{--------------------Main Program----------------------------}
PROGRAM Simpson;
(* Author  - Marek Hajek *)
(* P.O. Box 7542 *)
(* Incline Village, NV 89450 *)

(* This program was written with Think Pascal 4.0.1 *)
 USES
(* Make sure you include the sane library *)
  Auxiliary, Sane;

 CONST
  kLowerLimit = -1;               (* Corresponds to "a" *)
  kUpperLimit = 1;                (* Corresponds to "b" *)
  kPartitions = 4;                (* Corresponds to n = 4 *)

 VAR
  result: Extended;
  (* The approximated result of the Integral *)

BEGIN
 ShowText;  (* Brings up the Think Pascal text window *)

 result := ComputeIntegral(kLowerLimit, kUpperLimit, 
   kPartitions, IntegrandFunction);
 writeln('Integral with lower/upper limits ', kLowerLimit : 0, 
   '/', kUpperLimit : 0, ', subintervals ', kPartitions : 0, 
   ' is: ', result);

 readln; (* Stop here before the text window disappears *)
END.

{--------------------ComputeIntegral-------------------------}
FUNCTION ComputeIntegral (lowerLimit, upperLimit: Extended;
       partitionCount: LongInt;
       FUNCTION IntegrandFunction (partitionCoordinate: 
       Extended): Extended): Extended;
(* The function ComputeIntegral calls the necessary *)
(* functions to compute the individual parts.*)
(* It returns the approximate result. *)
VAR
   result: Extended;
   head: Extended;
   partitionIncrement: Extended;
   partitionCoordinate: Extended;
   index: LongInt;

 BEGIN
  head := ComputeHead(lowerLimit, upperLimit, partitionCount);
  result := FirstAndLast(lowerLimit, upperLimit, 
    IntegrandFunction);

  partitionIncrement := 
    (upperLimit - lowerLimit) /  partitionCount;
  partitionCoordinate := lowerLimit;

(* The FOR  loop computes the second part of the *)
(* integral -> Twos/Fours *)
  FOR  index := 1 TO partitionCount - 1  DO
   BEGIN
(* Partition coordinate corresponds to X0, X1, X2,.....Xn *)
    partitionCoordinate := 
      partitionCoordinate +  partitionIncrement;

(* Odd index means compute 4* f(x), even index *)
(* means compute 2 * f(x)  *)
    IF Odd(index) THEN
     result := result + 
       4 * IntegrandFunction(partitionCoordinate)
    ELSE
     result := result + 
       2 * IntegrandFunction(partitionCoordinate)

   END;  (* FOR ... *)

  ComputeIntegral := head * result;
 END;

{------------------IntegrandFunction-------------------------}
 FUNCTION IntegrandFunction (partitionCoordinate: 
   Extended): Extended;
(* The Integrand function is the function inside the *)
(* integral and needs to be defined by you. In my example, *)
(* the integrand function is  (1+X4) and is translated *)
(* into pascal. The function takes one argument which is *)
(* the x coordinate of the partition. *)

 BEGIN
{ This functions computes ->  (X * X * X * X +1)  }
  IntegrandFunction := 
    SQRT(XpwrI(partitionCoordinate, 4) + 1);
 END;

{---------------------ComputeHead----------------------------}
 FUNCTION ComputeHead (lowerLimit, upperLimit: Extended;
       partitionCount: LongInt): Extended;
(* Computes the first part of the integral equation, *)
(* the Head.  Corresponds to (b - a)/(3*n)  *)

 BEGIN
  ComputeHead := 
    (upperLimit - lowerLimit) / (3 * partitionCount);
 END;

{----------------------FirstAndLast--------------------------}
 FUNCTION FirstAndLast (lowerLimit, upperLimit: Extended;
       FUNCTION IntegrandFunction (partitionCoordinate: 
       Extended): Extended): Extended;
(* Computes the third part of the integral, the *)
(* FIRST/LAST.  Corresponds to [f(X0) + f(Xn)  *)

 BEGIN
  FirstAndLast := IntegrandFunction(lowerLimit) + 
    IntegrandFunction(upperLimit);
 END;
 

Community Search:
MacTech Search:

Software Updates via MacUpdate

How to deal with wind in Angry Birds Act...
Angry Birds Action! is a physics-based puzzler in which you're tasked with dragging and launching birds around an obstacle-littered field to achieve a set objective. It's simple enough at first, but when wind gets introduced things can get pretty... | Read more »
How to get three stars in every level of...
Angry Birds Action! is, essentially, a pinball-style take on the pull-and-fling action of the original games. When you first boot it up, you'll likely be wondering exactly what it is you have to do to get a good score. Well, never fear as 148Apps... | Read more »
The beginner's guide to Warbits
Warbits is a turn-based strategy that's clearly inspired by Nintendo's Advance Wars series. Since turn-based strategy games can be kind of tricky to dive into, see below for a few tips to help you in the beginning. Positioning is crucial [Read... | Read more »
How to upgrade your character in Spellsp...
So you’ve mastered the basics of Spellspire. By which I mean you’ve realised it’s all about spelling things in a spire. What next? Well you’re going to need to figure out how to toughen up your character. It’s all well and good being able to spell... | Read more »
5 slither.io mash-ups we'd love to...
If there's one thing that slither.io has proved, it's that the addictive gameplay of Agar.io can be transplanted onto basically anything and it will still be good fun. It wouldn't be surprising if we saw other developers jumping on the bandwagon,... | Read more »
How to navigate the terrain in Sky Charm...
Sky Charms is a whimsical match-'em up adventure that uses creative level design to really ramp up the difficulty. [Read more] | Read more »
Victorious Knight (Games)
Victorious Knight 1.3 Device: iOS Universal Category: Games Price: $1.99, Version: 1.3 (iTunes) Description: New challenges awaits you! Experience fresh RPG experience with a unique combat mechanic, packed with high quality 3D... | Read more »
Agent Gumball - Roguelike Spy Game (Gam...
Agent Gumball - Roguelike Spy Game 1.0 Device: iOS Universal Category: Games Price: $2.99, Version: 1.0 (iTunes) Description: Someone’s been spying on Gumball. What the what?! Two can play at that game! GO UNDERCOVERSneak past enemy... | Read more »
Runaway Toad (Games)
Runaway Toad 1.0 Device: iOS Universal Category: Games Price: $2.99, Version: 1.0 (iTunes) Description: It ain’t easy bein’ green! Tap, hold, and swipe to help Toad hop to safety in this gorgeous new action game from the creators of... | Read more »
PsyCard (Games)
PsyCard 1.0 Device: iOS Universal Category: Games Price: $1.99, Version: 1.0 (iTunes) Description: From the makers och Card City Nights, Progress To 100 and Ittle Dew PSYCARD is a minesweeper-like game set in a cozy cyberpunk... | Read more »

Price Scanner via MacPrices.net

Price drops on clearance 2015 13-inch MacBook...
B&H Photo has dropped prices on clearance 2015 13″ MacBook Airs by up to $250. Shipping is free, and B&H charges NY sales tax only: - 13″ 1.6GHz/4GB/128GB MacBook Air (MJVE2LL/A): $799, $200... Read more
Mac minis on sale for up to $100 off MSRP
B&H Photo has Mac minis on sale for up to $100 off MSRP including free shipping plus NY sales tax only: - 1.4GHz Mac mini: $449 $50 off MSRP - 2.6GHz Mac mini: $649 $50 off MSRP - 2.8GHz Mac mini... Read more
13-inch Retina MacBook Pros on sale for up to...
B&H Photo has 13″ Retina MacBook Pros on sale for $130-$200 off MSRP. Shipping is free, and B&H charges NY tax only: - 13″ 2.7GHz/128GB Retina MacBook Pro: $1169 $130 off MSRP - 13″ 2.7GHz/... Read more
Apple price trackers, updated continuously
Scan our Apple Price Trackers for the latest information on sales, bundles, and availability on systems from Apple’s authorized internet/catalog resellers. We update the trackers continuously: - 15″... Read more
SanDisk Half-Terabyte SSD Optimized for Every...
SanDisk Corporation has announced the SanDisk Z410 SSD, a cost-competitive, half-terabyte solid state drive (SSD) that enables manufacturers to design for a broad range of desktop PCs and laptops.... Read more
Churchill Downs Racetrack Selects VenueNext t...
Churchill Downs Racetrack has announced an agreement with VenueNext to implement its technology platform for the start of Churchill Downs 2016 Spring Meet, which includes the 142nd running of the... Read more
Record 700 Million Pounds of CE Recycled in 2...
The Consumer Technology Association (CTA) reports that a record-setting 700 million pounds of consumer electronics (CE) have been recycled under the eCycling Leadership Initiative (ELI). According to... Read more
Price drops on clearance 12-inch Retina MacBo...
B&H Photo has dropped prices on leftover 2015 12″ Retina MacBooks with models now available starting at $999. Shipping is free, and B&H charges NY tax only: - 12″ 1.1GHz Gray Retina MacBook... Read more
15-inch Retina MacBook Pros available for $20...
B&H Photo has 15″ Retina MacBook Pros on sale for up to $210 off MSRP. Shipping is free, and B&H charges NY tax only: - 15″ 2.2GHz Retina MacBook Pro: $1799 $200 off MSRP - 15″ 2.5GHz Retina... Read more
Target offers Apple Watch Sport for $50 off M...
Target has Apple Watch Sports on sale for $50 off MSRP for a limited time. Choose free shipping or free local store pickup (if available). Sale prices for online orders only, in-store prices may vary... Read more

Jobs Board

*Apple* Retail - Multiple Positions - Apple,...
Job Description: Sales Specialist - Retail Customer Service and Sales Transform Apple Store visitors into loyal Apple customers. When customers enter the store, Read more
Restaurant Manager (Neighborhood Captain) - A...
…in every aspect of daily operation. WHY YOU'LL LIKE IT: You'll be the Big Apple . You'll solve problems. You'll get to show your ability to handle the stress and Read more
Restaurant Manager (Neighborhood Captain) - A...
…in every aspect of daily operation. WHY YOU'LL LIKE IT: You'll be the Big Apple . You'll solve problems. You'll get to show your ability to handle the stress and Read more
Simply Mac *Apple* Specialist- Service Repa...
Simply Mac is the largest premier retailer of Apple products in the nation. In order to support our growing customer base, we are currently looking for a driven Read more
*Apple* Retail - Multiple Positions - Apple,...
Sales Specialist - Retail Customer Service and Sales Transform Apple Store visitors into loyal Apple customers. When customers enter the store, you're also the Read more
All contents are Copyright 1984-2011 by Xplain Corporation. All rights reserved. Theme designed by Icreon.