TweetFollow Us on Twitter

MPW Calculator
Volume Number:9
Issue Number:1
Column Tag:Jörg's Folder

MPW Calculator Tool in C++

An MPW tool written in bare bones C++ - not with MacApp.

By Jörg Langowski, MacTech Magazine Regular Contributing Author

Note: Source code files accompanying this article are located on MacTech CD-ROM or source code disks.

After a long break, you’ll find another C++ example in my column. Not with MacApp - we’re going back to the basics here and show a simple ‘bare C++’ program that executes as an MPW tool, or in the Simple Input/Output Window environment (SIOW) provided by Apple.

I came across this example reading a book on C++, “Programming in C++”, by Stephen Dewhurst and Kathy Stark (1989, Prentice Hall). I very much recommend this book for those of you who want to get the basic notions of C++ and an idea of its ‘programming flavor’. It may be not as comprehensive as the “C++ programming language” by Stroustrup (Addison-Wesley), or as the manuals that come with Apple’s C++ compiler; but it contains a lot of examples and exercises.

One classic exercise in computer science is to write a parser for algebraic expressions, that is, a program that takes an input string like

(3 + 5) * (-4 + (2 - 9))

and calculates the result of this expression. In fact, what you do to compute that expression is to convert it into an internal representation, and then evaluate that representation.

You can represent the expression given above by a linked list:

where each node of the list either contains an operator or a number. Once the arithmetic expression is given in list form, evaluating it is easy and can be done in a straightforward, object oriented way. Suppose you define a class node (also in listing):

class node {
 protected:
 
 node() {}
 public:
 virtual ~node() {}
 virtual int set (int)
 { cout << "Error: node::set(int) undefined" << eoln;
  return 0;} 
 virtual int eval() 
 { cout << "Error: node::eval() undefined" << eoln; 
 return 0;} 
};

where the constructor and destructor do nothing at the moment; they will have to be overridden by the derived node classes. There are two more virtual methods: eval(), which returns the value of the node, and set(), which can ‘set something’ in the node if defined in a subclass. For the base class, the methods just print error messages and return zero. These methods will be overridden, and they are virtual because we want their behavior to be determined at run time. That is, if we define a pointer mynode *node and assign it an object of a subclass of node, the actual eval() or set() methods used will be the ones corresponding to the subclass of the object that the pointer contains.

We now define two types of subclasses of node: dyadic operators and other stuff. All dyadic operators will be derived from the subclass :

class dyad : public node {
 protected:
 node *left, *right;
 dyad(node *l, node *r) {left=l; right=r;}
 ~dyad() {delete left; delete right;}
};

dyad only defines the two nodes that the operator connects: the constructor assigns these two nodes to two instance variables, and the destructor deletes them again. The classes derived from dyad define the four arithmetic operations, and the assignment (see listing). For example, addition is defined as:

class plus : public dyad {
 public:
 plus(node *l, node *r) : dyad(l,r) {}
 int eval() { return left->eval() + right->eval();} 
};

where the constructor just calls the superclass constructor, and

eval() returns the value of the sum of the values of the left and right hand side of the plus operation.

For the ‘expression tree’ shown above, you need one more class: numbers, which are ‘end nodes’ of the list. Thus, they do not contain pointers to other nodes, but an integer value in an instance variable. Their constructor assigns the value, and their eval() method simply returns it:

class inumber : public node {
 int value;
 public:
 inumber(int v) {value = v;}
 int eval() {return value;}
};

Finally, the unary minus operator (uminus in the listing) will return the negative value of the node that it points to.

The listing contains two more node classes: variables (id) and the assignment operator (equals), Variables contain a pointer to the head of a symbol table, and a pointer to the entry of this variable into the symbol table. The symbol table is a linked list of entries, and the pointer to its head is a static class variable. This means that, unlike instance variables, the pointer is not created again for every object of the class, but only one copy exists. Thus, all objects of this class reference the same symbol table, which is just what you want.

Assume we create a new node for a variable with its name given by the *char pointer nm. The constructor then first looks up the name in the symbol table (see listing, method look); if it is already there, it will put a pointer to the symbol table entry in the instance variable ent of the node. Otherwise, it will add a new entry to the symbol table, put its pointer into ent, make the new entry the head of the list, and change the (static) pointer so that it references the new head. All other variable objects will now have an updated reference to the symbol table.

A variable is assigned a value by the assignment operation equals. When an equals node is created, its right and left hand sides are set just as for the arithmetic operations; when its eval() method is called, the variable on the left hand side is set to the result of the right hand side. No check is done whether the left hand side is really a node of class id; but only those nodes contain a set method. The assignment operation also returns a value (just as in C), the right hand side of the statement.

So now we have defined a syntax tree for simple arithmetic expressions with assignment of variables. If, lets say, root is the pointer to the root of this tree (the times symbol in the drawing), and we call root->eval(), the result returned should be the value of the expression, in our case (3 + 5) * (-4 + (2 - 9)) = -88. With the class definitions given so far, this should work. But how do we set up the syntax tree in the first place? We need a routine, an expression parser, that takes the string expression and constructs the tree from it.

In order to write the parser, we first need to formalize the syntax of our simple arithmetic expressions. Such a formal description would for instance look like this:

<expression> :== <term> { [+|-] <term> }
<term>   :== <factor> { [*|/] <factor> }
<factor> :== <identifier> | <inumber> |
 (<expression >) | -<factor> |
 <identifier> = <expression>

We then define three parser routines that return an object of class node: e(), t(), and f(), returning, respectively, a pointer to an expression, a term, and a factor. Each of these routines makes repeated calls to another routine scan(), which gets the next token from the input stream. A token is a separate syntactic element, such as an open or close bracket, an arithmetic operator, a number or an identifier. scan() returns a character value, either the ascii value of a symbol if the token consists of one symbol, or a special value > 127. For the special values ID and INT, additional information can be found in a static char variable; this string will be used for the value of a number or the name of a variable. Other possible values are BAD (the scanner found something it couldn’t interpret), or EOLN (end of line found).

The first of the three parser routines, e(), is called from the main program (see listing for main()). On entry, one token has been read from the input stream; then e() tries to parse the input into a valid arithmetic expression and assign a pointer to its syntax tree to root. It does so by calling t() (see listing), which makes a term out of one or several factors by calling f(), just like e() makes the expression out of one or several term. When e() encounters a plus or minus sign after a term, is makes a new plus resp. minus node which connects the first term with the next one. Same for t(); here eventually a times or divide node is made, which connects two factors. f(), finally, will look for a number or identifier token and return a pointer to the corresponding node; or it might find an open bracket or a minus sign, after which a new expression or a factor have to follow. When all these recursive calls have been evaluated and no syntax errors have been found, the top-level e() returns the expression’s syntax tree.

In order to get the value of the expression, all we have to do then is call root->eval(), and the syntax tree will be evaluated as described above.

As long as no syntax errors are found, the main program loops continuously and asks for new expressions; the names and values of identifiers are remembered from one evaluation to the next, so you can play around with stored values a little.

As you may imagine, it is not too difficult to add on to this extremely simple calculator program e.g. to implement exponentiation or to include functions like exp(), log() etc. The constructed syntax tree could also serve in a bigger program as an internal representation of a function that the user has typed in and that has to be evaluated a lot of times (and computed fast). One could even imagine to generate real machine code out of the syntax tree, which makes this program some kind of a rudimentary compiler. We’ll add to the example during the next columns.

On the source code disk, I have compiled two versions of the program, one as an MPW tool, and the other one using the Simple Input/Output Window mechanism. Actually, the only thing that has to be changed is the linking. The MPW sequence to create the two versions of the program look like the following:

cplus calc.cp
Link -w -c 'MPS ' -t MPST 
 calc.cp.o 
 "{CLibraries}"StdCLib.o 
 "{Libraries}"ToolLibs.o 
 "{Libraries}"Runtime.o 
 "{Libraries}"Interface.o 
 "{CLibraries}"CPlusLib.o 
 -o calc

Rez -a "{MPW}"Interfaces:Rincludes:SIOW.r -o calcAppl
Link -w -c 'JLMT' -t 'APPL' 
 calc.cp.o 
 "{CLibraries}"StdClib.o 
 "{MPW}"Libraries:Libraries:SIOW.o 
 "{Libraries}"Runtime.o 
 "{Libraries}"Interface.o 
 "{CLibraries}"CPlusLib.o 
 -o calcAppl

So the second version can be run also by those of you who don’t have MPW.

FORTHcoming

I’m still waiting for those MacForth contributions coming in we’d really like to see more of that in MacTutor. I’m sure there are quite a few of you satisfied MacForth users who have something interesting to write about. Please contact me: I promise that you get your space in this column. My network address has changed in the meantime, since our institute is going from the Bitnet to the Internet world; so in the future, please send messages to either of those three addresses (in order of preference):

 jl@macjl.embl-grenoble.fr
 langowski.j@applelink.apple.com
 langowsk@titan.embl-grenoble.fr 

(note the missing last letter in the name)

Meanwhile, we do have news from the Forth world. I don’t have to tell you that the NEON successor, Yerk, keeps being updated faster than I can write about it; you know that you can get the current version by ftp from oddjob.uchicago.edu. Mops, the NEON lookalike with real 680x0 machine code, can also be found there.

But here is something very interesting for those of you who used and liked Mach2, the Forth in which I did most of my examples here: Two users of Mach2, John Fleming who works at Motorola, and Steven Wiley, a molecular biologist at the University of Utah, got together and made all those modifications to Mach2 that the implementers should have done two years ago; now it is System7 and 32-bit compatible. It may also be soon in the public domain (non-commercial) like Yerk is, with the full source code available. You’ll hear more about it in one of the next columns. Until then.

Listing: The MPW calculator tool
// 
// calc.cp
//
// a simple calculator program
// based on an example from Dewhurst/Stark
// "Programming in C++"
//
// J. Langowski November 1992
//

#include <Ctype.h>
#include <StdIO.h>
#include <String.h>
#include <Stream.h>
#include <StdLib.h>

#define NIL 0

// basic syntax tree structure
//
class node {
 protected:
 node() {}
 public:
 virtual ~node() {}
 virtual int set (int)
 { cout << "Error: node::set(int) undefined" << eoln;
  return 0;} 
 virtual int eval() 
 { cout << "Error: node::eval() undefined" << eoln; 
 return 0;} 
};

class dyad : public node {
 protected:
 node *left, *right;
 dyad(node *l, node *r) {left=l; right=r;}
 ~dyad() {delete left; delete right;}
};
// operators
//
class plus : public dyad {
 public:
 plus(node *l, node *r) : dyad(l,r) {}
 int eval() { return left->eval() + right->eval();} 
};

class minus : public dyad {
 public:
 minus(node *l, node *r) : dyad(l,r) {}
 int eval() { return left->eval() - right->eval();}
};

class times : public dyad {
 public:
 times(node *l, node *r) : dyad(l,r) {}
 int eval() { return left->eval() * right->eval();}
};

class divide : public dyad {
 public:
 divide(node *l, node *r) : dyad(l,r) {}
 int eval() { return left->eval() / right->eval();}
};

class uminus : public node {
 node *operand;
 public:
 uminus(node *o) {operand = o;}
 ~uminus() {delete operand;}
 int eval() {return -operand->eval();}
};

class inumber : public node {
 int value;
 public:
 inumber(int v) {value = v;}
 int eval() {return value;}
};


// identifier table
//
class id;

class entry {
 char *name;
 int value;
 entry *next;
 entry (char *nm, entry *n) {
 name = strcpy (new char[strlen(nm) + 1], nm);
 value = 0;
 next = n;
 }
 friend id;
};

class id : public node {
 static entry *symtab;
 entry *ent;
 entry *look(char *);
 public:
 id(char *nm) {ent = look(nm);}
 int set(int i) {return ent->value = i;}
 int eval() {return ent->value;}
};

entry *id::look(char *nm) {
 for(entry *p = symtab; p; p = p->next)
 if(strcmp(p->name,nm) == 0) return p;


 return symtab = new entry(nm,symtab);
}

entry *id::symtab = NIL;

// assignment
//
class equals : public dyad {
 public:
 equals(node *t,node *e) : dyad(t,e) {}
 int eval()
 { return left->set(right->eval()); }
};


// parsing + evaluation
//

static char token;   // current token 
static char line[81];   // for reading identifiers + numbers
enum {ID = char(128), INT, EOLN, BAD}; // special tokens

node *e(), *t(), *f();    // parser routines 
 // for expression, term, factor

// input stream scanner, returns next token
//
char scan() {
 char c;
 while (1)
 switch (c = cin.get()) {
 case '+': case '-': case '*': case '/':
 case '(': case ')': case '=':
 return c;
 case ' ': case '\t':
 continue;
 case '\n': case '\r':
 return EOLN;
 default:
 if (isdigit(c)) {
 char *s = line;
 do*s++ = c;
 while(isdigit(c = cin.get()));
 *s = '\0'; 
 // terminate string just read
 cin.putback(c); 
 // had read one too much
 return INT;
 }
 
 if (isalpha(c)) {
 char *s = line;
 do*s++ = c;
 while(isalnum(c = cin.get()));
 *s = '\0'; 
 // terminate string just read
 cin.putback(c); 
 // had read one too much
 return ID;
 }
 
 return BAD; 
 // if nothing fits, syntax error
 }
}

// simple error routine
//
void error() { cout << "Syntax error." << endl; exit(255); }

// parser routines for expression, term, factor
//

// expression = term (+ -) term
node *e() {
 node *root = t();
 while (1)
 switch (token) {
 case '+':
 token = scan();
 root = new plus(root, t()); 
 break;
 case '-':
 token = scan();
 root = new minus(root, t());
 break;
 default:
 return root;
 }
}

// term = factor (* /) factor
node *t() {
 node *root = f();
 while (1)
 switch (token) {
 case '*':
 token = scan();
 root = new times(root, t()); 
 break;
 case '/':
 token = scan();
 root = new divide(root, t()); 
 break;
 default:
 return root;
 }
}

// factor = identifier | number | expression | -factor
node *f() {
 node *root = NIL;
 switch (token) {
 case ID:
 root = new id(line);
 token = scan();
 if (token == '=') {
 token = scan();
 root = new equals(root, e());
 }
 return root;
 case INT:
 root = new inumber(atoi(line));
 token = scan();
 return root;
 case '(':
 token = scan();
 root = e();
 if (token != ')' ) error();
 token = scan();
 return root;
 case '-':
 token = scan();
 return new uminus(f());
 default:
 error();
 }
}

// main program
//

void main() {
 node *root = NIL;
 while (1) {
 cout << "Enter expression: " << endl;
 token = scan();
 root = e();

 if (token == BAD) error();
 
 if (root != NIL)
 { 
     cout << "Result = " << root->eval() << endl;
     delete root; 
 }
 }
}

 

Community Search:
MacTech Search:

Software Updates via MacUpdate

Fantastical 2.3.6 - Create calendar even...
Fantastical 2 is the Mac calendar you'll actually enjoy using. Creating an event with Fantastical is quick, easy, and fun: Open Fantastical with a single click or keystroke Type in your event... Read more
Creative Kit 1.1 - $149.99
Creative Kit 2016--made exclusively for Mac users--is your ticket to the most amazing images you've ever created. With a variety of powerful tools at your fingertips, you'll not only repair and fine-... Read more
iMazing 2.2.3 - Complete iOS device mana...
iMazing (was DiskAid) is the ultimate iOS device manager with capabilities far beyond what iTunes offers. With iMazing and your iOS device (iPhone, iPad, or iPod), you can: Copy music to and from... Read more
Apple Configurator 2.4 - Configure and d...
Apple Configurator makes it easy to deploy iPad, iPhone, iPod touch, and Apple TV devices in your school or business. Use Apple Configurator to quickly configure large numbers of devices connected to... Read more
WhatRoute 2.0.18 - Geographically trace...
WhatRoute is designed to find the names of all the routers an IP packet passes through on its way from your Mac to a destination host. It also measures the round-trip time from your Mac to the router... Read more
Posterino 3.3.5 - Create posters, collag...
Posterino offers enhanced customization and flexibility including a variety of new, stylish templates featuring grids of identical or odd-sized image boxes. You can customize the size and shape of... Read more
Skim 1.4.28 - PDF reader and note-taker...
Skim is a PDF reader and note-taker for OS X. It is designed to help you read and annotate scientific papers in PDF, but is also great for viewing any PDF file. Skim includes many features and has a... Read more
Apple macOS Sierra 10.12.4 - The latest...
With Apple macOS Sierra, Siri makes its debut on Mac, with new features designed just for the desktop. Your Mac works with iCloud and your Apple devices in smart new ways, and intelligent... Read more
Apple Numbers 4.1 - Apple's spreads...
With Apple Numbers, sophisticated spreadsheets are just the start. The whole sheet is your canvas. Just add dramatic interactive charts, tables, and images that paint a revealing picture of your data... Read more
Xcode 8.3 - Integrated development envir...
Xcode includes everything developers need to create great applications for Mac, iPhone, iPad, and Apple Watch. Xcode provides developers a unified workflow for user interface design, coding, testing... Read more

Power Rangers: Legacy Wars beginner...
Rita Repulsa is back, but this time she's invading your mobile phone in Power Rangers: Legacy Wars. What looks to be a straightforward beat 'em up is actually a tough-as-nails multiplayer strategy game that requires some deft tactical maneuvering.... | Read more »
Hearthstone celebrates the upcoming Jour...
Hearthstone gets a new expansion, Journey to Un'Goro, in a little over a week, and they'll be welcoming the Year of the Mammoth, the next season, at the same time. There's a lot to be excited about, so Blizzard is celebrating in kind. Players will... | Read more »
4 smart and stylish puzzle games like Ty...
TypeShift launched a little over a week ago, offering some puzzling new challenges for word nerds equipped with an iOS device. Created by Zach Gage, the mind behind Spelltower, TypeShift boasts, like its predecessor, a sleak design and some very... | Read more »
The best deals on the App Store this wee...
Deals, deals, deals. We're all about a good bargain here on 148Apps, and luckily this was another fine week in App Store discounts. There's a big board game sale happening right now, and a few fine indies are still discounted through the weekend.... | Read more »
The best new games we played this week
It's been quite the week, but now that all of that business is out of the way, it's time to hunker down with some of the excellent games that were released over the past few days. There's a fair few to help you relax in your down time or if you're... | Read more »
Orphan Black: The Game (Games)
Orphan Black: The Game 1.0 Device: iOS Universal Category: Games Price: $4.99, Version: 1.0 (iTunes) Description: Dive into a dark and twisted puzzle-adventure that retells the pivotal events of Orphan Black. | Read more »
The Elder Scrolls: Legends is now availa...
| Read more »
Ticket to Earth beginner's guide: H...
Robot Circus launched Ticket to Earth as part of the App Store's indie games event last week. If you're not quite digging the space operatics Mass Effect: Andromeda is serving up, you'll be pleased to know that there's a surprising alternative on... | Read more »
Leap to victory in Nexx Studios new plat...
You’re always a hop, skip, and a jump away from a fiery death in Temple Jump, a new platformer-cum-endless runner from Nexx Studio. It’s out now on both iOS and Android if you’re an adventurer seeking treasure in a crumbling, pixel-laden temple. | Read more »
Failbetter Games details changes coming...
Sunless Sea, Failbetter Games' dark and gloomy sea explorer, sets sail for the iPad tomorrow. Ahead of the game's launch, Failbetter took to Twitter to discuss what will be different in the mobile version of the game. Many of the changes make... | Read more »

Price Scanner via MacPrices.net

Is A New 10.5-inch iPad Still Coming In April...
There was no sign or mention of a long-rumored and much anticipated 10.5-inch iPad Pro in Apple’s product announcements last week. The exciting iPad news was release of an upgraded iPad Air with a... Read more
T-Mobile’s Premium Device Protection Now Incl...
Good news for T-Mobile customers who love their iPhones and iPads. The “Un-carrier” has become the first national wireless company to give customers AppleCare Services at zero additional cost as part... Read more
FileWave Ensures Support for Latest Apple OS...
FileWave multi-platform device management providers announced support for Apple’s release yesterday of iOS 10.3, macOS Sierra 10.12.4, and tvOS 11.2. FileWave has a history of providing zero-day... Read more
Use Apple’s Education discount to save up to...
Purchase a new Mac or iPad using Apple’s Education Store and take up to $300 off MSRP. All teachers, students, and staff of any educational institution qualify for the discount. Shipping is free: -... Read more
Apple refurbished Apple Watches available sta...
Apple is now offering Certified Refurbished Series 1 and Series 2 Apple Watches for 14-16% off MSRP, starting at $229. An Apple one-year warranty is included with each watch. Shipping is free: Series... Read more
9-inch 32GB Space Gray iPad Pro on sale for $...
B&H Photo has the 9.7″ 32GB Space Gray Apple iPad Pro on sale for $549 for a limited time. Shipping is free, and B&H charges NY sales tax only. Their price is $50 off MSRP. Read more
13-inch MacBook Airs on sale for $100-$150 of...
B&H Photo has 13″ MacBook Airs on sale for up to $150 off MSRP. Shipping is free, and B&H charges NY sales tax only: - 13″ 1.6GHz/128GB MacBook Air (MMGF2LL/A): $899 $100 off MSRP - 13″ 1.... Read more
13-inch MacBook Airs, Apple refurbished, in s...
Apple has Certified Refurbished 2016 13″ MacBook Airs available starting at $849. An Apple one-year warranty is included with each MacBook, and shipping is free: - 13″ 1.6GHz/8GB/128GB MacBook Air: $... Read more
12-inch Retina MacBooks on sale for $1199, sa...
B&H has 12″ 1.1GHz Retina MacBooks on sale for $100 off MSRP. Shipping is free, and B&H charges NY sales tax only: - 12″ 1.1GHz Space Gray Retina MacBook: $1199 $100 off MSRP - 12″ 1.1GHz... Read more
Save up to $260 with Apple refurbished 12-inc...
Apple has Certified Refurbished 2016 12″ Retina MacBooks available for $200-$260 off MSRP. Apple will include a standard one-year warranty with each MacBook, and shipping is free. The following... Read more

Jobs Board

Fulltime aan de slag als shopmanager in een h...
Ben jij helemaal gek van Apple -producten en vind je het helemaal super om fulltime shopmanager te zijn in een jonge en hippe elektronicazaak? Wil jij werken in Read more
Desktop Analyst - *Apple* Products - Montef...
…technology to improve patient care. JOB RESPONSIBILITIES: Provide day-to-day support for Apple Hardware and Software in the environment based on the team's support Read more
*Apple* Mobile Master - Best Buy (United Sta...
**493168BR** **Job Title:** Apple Mobile Master **Location Number:** 000827-Denton-Store **Job Description:** **What does a Best Buy Apple Mobile Master do?** At Read more
Fulltime aan de slag als shopmanager in een h...
Ben jij helemaal gek van Apple -producten en vind je het helemaal super om fulltime shopmanager te zijn in een jonge en hippe elektronicazaak? Wil jij werken in Read more
*Apple* Mobile Master - Best Buy (United Sta...
**492889BR** **Job Title:** Apple Mobile Master **Location Number:** 000886-Norwalk-Store **Job Description:** **What does a Best Buy Apple Mobile Master do?** Read more
All contents are Copyright 1984-2011 by Xplain Corporation. All rights reserved. Theme designed by Icreon.