TweetFollow Us on Twitter

MPW Calculator
Volume Number:9
Issue Number:1
Column Tag:Jörg's Folder

MPW Calculator Tool in C++

An MPW tool written in bare bones C++ - not with MacApp.

By Jörg Langowski, MacTech Magazine Regular Contributing Author

Note: Source code files accompanying this article are located on MacTech CD-ROM or source code disks.

After a long break, you’ll find another C++ example in my column. Not with MacApp - we’re going back to the basics here and show a simple ‘bare C++’ program that executes as an MPW tool, or in the Simple Input/Output Window environment (SIOW) provided by Apple.

I came across this example reading a book on C++, “Programming in C++”, by Stephen Dewhurst and Kathy Stark (1989, Prentice Hall). I very much recommend this book for those of you who want to get the basic notions of C++ and an idea of its ‘programming flavor’. It may be not as comprehensive as the “C++ programming language” by Stroustrup (Addison-Wesley), or as the manuals that come with Apple’s C++ compiler; but it contains a lot of examples and exercises.

One classic exercise in computer science is to write a parser for algebraic expressions, that is, a program that takes an input string like

(3 + 5) * (-4 + (2 - 9))

and calculates the result of this expression. In fact, what you do to compute that expression is to convert it into an internal representation, and then evaluate that representation.

You can represent the expression given above by a linked list:

where each node of the list either contains an operator or a number. Once the arithmetic expression is given in list form, evaluating it is easy and can be done in a straightforward, object oriented way. Suppose you define a class node (also in listing):

class node {
 protected:
 
 node() {}
 public:
 virtual ~node() {}
 virtual int set (int)
 { cout << "Error: node::set(int) undefined" << eoln;
  return 0;} 
 virtual int eval() 
 { cout << "Error: node::eval() undefined" << eoln; 
 return 0;} 
};

where the constructor and destructor do nothing at the moment; they will have to be overridden by the derived node classes. There are two more virtual methods: eval(), which returns the value of the node, and set(), which can ‘set something’ in the node if defined in a subclass. For the base class, the methods just print error messages and return zero. These methods will be overridden, and they are virtual because we want their behavior to be determined at run time. That is, if we define a pointer mynode *node and assign it an object of a subclass of node, the actual eval() or set() methods used will be the ones corresponding to the subclass of the object that the pointer contains.

We now define two types of subclasses of node: dyadic operators and other stuff. All dyadic operators will be derived from the subclass :

class dyad : public node {
 protected:
 node *left, *right;
 dyad(node *l, node *r) {left=l; right=r;}
 ~dyad() {delete left; delete right;}
};

dyad only defines the two nodes that the operator connects: the constructor assigns these two nodes to two instance variables, and the destructor deletes them again. The classes derived from dyad define the four arithmetic operations, and the assignment (see listing). For example, addition is defined as:

class plus : public dyad {
 public:
 plus(node *l, node *r) : dyad(l,r) {}
 int eval() { return left->eval() + right->eval();} 
};

where the constructor just calls the superclass constructor, and

eval() returns the value of the sum of the values of the left and right hand side of the plus operation.

For the ‘expression tree’ shown above, you need one more class: numbers, which are ‘end nodes’ of the list. Thus, they do not contain pointers to other nodes, but an integer value in an instance variable. Their constructor assigns the value, and their eval() method simply returns it:

class inumber : public node {
 int value;
 public:
 inumber(int v) {value = v;}
 int eval() {return value;}
};

Finally, the unary minus operator (uminus in the listing) will return the negative value of the node that it points to.

The listing contains two more node classes: variables (id) and the assignment operator (equals), Variables contain a pointer to the head of a symbol table, and a pointer to the entry of this variable into the symbol table. The symbol table is a linked list of entries, and the pointer to its head is a static class variable. This means that, unlike instance variables, the pointer is not created again for every object of the class, but only one copy exists. Thus, all objects of this class reference the same symbol table, which is just what you want.

Assume we create a new node for a variable with its name given by the *char pointer nm. The constructor then first looks up the name in the symbol table (see listing, method look); if it is already there, it will put a pointer to the symbol table entry in the instance variable ent of the node. Otherwise, it will add a new entry to the symbol table, put its pointer into ent, make the new entry the head of the list, and change the (static) pointer so that it references the new head. All other variable objects will now have an updated reference to the symbol table.

A variable is assigned a value by the assignment operation equals. When an equals node is created, its right and left hand sides are set just as for the arithmetic operations; when its eval() method is called, the variable on the left hand side is set to the result of the right hand side. No check is done whether the left hand side is really a node of class id; but only those nodes contain a set method. The assignment operation also returns a value (just as in C), the right hand side of the statement.

So now we have defined a syntax tree for simple arithmetic expressions with assignment of variables. If, lets say, root is the pointer to the root of this tree (the times symbol in the drawing), and we call root->eval(), the result returned should be the value of the expression, in our case (3 + 5) * (-4 + (2 - 9)) = -88. With the class definitions given so far, this should work. But how do we set up the syntax tree in the first place? We need a routine, an expression parser, that takes the string expression and constructs the tree from it.

In order to write the parser, we first need to formalize the syntax of our simple arithmetic expressions. Such a formal description would for instance look like this:

<expression> :== <term> { [+|-] <term> }
<term>   :== <factor> { [*|/] <factor> }
<factor> :== <identifier> | <inumber> |
 (<expression >) | -<factor> |
 <identifier> = <expression>

We then define three parser routines that return an object of class node: e(), t(), and f(), returning, respectively, a pointer to an expression, a term, and a factor. Each of these routines makes repeated calls to another routine scan(), which gets the next token from the input stream. A token is a separate syntactic element, such as an open or close bracket, an arithmetic operator, a number or an identifier. scan() returns a character value, either the ascii value of a symbol if the token consists of one symbol, or a special value > 127. For the special values ID and INT, additional information can be found in a static char variable; this string will be used for the value of a number or the name of a variable. Other possible values are BAD (the scanner found something it couldn’t interpret), or EOLN (end of line found).

The first of the three parser routines, e(), is called from the main program (see listing for main()). On entry, one token has been read from the input stream; then e() tries to parse the input into a valid arithmetic expression and assign a pointer to its syntax tree to root. It does so by calling t() (see listing), which makes a term out of one or several factors by calling f(), just like e() makes the expression out of one or several term. When e() encounters a plus or minus sign after a term, is makes a new plus resp. minus node which connects the first term with the next one. Same for t(); here eventually a times or divide node is made, which connects two factors. f(), finally, will look for a number or identifier token and return a pointer to the corresponding node; or it might find an open bracket or a minus sign, after which a new expression or a factor have to follow. When all these recursive calls have been evaluated and no syntax errors have been found, the top-level e() returns the expression’s syntax tree.

In order to get the value of the expression, all we have to do then is call root->eval(), and the syntax tree will be evaluated as described above.

As long as no syntax errors are found, the main program loops continuously and asks for new expressions; the names and values of identifiers are remembered from one evaluation to the next, so you can play around with stored values a little.

As you may imagine, it is not too difficult to add on to this extremely simple calculator program e.g. to implement exponentiation or to include functions like exp(), log() etc. The constructed syntax tree could also serve in a bigger program as an internal representation of a function that the user has typed in and that has to be evaluated a lot of times (and computed fast). One could even imagine to generate real machine code out of the syntax tree, which makes this program some kind of a rudimentary compiler. We’ll add to the example during the next columns.

On the source code disk, I have compiled two versions of the program, one as an MPW tool, and the other one using the Simple Input/Output Window mechanism. Actually, the only thing that has to be changed is the linking. The MPW sequence to create the two versions of the program look like the following:

cplus calc.cp
Link -w -c 'MPS ' -t MPST 
 calc.cp.o 
 "{CLibraries}"StdCLib.o 
 "{Libraries}"ToolLibs.o 
 "{Libraries}"Runtime.o 
 "{Libraries}"Interface.o 
 "{CLibraries}"CPlusLib.o 
 -o calc

Rez -a "{MPW}"Interfaces:Rincludes:SIOW.r -o calcAppl
Link -w -c 'JLMT' -t 'APPL' 
 calc.cp.o 
 "{CLibraries}"StdClib.o 
 "{MPW}"Libraries:Libraries:SIOW.o 
 "{Libraries}"Runtime.o 
 "{Libraries}"Interface.o 
 "{CLibraries}"CPlusLib.o 
 -o calcAppl

So the second version can be run also by those of you who don’t have MPW.

FORTHcoming

I’m still waiting for those MacForth contributions coming in we’d really like to see more of that in MacTutor. I’m sure there are quite a few of you satisfied MacForth users who have something interesting to write about. Please contact me: I promise that you get your space in this column. My network address has changed in the meantime, since our institute is going from the Bitnet to the Internet world; so in the future, please send messages to either of those three addresses (in order of preference):

 jl@macjl.embl-grenoble.fr
 langowski.j@applelink.apple.com
 langowsk@titan.embl-grenoble.fr 

(note the missing last letter in the name)

Meanwhile, we do have news from the Forth world. I don’t have to tell you that the NEON successor, Yerk, keeps being updated faster than I can write about it; you know that you can get the current version by ftp from oddjob.uchicago.edu. Mops, the NEON lookalike with real 680x0 machine code, can also be found there.

But here is something very interesting for those of you who used and liked Mach2, the Forth in which I did most of my examples here: Two users of Mach2, John Fleming who works at Motorola, and Steven Wiley, a molecular biologist at the University of Utah, got together and made all those modifications to Mach2 that the implementers should have done two years ago; now it is System7 and 32-bit compatible. It may also be soon in the public domain (non-commercial) like Yerk is, with the full source code available. You’ll hear more about it in one of the next columns. Until then.

Listing: The MPW calculator tool
// 
// calc.cp
//
// a simple calculator program
// based on an example from Dewhurst/Stark
// "Programming in C++"
//
// J. Langowski November 1992
//

#include <Ctype.h>
#include <StdIO.h>
#include <String.h>
#include <Stream.h>
#include <StdLib.h>

#define NIL 0

// basic syntax tree structure
//
class node {
 protected:
 node() {}
 public:
 virtual ~node() {}
 virtual int set (int)
 { cout << "Error: node::set(int) undefined" << eoln;
  return 0;} 
 virtual int eval() 
 { cout << "Error: node::eval() undefined" << eoln; 
 return 0;} 
};

class dyad : public node {
 protected:
 node *left, *right;
 dyad(node *l, node *r) {left=l; right=r;}
 ~dyad() {delete left; delete right;}
};
// operators
//
class plus : public dyad {
 public:
 plus(node *l, node *r) : dyad(l,r) {}
 int eval() { return left->eval() + right->eval();} 
};

class minus : public dyad {
 public:
 minus(node *l, node *r) : dyad(l,r) {}
 int eval() { return left->eval() - right->eval();}
};

class times : public dyad {
 public:
 times(node *l, node *r) : dyad(l,r) {}
 int eval() { return left->eval() * right->eval();}
};

class divide : public dyad {
 public:
 divide(node *l, node *r) : dyad(l,r) {}
 int eval() { return left->eval() / right->eval();}
};

class uminus : public node {
 node *operand;
 public:
 uminus(node *o) {operand = o;}
 ~uminus() {delete operand;}
 int eval() {return -operand->eval();}
};

class inumber : public node {
 int value;
 public:
 inumber(int v) {value = v;}
 int eval() {return value;}
};


// identifier table
//
class id;

class entry {
 char *name;
 int value;
 entry *next;
 entry (char *nm, entry *n) {
 name = strcpy (new char[strlen(nm) + 1], nm);
 value = 0;
 next = n;
 }
 friend id;
};

class id : public node {
 static entry *symtab;
 entry *ent;
 entry *look(char *);
 public:
 id(char *nm) {ent = look(nm);}
 int set(int i) {return ent->value = i;}
 int eval() {return ent->value;}
};

entry *id::look(char *nm) {
 for(entry *p = symtab; p; p = p->next)
 if(strcmp(p->name,nm) == 0) return p;


 return symtab = new entry(nm,symtab);
}

entry *id::symtab = NIL;

// assignment
//
class equals : public dyad {
 public:
 equals(node *t,node *e) : dyad(t,e) {}
 int eval()
 { return left->set(right->eval()); }
};


// parsing + evaluation
//

static char token;   // current token 
static char line[81];   // for reading identifiers + numbers
enum {ID = char(128), INT, EOLN, BAD}; // special tokens

node *e(), *t(), *f();    // parser routines 
 // for expression, term, factor

// input stream scanner, returns next token
//
char scan() {
 char c;
 while (1)
 switch (c = cin.get()) {
 case '+': case '-': case '*': case '/':
 case '(': case ')': case '=':
 return c;
 case ' ': case '\t':
 continue;
 case '\n': case '\r':
 return EOLN;
 default:
 if (isdigit(c)) {
 char *s = line;
 do*s++ = c;
 while(isdigit(c = cin.get()));
 *s = '\0'; 
 // terminate string just read
 cin.putback(c); 
 // had read one too much
 return INT;
 }
 
 if (isalpha(c)) {
 char *s = line;
 do*s++ = c;
 while(isalnum(c = cin.get()));
 *s = '\0'; 
 // terminate string just read
 cin.putback(c); 
 // had read one too much
 return ID;
 }
 
 return BAD; 
 // if nothing fits, syntax error
 }
}

// simple error routine
//
void error() { cout << "Syntax error." << endl; exit(255); }

// parser routines for expression, term, factor
//

// expression = term (+ -) term
node *e() {
 node *root = t();
 while (1)
 switch (token) {
 case '+':
 token = scan();
 root = new plus(root, t()); 
 break;
 case '-':
 token = scan();
 root = new minus(root, t());
 break;
 default:
 return root;
 }
}

// term = factor (* /) factor
node *t() {
 node *root = f();
 while (1)
 switch (token) {
 case '*':
 token = scan();
 root = new times(root, t()); 
 break;
 case '/':
 token = scan();
 root = new divide(root, t()); 
 break;
 default:
 return root;
 }
}

// factor = identifier | number | expression | -factor
node *f() {
 node *root = NIL;
 switch (token) {
 case ID:
 root = new id(line);
 token = scan();
 if (token == '=') {
 token = scan();
 root = new equals(root, e());
 }
 return root;
 case INT:
 root = new inumber(atoi(line));
 token = scan();
 return root;
 case '(':
 token = scan();
 root = e();
 if (token != ')' ) error();
 token = scan();
 return root;
 case '-':
 token = scan();
 return new uminus(f());
 default:
 error();
 }
}

// main program
//

void main() {
 node *root = NIL;
 while (1) {
 cout << "Enter expression: " << endl;
 token = scan();
 root = e();

 if (token == BAD) error();
 
 if (root != NIL)
 { 
     cout << "Result = " << root->eval() << endl;
     delete root; 
 }
 }
}

 
AAPL
$501.11
Apple Inc.
+2.43
MSFT
$34.64
Microsoft Corpora
+0.15
GOOG
$898.03
Google Inc.
+16.02

MacTech Search:
Community Search:

Software Updates via MacUpdate

CrossOver 12.5.1 - Run Windows apps on y...
CrossOver can get your Windows productivity applications and PC games up and running on your Mac quickly and easily. CrossOver runs the Windows software that you need on Mac at home, in the office,... Read more
Paperless 2.3.1 - Digital documents mana...
Paperless is a digital documents manager. Remember when everyone talked about how we would soon be a paperless society? Now it seems like we use paper more than ever. Let's face it - we need and we... Read more
Apple HP Printer Drivers 2.16.1 - For OS...
Apple HP Printer Drivers includes the latest HP printing and scanning software for Mac OS X 10.6, 10.7 and 10.8. For information about supported printer models, see this page.Version 2.16.1: This... Read more
Yep 3.5.1 - Organize and manage all your...
Yep is a document organization and management tool. Like iTunes for music or iPhoto for photos, Yep lets you search and view your documents in a comfortable interface, while offering the ability to... Read more
Apple Canon Laser Printer Drivers 2.11 -...
Apple Canon Laser Printer Drivers is the latest Canon Laser printing and scanning software for Mac OS X 10.6, 10.7 and 10.8. For information about supported printer models, see this page.Version 2.11... Read more
Apple Java for Mac OS X 10.6 Update 17 -...
Apple Java for Mac OS X 10.6 delivers improved security, reliability, and compatibility by updating Java SE 6.Version Update 17: Java for Mac OS X 10.6 Update 17 delivers improved security,... Read more
Arq 3.3 - Online backup (requires Amazon...
Arq is online backup for the Mac using Amazon S3 and Amazon Glacier. It backs-up and faithfully restores all the special metadata of Mac files that other products don't, including resource forks,... Read more
Apple Java 2013-005 - For OS X 10.7 and...
Apple Java for OS X 2013-005 delivers improved security, reliability, and compatibility by updating Java SE 6 to 1.6.0_65. On systems that have not already installed Java for OS X 2012-006, this... Read more
DEVONthink Pro 2.7 - Knowledge base, inf...
Save 10% with our exclusive coupon code: MACUPDATE10 DEVONthink Pro is your essential assistant for today's world, where almost everything is digital. From shopping receipts to important research... Read more
VirtualBox 4.3.0 - x86 virtualization so...
VirtualBox is a family of powerful x86 virtualization products for enterprise as well as home use. Not only is VirtualBox an extremely feature rich, high performance product for enterprise customers... Read more

Briquid Gets Updated with New Undo Butto...
Briquid Gets Updated with New Undo Button, Achievements, and Leaderboards, on Sale for $0.99 Posted by Andrew Stevens on October 16th, 2013 [ | Read more »
Halloween – iLovecraft Brings Frightenin...
Halloween – iLovecraft Brings Frightening Stories From Author H.P. | Read more »
The Blockheads Creator David Frampton Gi...
The Blockheads Creator David Frampton Gives a Postmortem on the Creation Process of the Game Posted by Andrew Stevens on October 16th, 2013 [ permalink ] Hey, a | Read more »
Sorcery! Enhances the Gameplay in Latest...
Sorcery! | Read more »
It Came From Australia: Tiny Death Star
NimbleBit and Disney have teamed up to make Star Wars: Tiny Death Star, a Star Wars take on Tiny Tower. Right now, the game is in testing in Australia (you will never find a more wretched hive of scum and villainy) but we were able to sneak past... | Read more »
FIST OF AWESOME Review
FIST OF AWESOME Review By Rob Rich on October 16th, 2013 Our Rating: :: TALK TO THE FISTUniversal App - Designed for iPhone and iPad A totalitarian society of bears is only the tip of the iceberg in this throwback brawler.   | Read more »
PROVERBidioms Paints English Sayings in...
PROVERBidioms Paints English Sayings in a Picture for Users to Find Posted by Andrew Stevens on October 16th, 2013 [ permalink ] | Read more »
OmniFocus 2 for iPhone Review
OmniFocus 2 for iPhone Review By Carter Dotson on October 16th, 2013 Our Rating: :: OMNIPOTENTiPhone App - Designed for the iPhone, compatible with the iPad OmniFocus 2 for iPhone is a task management app for people who absolutely... | Read more »
Ingress – Google’s Augmented-Reality Gam...
Ingress – Google’s Augmented-Reality Game to Make its Way to iOS Next Year Posted by Andrew Stevens on October 16th, 2013 [ permalink ] | Read more »
CSR Classics is Full of Ridiculously Pre...
CSR Classics is Full of Ridiculously Pretty Classic Automobiles Posted by Rob Rich on October 16th, 2013 [ permalink ] | Read more »

Price Scanner via MacPrices.net

Apple Store Canada offers refurbished 11-inch...
 The Apple Store Canada has Apple Certified Refurbished 2013 11″ MacBook Airs available starting at CDN$ 849. Save up to $180 off the cost of new models. An Apple one-year warranty is included with... Read more
Updated MacBook Price Trackers
We’ve updated our MacBook Price Trackers with the latest information on prices, bundles, and availability on MacBook Airs, MacBook Pros, and the MacBook Pros with Retina Displays from Apple’s... Read more
13-inch Retina MacBook Pros on sale for up to...
B&H Photo has the 13″ 2.5GHz Retina MacBook Pro on sale for $1399 including free shipping. Their price is $100 off MSRP. They have the 13″ 2.6GHz Retina MacBook Pro on sale for $1580 which is $... Read more
AppleCare Protection Plans on sale for up to...
B&H Photo has 3-Year AppleCare Warranties on sale for up to $105 off MSRP including free shipping plus NY sales tax only: - Mac Laptops 15″ and Above: $244 $105 off MSRP - Mac Laptops 13″ and... Read more
Apple’s 64-bit A7 Processor: One Step Closer...
PC Pro’s Darien Graham-Smith reported that Canonical founder and Ubuntu Linux creator Mark Shuttleworth believes Apple intends to follow Ubuntu’s lead and merge its desktop and mobile operating... Read more
MacBook Pro First, Followed By iPad At The En...
French site Info MacG’s Florian Innocente says he has received availability dates and order of arrival for the next MacBook Pro and the iPad from the same contact who had warned hom of the arrival of... Read more
Chart: iPad Value Decline From NextWorth
With every announcement of a new Apple device, serial upgraders begin selling off their previous models – driving down the resale value. So, with the Oct. 22 Apple announcement date approaching,... Read more
SOASTA Survey: What App Do You Check First in...
SOASTA Inc., the leader in cloud and mobile testing announced the results of its recent survey showing which mobile apps are popular with smartphone owners in major American markets. SOASTA’s survey... Read more
Apple, Samsung Reportedly Both Developing 12-...
Digitimes’ Aaron Lee and Joseph Tsai report that Apple and Samsung Electronics are said to both be planning to release 12-inch tablets, and that Apple is currently cooperating with Quanta Computer on... Read more
Apple’s 2011 MacBook Pro Lineup Suffering Fro...
Appleinsider’s Shane Cole says that owners of early-2011 15-inch and 17-inch MacBook Pros are reporting issues with those models’ discrete AMD graphics processors, which in some cases results in the... Read more

Jobs Board

*Apple* Retail - Manager - Apple (United Sta...
Job SummaryKeeping an Apple Store thriving requires a diverse set of leadership skills, and as a Manager, youre a master of them all. In the stores fast-paced, dynamic Read more
*Apple* Support / *Apple* Technician / Mac...
Apple Support / Apple Technician / Mac Support / Mac Set up / Mac TechnicianMac Set up and Apple Support technicianThe person we are looking for will have worked Read more
Senior Mac / *Apple* Systems Engineer - 318...
318 Inc, a top provider of Apple solutions is seeking a new Senior Apple Systems Engineer to be based out of our Santa Monica, California location. We are a Read more
*Apple* Retail - Manager - Apple Inc. (Unite...
Job Summary Keeping an Apple Store thriving requires a diverse set of leadership skills, and as a Manager, you’re a master of them all. In the store’s fast-paced, Read more
*Apple* Solutions Consultant - Apple (United...
**Job Summary** Apple Solutions Consultant (ASC) - Retail Representatives Apple Solutions Consultants are trained by Apple on selling Apple -branded products Read more
All contents are Copyright 1984-2011 by Xplain Corporation. All rights reserved. Theme designed by Icreon.