TweetFollow Us on Twitter

Nov 92 Challenge
Volume Number:8
Issue Number:7
Column Tag:Programmers' Challenge

Programmers' Challenge

By Mike Scanlin, MacTutor Regular Contributing Author

November 92 Programming Challenge of the Month

Millions of Colors?

Ever wonder how many of the 16,777,216 possible colors are really used in a typical 24-bit color image? Do you really need to run in 24-bit mode to appreciate certain images? Could some images be accurately represented as indexed color images instead, without any loss of color? Hmmm... The first thing you’d need to know is how many unique RGB values there are in the image, which would tell you how big your color lookup table would need to be. Let’s try it.

This month’s challenge is to quickly determine how many unique RGB values there are in a given 24-bit color image. The input to your function will be the dimensions and base address of an interleaved ARGB image:

unsigned long UniqueRGBValues(baseAddress, numRows, numCols)
PtrbaseAddress;
short   numRows, numCols;

The byte pointed to by baseAddress is the alpha byte of the upper left pixel. Following that are bytes for red, green and blue, which are then followed by the next set of ARGB values. You can ignore the alpha bytes completely when calculating unique RGB values. If you feel the need to allocate an array of 16,777,216 bits then, yes, you can assume your routine will have at least 2.5MBs free memory when called to do so (but remember that the time to initialize such an array is non-zero; there may be faster methods...).

Let’s say the maximum value for numCols is 640 and for numRows it’s 480. Your routine should be very fast for the average case but also be able to deal with the worst case where you have 640x480 unique RGB values.

We goofed

No two ways about it. In our rush to get the October issue out the door we were a little too hasty in determining the winner of the August MacTutor Challenge. Not more than 48 hours after the issue had gone to press (but before the stated challenge deadline had passed) we received a solution that was better than the one declared to be the winner. Our apologies to Greg Landweber (Princeton, NJ) who was the actual winner (and will also be receiving the prize). In order to prevent this from happening again in the future, we have moved the deadline up (see below).

The “deadline has now passed” winner of the “How many ways can you spell ‘CAT’” challenge is Will Galway (Salt Lake City, UT) whose entry was the only non-recursive one received. Take note recursion fanatics: Although recursion is a Good Thing conceptually (and in many cases practically), these monthly challenges are primarily about speed. We don’t need to contribute to the large body of existing slow code; we need faster code. Take a couple of No-Doze and study Will’s non-recursive alternative.

Thanks to Bob Barnhart (San Diego, CA) for his entertaining animated solution. Too bad it wasn’t as fast as it was fun to watch. Bob’s entry brings up another point as well: Please use a column width of 79 characters or less in your code. AppleLink (or the internet-AppleLink gateway, I’m not sure which) breaks lines longer than 80 characters and it’s a pain to manually fix them up when I get them. Thanks.

Here are Greg’s winning solution to the August Challenge (the real winner) and Will’s winning solution to the September Challenge (some comments have been removed for space reasons. The complete sources are on the source code disk):

Banded Pegs

/* Solution to the August 1992 MacTutor
 * Programmers' Challenge
 *
 * by Greg Landweber
 */

/* The number of holes in a row or column. */
#define max 13

void BandedPegs (numPegs, pegsPtr, numEdgePegsPtr,
 edgePegsPtr, areaPtr)
short numPegs;
Point *pegsPtr;
short *numEdgePegsPtr;
Point *edgePegsPtr;
Fixed *areaPtr;
{
 /* leftmost and rightmost peg in each row */
    short   xLeft[max],xRight[max];
 /* top and bottom rows containing pegs */
    short   top,bottom;
 /* horizontal and vertical coords. of peg */
    short   x,y;
 /* used to compute twice the enclosed area */
    short   area;
 /* number of pegs on left and right side */
    short   numLeft,numRight;
 /* array of pegs on left and right */
    Point   leftPegs[max],rightPegs[max];
 /* general use array index */
    short   index;
 /* for stepping through arrays of Points */
    Point   *pegPtr1,*pegPtr2;
 
/* Fill xLeft[v] and xRight[v] with the h-coords
 * of the leftmost and rightmost pegs in row v.
 * If there are no pegs in row v, then set
 *  xLeft[v]  = max, and
 *      xRight[v] = -1.
 * Note that any pegs inbetween the leftmost and
 * rightmost pegs in a row will automatically be
 * in the interior of the rubber band polygon.
 * This reduces the maximum number of pegs to 26.
 */
 
    for ( index = 0; index < max; index++ ) {
        xLeft [index] = max;
        xRight[index] = -1;
    }
 
    pegPtr1 = pegsPtr;
    for ( index = numPegs; index > 0; index-- ) {
        y = pegPtr1->v;
        x = pegPtr1->h;
        if ( x < xLeft [y] )
            xLeft [y] = x;
        if ( x > xRight[y] )
            xRight[y] = x;
        pegPtr1++;
    }
 
/* Find the bottom (lowest v) and top
 * (highest v) rows containing pegs. */

    bottom = -1;
    while ( xLeft [++bottom] == max );
 
    top = max;
    while ( xLeft [--top] == max );
 
/* Fill leftPegs[] with a list of all the pegs
 * on the left side of the convex polygon from
 * the top (hi v) to the bottom (lo v), and put
 * the number of those pegs - 1 in numLeft. */

 /* leftPegs[0] is the topmost (highest v) */
    leftPegs[0].h = xLeft[top];
 /* point on the left side of the polygon. */
    leftPegs[0].v = top;
 /* Index of the last peg in leftPegs[]. */
    numLeft = 0;
 
 /* Add pegs from the top to the bottom. */
    for (y = top - 1; y >= bottom; y--)
    /* Check if there is a peg in row y. */
        if ( (x = xLeft[y]) != max ) {
        /* Note thatpegPtr2 is the current
        * peg in the list and pegPtr1 is the
        * next. */ 
            pegPtr1 = leftPegs;
            pegPtr2 = pegPtr1++;
            for ( index = 0; index < numLeft; index++ )
            /* Is the peg at {x,y} to the left of
             * the line from *pegPtr1 to *pegPtr2? */
                if ( ( (x - pegPtr1->h) 
                    (pegPtr2->v - pegPtr1->v) ) <
                    ( (pegPtr2->h - pegPtr1->h) *
                    (y  - pegPtr1->v) ) )
                /* If so, all the pegs from pegPtr1 on
                 * will be to the right of the line
                 * from {x,y} to *pegPtr2, and so we
                 * remove them from the left peg list. */
                    numLeft = index;
                else
                /* If not, we go on to the next peg. */
                    pegPtr2 = pegPtr1++;
            /* Tack {x,y} onto the end of the list. */
            numLeft++;
            pegPtr1->v = y;
            pegPtr1->h = x;
        }

/* Fill rightPegs[] with a list of all the pegs
 * on the right side of the convex polygon from
 * the top (hi v) to the bottom (lo v), and put
 * the number of those pegs - 1 in numRight.
 */
 
 /* rightPegs[0] is the topmost (highest v)
  * point on the right side of the polygon. */
    rightPegs[0].h = xRight[top];
    rightPegs[0].v = top;

 /* Index of the last peg in rightPegs[]. */
    numRight = 0;

 /* Add pegs from the top to the bottom. */
    for (y = top - 1; y >= bottom; y--)
    /* Check if there is a peg in row y. */
        if ( (x = xRight[y]) != max ) { 
        /* Note that pegPtr2is the current peg */
        /* in the list and pegPtr1 is the next. */
            pegPtr1 = rightPegs;        
            pegPtr2 = pegPtr1++;        
            for ( index = 0; index < numRight; index++ )
            /* Is the peg at {x,y} to the right of
             * the line from *pegPtr1 to *pegPtr2?*/
                if ( ( (x - pegPtr1->h) *
                    (pegPtr2->v - pegPtr1->v) ) >
                    ( (pegPtr2->h - pegPtr1->h) *
                    (y - pegPtr1->v) ) )
               /* If so, all the pegs from pegPtr1 on
                * will be to the left of the line
                * from {x,y} to *pegPtr2, and so we
                * remove them from the right peg list. */
                    numRight = index;   
                else
                /* If not, we go on to the next peg.*/
                    pegPtr2 = pegPtr1++;
            numRight++;                 
            /* Tack {x,y} onto the end of the list. */
            pegPtr1->v = y;
            pegPtr1->h = x;
        }
 
/* Copy the contents of numLeft[] and
 * numRight[] into edgePegsPtr. */
    pegPtr2 = edgePegsPtr;

    pegPtr1 = leftPegs + 1;
    for ( index = numLeft - 1; index > 0; index-- )
        *(pegPtr2++) = *(pegPtr1++);

/* Do the pegs all lie on the same line?
 * If so, the left and right are the same.  */
    if ( *( (long *)leftPegs + 1 ) !=
        *( (long *)rightPegs + 1 ) ) {
        pegPtr1 = rightPegs + 1;
        for ( index = numRight - 1; index > 0; index-- )
            *(pegPtr2++) = *(pegPtr1++);
    }
 
/* Put all the pegs in the top and bottom
 * rows into edgePegsPtr. */
    pegPtr1 = pegsPtr;
    for ( index = numPegs; index > 0; index-- ) {
        if ( (pegPtr1->v == top) || (pegPtr1->v == bottom) )
            *(pegPtr2++) = *pegPtr1;
        pegPtr1++;
    }
 
/* Figure out how many pegs there are touching
 * the edge of the polygon. */
    *numEdgePegsPtr = pegPtr2 - edgePegsPtr;
 
/* Compute twice the area to the left of the
 * right side of the polygon. */
    area = 0;
 
/* The area of a trapezoid with height h and\
 * parallel sides of length a and b is h*(a+b)/2.
 * Here we have h = pegPtr2->v - pegPtr1->v,
 * a = pegPtr2->h, and  b = pegPtr1->h. */
    pegPtr1 = rightPegs;

/* Loop through all of the line segments on
 * the right side of the convex polygon. */        
    for ( index = numRight; index > 0; index-- ) {
        pegPtr2 = pegPtr1++;        
        area += (pegPtr2->v - pegPtr1->v) *
            (pegPtr2->h + pegPtr1->h);
    }
 
/* Subtract twice the area to the left of the
 * left side of the polygon. */
    pegPtr1 = leftPegs;             

/* Loop through all of the line segments on
 * the left side of the convex polygon. */
    for ( index = numLeft; index > 0; index-- ) {
        pegPtr2 = pegPtr1++;        
        area -= (pegPtr2->v - pegPtr1->v) *
            (pegPtr2->h + pegPtr1->h);
    }
 
/* Finally, divide by two and convert the
 * result to type Fixed. */
    *areaPtr = FixRatio( area, 2 );
}

How Many ways can you spell ’CAT‘

/* count-paths.h:  Declarations for count-paths.c
 *
 * Copyright (C) 1992,  William F. Galway
 *
 * Anyone can do what they like with this code,
 * as long as they acknowledge its author,
 * and include this message in their code.
 */
 
typedef int BOOL;
 
#define TRUE 1
#define FALSE 0
 
/* Possible target systems/compilers...  */
#define ThinkC 0
#define GnUnix 1
 
#if !defined(TARGET)
#define TARGET ThinkC
#endif
 
#if !defined(DEBUG)
#define DEBUG FALSE
#endif
 
#if !defined(VERBOSE)
#define VERBOSE FALSE
#endif
 
/* Maximum dimensions of the "matrix". */
#define MAXORDER 10
 
#if (TARGET==GnUnix)
/* This is the "Mac" StringPtr type.  The first
 * byte gives the length, the rest of the bytes
 * make up the string. */
typedef unsigned char Str255[256], *StringPtr;
 
/* Native is the type most naturally addressed,
 * roughly speaking...  */
typedef void Native;
#endif

#if (TARGET==ThinkC)
/* Native is the type most naturally addressed,
 * roughly speaking...  */
typedef char Native;
#endif
 
typedef struct locnode {
  /* Next node in list for a given character. */
    struct locnode *next;
} LocNode;
 
typedef struct {
    /* Number of entries per row...  */
    long dy;

    /* Vector of LocNodes indexed by
     * character code, giving first location
     * of character. */
    LocNode char_index[256];

    /* "Matrix" of LocNodes giving further
     * locations of each character. */
    LocNode index_matrix[(2+MAXORDER)*(2+MAXORDER)];
} Index;
 
/* BuildIndex builds up index for matrix of
 * given order. */
void BuildIndex(long order, const char *matrix,
 Index *index);
 
/* count_paths counts paths using previously
 * built index. */
long count_paths(const Index *index,
 const StringPtr word);
 
/* CountPaths is the "top level" path counting
 * routine. */
long CountPaths(short order, char *matrix,
 const StringPtr inputWordPtr);
 
/*-----------------------------------------*/
 
/* count-paths.c
 *
 * Copyright (C) 1992,  William F. Galway
 *
 * Anyone can do what they like with this code,
 * as long as they acknowledge its author,
 * and include this message in their code.
 */
 
/* The algorithm used by this implementation
 * avoids "combinatorial blowup" by working
 * backwards through the input word, keeping a
 * "count table" showing the number of paths for
 * the substring at each node.  For example, for
 * the string "CAR" we would get the following
 * counts (count tables) at each stage:
 *  -for "r":
 *     0  0  0
 *     0  1  0
 *     0  0  0
 *  -for "ar":
 *     0  0  0
 *     1  0  1
 *     0  1  0
 *  -for "car":
 *     1  0  1
 *     0  0  0
 *     0  0  2
 * giving a total of 4 solutions found at the
 * final stage. (This non-recursive approach is
 * reminiscent of the iterative versus the
 * recursive method of computing Fibonacci
 * numbers.)
 *
 * We actually keep two count tables around, one
 * giving counts for the "previous stage" (the
 * "previous table"), and one being built up for
 * the "current stage" (the "current table"). We
 * build the current table by locating occurrences
 * of the leading character of the substring, and
 * then summing the counts from the four
 * neighboring locations in the previous table. 
 * To ease the problem of dealing with the edges
 * of the tables, we allocate "dummy" rows and
 * columns at the edges of our count tables. The
 * counts at the edges always remain zero, while
 * the interesting stuff goes on in the interior
 * of the tables.
 *
 * To simplify (and speed up) the task of locating
 * occurrences of characters in the matrix, we
 * first build an "index" for the matrix which is
 * basically a linked list of pointers and then
 * index into the index (!) by the character that
 * we need the location(s) of. The index needs
 * building only once for a given matrix, after
 * which the count_paths routine may be called
 * (see how CountPaths invokes count_paths below).
 *
 * Other points to note:
 *
 *  -- Use of "Native" pointers for less "pointer
 *     arithmetic".
 *  -- The result returned by CountPaths is more
 *     properly interpreted as an unsigned long
 *     rather than as a signed long.
 *  -- These routines are not robust when called
 *     with matrices of order outside the range
 *     1..MAXORDER.
 */
 
#include "count-paths.h"
#include <stdio.h>
 
/* Build up index for matrix of given order.  */
void BuildIndex(long order, const char *matrix,
 Index *index)
{
    register unsigned char *chrp;
    register LocNode *spot, *spot2;
    long i,j;
 
    /* Zero out the char_index (256 entries).  */
    spot = index->char_index;
    spot2 = spot+256;
    do {
        (spot++)->next = NULL;
    } while (spot < spot2);
 
    /* Build up the index... The c'th entry in
     * char_index points to a chain of pointers
     * residing in index_matrix...  Note that
     * "edge" rows and columns are allowed to
     * contain nonsense. */

    spot = index->index_matrix+order+3;
    chrp = (unsigned char *)matrix;
    i = order;
    do {
        j = order;
        do {
            /* char_index[char] points to head of
             * chain for char. Set spot pointed at
             * to point to "next" spot with ch in
             * it (as previously stored in
             * char_index). */
            spot2 = &index->char_index[*chrp++];
            spot->next = spot2->next;
            spot2->next = spot++;
        } while (--j);

        /* Skip last & first columns of row. */
        spot += 2;
    } while (--i);
  
    index->dy = order+2;
 
    return;
}
 
/* Count paths using previously built index. */
long count_paths(const Index *index, const StringPtr word)
{
    register unsigned char *chrp;
    register long dyoffset;

    /* tbl_offset gives offset from "current
     * counts" table to "previous counts" table. 
     * i.e., previous_counts =
     * current_counts+tbl_offset. */
    long tbl_offset;

    /* current_offset, previous_offset give
     * offset from index->index_matrix to
     * current/previous count tables. */
    register long current_offset;
    register long previous_offset;
    LocNode *spot;
    long *countp;
    register long total;
    long count_tables[2*(2+MAXORDER)*(2+MAXORDER)];
 
    /* Point chrp to last char of word. */
    chrp = word + *word;
 
    /* Initialize misc offsets, pointers. */
    dyoffset = index->dy*sizeof(long);

    /* (short) avoids subroutine call for
     * multiply for some systems. */
    tbl_offset = (short)(index->dy)*(short)dyoffset;
    current_offset = (Native *)count_tables-
        (Native *)(index->index_matrix);
    previous_offset = tbl_offset+current_offset;
 
    /* Zero out the count tables. */
    countp=count_tables;
    do {
        *countp++ = 0;
    } while (countp < (long *)((Native *)
        count_tables+2*tbl_offset));
  
    total = 0;
 
    /* Initialize counts for "previous table".
     * (It will soon be previous!) */
    for (spot=(index->char_index)[*chrp].next;
        spot!=NULL; spot=spot->next) {
        *(long *)((Native *)spot+previous_offset) = 1;
        total++;
    }
 
    if (total==0 || --chrp<=word)
        return total;
 
    while (TRUE) {
        total = 0;
        for (spot=(index->char_index)[*chrp].next;
            spot!=NULL; spot=spot->next) {
            countp = (long *)((Native *)spot +
                previous_offset);

            /* Hairy expression avoids variable,
             * may free up register... */
            total += *(long *)((Native *)spot +
                current_offset) = *(countp-1) +
                *(countp+1) + *(long *)((Native *)
                countp-dyoffset) + *(long *)
                ((Native*)countp+dyoffset);
        }

        if (total==0 || --chrp<=word)
            return total;
 
      /* Swap "current" and "previous" count
       * tables. */
        current_offset += tbl_offset;
        previous_offset -= tbl_offset;
        tbl_offset = - tbl_offset;
         /* Zero out current counts, only need
         * touch non-zero entries. */
        for (spot=(index->char_index)[*(chrp+2)].next;
            spot!=NULL; spot=spot->next) {
            *(long *)((Native *)spot + current_offset) = 0;
        }
    }
}


long CountPaths(short order, char *matrix,
 const StringPtr inputWordPtr)
{
    long ord=order;
    Index index;
 
    /* Problem statement restricts word length to
     * be >0, but be paranoid since
     * count_paths(...) is not robust for 0 length
     * words. Return 0 if empty (zero length)
     * word. */
    if (*inputWordPtr == 0) {
        return 0;
    } else if (*inputWordPtr == 1) {
        /* Avoid work of building index, etc. for
         * length one words. */
        register char ch=(char)inputWordPtr[1];
        char *chrp = matrix;
        long total=0;
 
        do {
            if (ch == *chrp++) {
                total++;
            }
        } while (chrp < matrix+order*order);
        return total;
    } else {
        /* Invoke count_paths after building the
         * index... */
        BuildIndex(ord, matrix, &index);
        return count_paths(&index, inputWordPtr);
    }
}
 
AAPL
$102.50
Apple Inc.
+0.25
MSFT
$45.43
Microsoft Corpora
+0.55
GOOG
$571.60
Google Inc.
+2.40

MacTech Search:
Community Search:

Software Updates via MacUpdate

Path Finder 6.5.5 - Powerful, award-winn...
Path Finder is a file browser that combines the familiar Finder interface with the powerful utilities and innovative features. Just a small selection of the Path Finder 6 feature set: Dual pane... Read more
QuarkXPress 10.2.1 - Desktop publishing...
With QuarkXPress, you can communicate in all the ways you need to -- and always look professional -- in print and digital media, all in a single tool. Features include: Easy to Use -- QuarkXPress is... Read more
Skype 6.19.0.450 - Voice-over-internet p...
Skype allows you to talk to friends, family and co-workers across the Internet without the inconvenience of long distance telephone charges. Using peer-to-peer data transmission technology, Skype... Read more
VueScan 9.4.41 - Scanner software with a...
VueScan is a scanning program that works with most high-quality flatbed and film scanners to produce scans that have excellent color fidelity and color balance. VueScan is easy to use, and has... Read more
Cloud 3.0.0 - File sharing from your men...
Cloud is simple file sharing for the Mac. Drag a file from your Mac to the CloudApp icon in the menubar and we take care of the rest. A link to the file will automatically be copied to your clipboard... Read more
LibreOffice 4.3.1.2 - Free Open Source o...
LibreOffice is an office suite (word processor, spreadsheet, presentations, drawing tool) compatible with other major office suites. The Document Foundation is coordinating development and... Read more
SlingPlayer Plugin 3.3.20.505 - Browser...
SlingPlayer is the screen interface software that works hand-in-hand with the hardware inside the Slingbox to make your TV viewing experience just like that at home. It features an array of... Read more
Get Lyrical 3.8 - Auto-magically adds ly...
Get Lyrical auto-magically add lyrics to songs in iTunes. You can choose either a selection of tracks, or the current track. Or turn on "Active Tagging" to get lyrics for songs as you play them.... Read more
Viber 4.2.2 - Send messages and make cal...
Viber lets you send free messages and make free calls to other Viber users, on any device and network, in any country! Viber syncs your contacts, messages and call history with your mobile device,... Read more
Cocktail 7.6 - General maintenance and o...
Cocktail is a general purpose utility for OS X that lets you clean, repair and optimize your Mac. It is a powerful digital toolset that helps hundreds of thousands of Mac users around the world get... Read more

Latest Forum Discussions

See All

Rhonna Designs Magic (Photography)
Rhonna Designs Magic 1.0 Device: iOS Universal Category: Photography Price: $1.99, Version: 1.0 (iTunes) Description: Want to sprinkle *magic* on your photos? With RD Magic, you can add colors, filters, light leaks, bokeh, edges,... | Read more »
This Week at 148Apps: August 25-29, 2014
Shiny Happy App Reviews   | Read more »
Qube Kingdom – Tips, Tricks, Strategies,...
Qube Kingdom is a tower defense game from DeNA. You rally your troops – magicians, archers, knights, barbarians, and others – and fight against an evil menace looking to dominate your kingdom of tiny squares. Planning a war isn’t easy, so here are a... | Read more »
Qube Kingdom Review
Qube Kingdom Review By Nadia Oxford on August 29th, 2014 Our Rating: :: KIND OF A SQUARE KINGDOMUniversal App - Designed for iPhone and iPad Qube Kingdom has cute visuals, but it’s a pretty basic tower defense game at heart.   | Read more »
Fire in the Hole Review
Fire in the Hole Review By Rob Thomas on August 29th, 2014 Our Rating: :: WALK THE PLANKUniversal App - Designed for iPhone and iPad Seafoam’s Fire in the Hole looks like a bright, 8-bit throwback, but there’s not enough booty to... | Read more »
Alien Creeps TD is Now Available Worldwi...
Alien Creeps TD is Now Available Worldwide Posted by Ellis Spice on August 29th, 2014 [ permalink ] Universal App - Designed for iPhone and iPad | Read more »
Dodo Master Review
Dodo Master Review By Jordan Minor on August 29th, 2014 Our Rating: :: NEST EGGiPad Only App - Designed for the iPad Dodo Master is tough but fair, and that’s what makes it a joy to play.   | Read more »
Motorsport Manager Review
Motorsport Manager Review By Lee Hamlet on August 29th, 2014 Our Rating: :: MARVELOUS MANAGEMENTUniversal App - Designed for iPhone and iPad Despite its depth and sense of tactical freedom, Motorsport Manager is one of the most... | Read more »
Motorsport Manager – Beginner Tips, Tric...
The world of Motorsport management can be an unforgiving and merciless one, so to help with some of the stress that comes with running a successful race team, here are a few hints and tips to leave your opponents in the dust. | Read more »
CalPal Update Brings the App to 2.0, Add...
CalPal Update Brings the App to 2.0, Adds Lots of New Stuff Posted by Ellis Spice on August 29th, 2014 [ permalink ] | Read more »

Price Scanner via MacPrices.net

Apple now offering refurbished 21-inch 1.4GHz...
The Apple Store is now offering Apple Certified Refurbished 21″ 1.4GHz iMacs for $929 including free shipping plus Apple’s standard one-year warranty. Their price is $170 off the cost of new models,... Read more
Save $50 on the 2.5GHz Mac mini, on sale for...
B&H Photo has the 2.5GHz Mac mini on sale for $549.99 including free shipping. That’s $50 off MSRP, and B&H will also include a free copy of Parallels Desktop software. NY sales tax only. Read more
Save up to $300 on an iMac with Apple refurbi...
The Apple Store has Apple Certified Refurbished iMacs available for up to $300 off the cost of new models. Apple’s one-year warranty is standard, and shipping is free. These are the best prices on... Read more
The Rise of Phablets
Carlisle & Gallagher Consulting Group, a businesses and technology consulting firm focused solely on the financial services industry, has released an infographic depicting the convergence of... Read more
Bad Driver Database App Allows Good Drivers t...
Bad Driver Database 1.4 by Facile Group is a new iOS and Android app that lets users instantly input and see how many times a careless, reckless or just plain stupid driver has been added to the... Read more
Eddy – Cloud Music Player for iPhone/iPad Fre...
Ukraine based CapableBits announces the release of Eddy, its tiny, but smart and powerful cloud music player for iPhone and iPad that allows users to stream or download music directly from cloud... Read more
A&D Medical Launches Its WellnessConnecte...
For consumers and the healthcare providers and loved ones who care for them, A&D Medical, a leader in connected health and biometric measurement devices and services, has launched its... Read more
Anand Lal Shimpi Retires From AnandTech
Anand Lal Shimpi, whose AnandTech Website is famous for its meticulously detailed and thoroughgoing reviews and analysis, is packing it in. Lal Shimpi, who founded the tech site at age 14 in 1997,... Read more
2.5GHz Mac mini, Apple refurbished, in stock...
The Apple Store has Apple Certified Refurbished 2.5GHz Mac minis available for $509, $90 off MSRP. Apple’s one-year warranty is included, and shipping is free. Read more
13-inch 2.5GHz MacBook Pro on sale for $999,...
B&H Photo has the 13″ 2.5GHz MacBook Pro on sale for $999.99 including free shipping plus NY sales tax only. Their price is $100 off MSRP. Read more

Jobs Board

*Apple* Retail - Multiple Positions (US) - A...
Sales Specialist - Retail Customer Service and Sales Transform Apple Store visitors into loyal Apple customers. When customers enter the store, you're also the Read more
*Apple* Retail - Multiple Positions (US) - A...
Sales Specialist - Retail Customer Service and Sales Transform Apple Store visitors into loyal Apple customers. When customers enter the store, you're also the Read more
*Apple* Retail - Multiple Positions (US) - A...
Sales Specialist - Retail Customer Service and Sales Transform Apple Store visitors into loyal Apple customers. When customers enter the store, you're also the Read more
*Apple* Retail - Multiple Positions (US) - A...
Sales Specialist - Retail Customer Service and Sales Transform Apple Store visitors into loyal Apple customers. When customers enter the store, you're also the Read more
Senior Event Manager, *Apple* Retail Market...
…This senior level position is responsible for leading and imagining the Apple Retail Team's global event strategy. Delivering an overarching brand story; in-store, Read more
All contents are Copyright 1984-2011 by Xplain Corporation. All rights reserved. Theme designed by Icreon.