TweetFollow Us on Twitter

Random Numbers
Volume Number:8
Issue Number:3
Column Tag:Coding Efficiently

Fast Random Numbers

A random number generator that is 10 times faster

By Jon Bell, Clinton South Carolina

Note: Source code files accompanying article are located on MacTech CD-ROM or source code disks.

So-called “random numbers” are an important ingredient in many applications. This article discusses some of the theory behind random number generators, and shows how to replace the Toolbox random number generators with one that produces the same results but is more than ten times faster on a Mac SE/30.

[NOTE: The material in the following two sections is summarized from the article by Park and Miller which is listed in the references at the end of this article.]

Random Numbers

All random number generators produce sequences of numbers by using a fixed set of rules to produce each number in the sequence from its predecessors. This means that the numbers are not really “random” at all, in a technical sense, because they are completely predictable, provided that you know the rules. The only way to get true “random” numbers would be to use some physical process which is inherently random, such as rolling dice or counting the number of decays per second from a radioactive source. Nevertheless, a computer can produce numbers which “look” random to a person who doesn’t know the rule by which they were generated, and which satisfy many of the common statistical tests of randomness. Such numbers are often called pseudorandom numbers.

Depending on the application, there are many kinds of random number sequences. For example, we might want real (floating-point) numbers which lie between some given minimum and maximum value; or we might want integers, instead. We might want “uniformly” random numbers, in which the probability of getting any single number is the same as the probability of getting any other number; or we might want random numbers which are distributed according to some pattern, such as the familiar Gaussian (bell-shaped) curve. Any of these kinds of random numbers can be produced by applying a suitable transformation to a sequence of integers which is uniformly distributed between 1 and some maximum value, and so most random number generators have a random integer generator as their core.

Before actually looking at specific random number generators, it’s worth summarizing the desirable properties which they should have. First, we want to get as many different random numbers as possible, within the limits we specify. The problem is that any random number generator will begin to repeat itself eventually. If we calculate each number in the sequence based only on the previous number in the sequence, as soon as we generate a number we’ve generated before, the sequence will repeat itself from that point on. The length of the sequence before it begins to repeat is called its period. Clearly we would like the period to be as long as possible.

Second, the sequence of numbers, although completely deterministic, should “look” random enough for our purposes. At the very least, the numbers should be uniformly distributed, so that we are just as likely to get 1236 as we are to get 8490792, or 52804, or whatever. In addition, the numbers should not be correlated: if we take two (or three, or four...) numbers from the sequence according to some specified rule (say, two consecutive numbers), those numbers should not be “related” to each other in any “obvious” way. All random number generators can be made to fail this test, but some fail more “obviously” than others.

Finally, it should be possible to implement the generator correctly and (hopefully) efficiently on a wide variety of machines and in a wide variety of languages, without having to depend on “tricks” which are peculiar to a particular machine or language. No matter what the computing environment, we should be able to get repeatable results.

Many random number generators which have been implemented on various systems, or recommended in various programming textbooks, have failed to meet one or more of these criteria. Below I will describe a so-called “minimal standard” random number generator which meets all three to some extent. It is almost certainly not the “best” random number generator available, but it is “good enough” for most purposes, and can serve as a benchmark for evaluating other random number generators.

The “Minimal Standard” Generator

There are many different schemes for producing uniformly random integers on a computer. One of the simplest was devised by D.H. Lehmer in 1951. After choosing two parameters, the modulus (m) and the multiplier (a), and the first integer, z1, in the sequence, we generates successive numbers in the sequence as follows:

z2   =   az1 mod m
z3   =   az2 mod m
...
zn   =   azn-1 mod m

Here “mod” means “take the remainder after dividing by,” as in Pascal and other programming languages. By the nature of the mod operation, the result always lies between 0 and m-1, inclusive.

It turns out that if we let m = 231 - 1, there are 534,600,000 different multipliers, a, which give us a generator with the maximum possible period, namely 231 - 1. This is the longest period which we can attain using 32-bit integers.

It looks as if we have an embarassingly rich choice of multipliers. Unfortunately, most of them cannot be used correctly on a computer with 32-bit integers, because they would cause the intermediate product anz to overflow. In 1979, G. L. Schrage devised an implementation of the linear congruential generator which is less susceptible to integer overflow than the simple-minded version described above. Even with Schrage’s method, nevertheless, it turns out that only 23,093 of the 534,600,000 full-period multipliers can be used in a correct implementation. To decide which of these multipliers are “best”, we must study in detail the sequences they produce.

As far as randomness is concerned, linear congruential random number generators have a well-known flaw. If we take consecutive pairs of numbers, say (z1, z2), (z3, z4), (z5, z6), etc., from a linear congruential sequence, and plot them on a graph, we find that they invariably lie on a series of parallel diagonal lines. Similarly, consecutive triplets lie on a series of parallel planes in three-dimensional space; consecutive quadruplets lie on parallel hyperplanes in four-dimensional space; and so on. Depending on how we use the numbers, these correlations can occasionally produce strange non-random results. The spacing between the planes varies according to the choice of a and m, and should be made as small as possible.

In 1969, Lewis, Goodman and Miller designed a 32-bit random number generator for the IBM System/360. They decided to use a linear congruential generator with m = 231 - 1 = 2147483647 and a = 75 = 16807. Since then, this generator has been implemented on a variety of systems, and has been dubbed a “minimal standard” random number generator.

The “minimal standard” generator does not give the smallest hyperplane spacing, though. That honor appears to be shared by the two generators which use the multipliers a = 48271 and a = 69621. Nevertheless, I will use the “minimal standard” in my implementation. The program listings indicate which parameters you need to change if you want to experiment with the “better” multipliers.

Before looking at how to implement the minimal standard generator, though, let’s look at what the Macintosh Toolbox already provides us.

The QuickDraw Random Number Generator

The Macintosh Toolbox actually contains two random number generators. The first one is part of QuickDraw. Its seed is a QuickDraw global variable named randSeed, a longint which is initialized to 1 by InitGraf at the start of a program. The function Random updates the seed and returns an integer in the range from -32767 to 32767. I know nothing about the properties of this generator, but clearly its period must fall far short of the period of a decent 32-bit generator, and so I will not consider it further.

The SANE Random Number Generator

The Toolbox’s second random number generator is part of the SANE floating-point arithmetic package:

function RandomX (var x : extended) : extended;

The parameter x is a variable which keeps track of the sequence of random integers (which I called z in the discussion above). It is commonly called the seed for the random number generator. At the beginning of a program, we must initialize this variable to a suitable integer value in the range [1, 231 - 2], and make sure that we preserve its value between calls to RandomX. Whenever we call RandomX, it updates the seed to a new value, and, in addition, returns that value as its result. Note that the seed and result are always integer numbers, even though they are stored in extended-precision floating-point variables.

According to the Apple Numerics Manual, RandomX is in fact a “minimal standard” random number generator, as described above.

Having to preserve the value of the seed between calls to RandomX is a nuisance if you use RandomX in several different procedures whose scopes do not all overlap. One quick and easy solution is to make the seed a global variable, which, however, offends structured-programming purists like me. A better solution (in MPW or Think Pascal, anyway) is to set up a unit which declares the seed as a global variable in the implementation section. This effectively “hides” the seed from the rest of your program, and prevents you from trashing it accidentally in some other routine.

Listing 2 shows an MPW Pascal unit, SANERandomNumbers.p, which carries out this idea. The procedure InitRandomSeed initializes the seed to a specified value, and the parameterless function RandomSeed returns its value for inspection. These are the only two ways that another routine can gain access to the seed. The parameterless function RandomReal updates the seed and returns an extended-precision real number, uniformly distributed in the range (0,1). The function RandomInteger updates the seed and returns a longint, uniformly distributed in the range [1, max], where max is specified as a parameter.

Listing 1 shows a simple MPW tool which I used to test this generator, and the other ones to be described in this article. It initializes the seed to 1, displays the first ten random numbers in the sequence, displays the value of the seed after 10,000 iterations, and finally counts how many random real numbers are generated per second. (Actually, it counts for one minute, then divides by 60, to get a reliable average.) The 10,000th seed tests whether the generator has been implemented correctly; the minimal standard generator must produce the value 1043618065. If this value does not appear, either the generator is not the minimal standard one, or else it was not implemented correctly.

Likning this program with SANERandomNumbers gave the following results:

The first ten random numbers are:

0.000007826369259426
0.131537788143166242
0.755605322195033227
0.458650131923449287
0.532767237412169221
0.218959186328090348
0.047044616214486126
0.678864716868318951
0.679296405836612175
0.934692895940827623
After 10000 iterations,
the random seed is 1043618065.

In one second, 1381 random numbers were generated.

The “Minimal Standard” Generator in Pascal

Having to go through the Toolbox trap dispatcher slows down the SANE random number generator significantly, which is a drawback if we need to generate lots of random numbers quickly. Since we know the algorithm, why not simply implement it directly in Pascal and bypass the trap dispatcher completely? This would seem to be trivial: simply replace calls to RandomX with the statement

seed := (a * seed) mod m;

The problem is that the product a * seed can easily overflow the limits of a 32-bit integer variable, causing incorrect results from that point on. G. L. Schrage came to the rescue in 1979 with an algorithm which splits the seed into its high and low 16-bit halves. Schrage’s algorithm is implemented in the unit PasRandomNumbers.p, given in Listing 3. It is gratifyingly quicker than the SANE implementation, generating 3049 random reals per second versus 1381, a speedup of 2.2x. (These timings, and all those that follow, were measured on an unmodified Mac SE/30, using the program given in Listing 1.)

Schrage’s method has two hidden “bottlenecks” when implemented on a 68000 processor (Mac Plus and SE). The first one involves the operations seed div q and seed mod q, which require dividing a 32-bit integer by another 32-bit integer. On the 68000, the DIVS instruction can only divide a 32-bit quantity by a 16-bit quantity! Therefore a compiler must perform these operations in software. MPW Pascal inserts calls to the routines %I_DIV4 and %I_MOD4, which are located in the library Paslib.o. Similarly, the products a * lo and r * hi must be carried out as 32-bit multiplications, via the routine %I_MUL4 in Paslib.o.

If we tell the compiler to generate 68020/68030 code (in MPW Pascal, by using the -mc68020 option), these operations can each be performed with a single machine instruction. DIVS.L divides two 32-bit numbers to produce a 32-bit quotient, DIVSL.L divides two 32-bit numbers to produce both a 32-bit quotient and a 32-bit remainder, and MULS.L multiplies two 32-bit numbers to produce a 32-bit result. Recompiling PasRandomNumbers.p with the -mc68020 option allows us to produce 4491 random numbers per second, a speed increase of 1.5x over the preceding version.

In generating random real numbers (function RandomReal), there is another bottleneck in the final step, which is a floating-point division operation. If we do not instruct the compiler otherwise, it generates calls to the SANE package for all floating-point operations, which allows the code to run on all Macs, but is rather slow. If we are running on a Mac with a 68020 or 68030 CPU, we probably have a 68881 or 68882 floating-point coprocessor (FPU) available as well. (Exceptions include the Mac LC, and some accelerated SEs and Pluses.) Therefore, if we’re using the -mc68020 option, we may as well use -mc68881 as well, to tell the compiler to use the FPU for floating-point arithmetic. Recompiling PasRandomNumbers.p yet again, with both options enabled, allows us to produce 15067 random numbers per second, a speed of increase of 3.6x over the previous version. [Note: we must also recompile the main program with the -mc68881 option, because the FPU expects extended variables to be stored in 10 bytes, whereas SANE expects extended variables to be stored in 8 bytes.]

The “Minimal Standard” Generatorin

Assembly Language

Examining the compiler’s output for the version with 68020/30 and FPU code, we can (as usual) spot things which could be improved in hand-coded assembly language. In procedure UpdateSeed, there are two things in particular. First, the compiler uses separate operations for seed div q and seed mod q (DIVS.L and TDIVS.L respectively), even though TDIVS.L produces both the quotient and remainder, in separate registers. Second, there is quite a bit of “unnecessary” shuffling of data between registers.

The obvious solution here is to recode the entire unit in assembly language, which is not a very difficult task. The results are shown in Listing 4. To use it with the existing test program, we follow these steps:

• Assemble RandomNumbers.a to produce an object file RandomNumbers.a.o;

• Create an interface file, RandomNumbers.p, by removing the implementation section from PasRandomNumbers.p;

• Compile Test.p, using the interface file RandomNumbers.p to define the interfaces to the random-number routines. (Actually, I simply recycled Test.p.o from the previous test, since the interface to the random number-routines hadn’t changed);

• Link Test.p.o with RandomNumbers.a.o.

Results: 18758 random numbers per second, a speed increase of 1.2x over the previous version, or a net increase of 13.6x over the original SANE implementation!

For Fortran Freaks Only

Since many scientific applications are still written in Fortran, I ought to point out that any of the units described above can be easily used in Language Systems Fortran under MPW. Listing 5 shows a Fortran version of the test program given in Listing 1. LS Fortran compiles this to a standalone application rather than a MPW tool, but otherwise the two programs work the same way.

The most important thing to note here is that standard Fortran passes all subroutine arguments by reference, like Pascal’s var parameters. However, two of our random-number routines (InitRandomSeed and RandomInteger) expect their arguments to be passed by value. LS Fortran has an extension which enables this, in the form of the %VAL function:

CALL INITRANDOMSEED (%VAL(1))

This passes the value 1 directly to the subroutine, rather than creating a temporary variable, storing 1 in it, and passing the address of this temporary variable.

References

Apple Computer, Inc. Inside Macintosh, Volume I. Addison-Wesley, 1985.

Apple Computer, Inc. Apple Numerics Manual, 2nd ed. Addison-Wesley, 1988.

Stephen K. Park and Keith W. Miller. “Random Number Generators: Good Ones Are Hard to Find”, Communications of the ACM, vol. 31, p. 1192 (October 1988).

Steve Williams. 68030 Assembly Language Reference. Addison-Wesley, 1989.

Listing 1: Test.p
program TestRandomNumbers (input, output);

{  This program tests the random number generator imple-
   mented by the unit RandomNumbers.  If the generator is
   the "minimal standard generator" (multiplicative linear
   congruential algorithm with modulus 2147483647 and mul-
   tiplier 16807), and the initial seed is 1, the value of
   the seed after 10000 iterations should be 1043618065.  
   If this value is not obtained, then the generator either
   is not a "minimal standard" generator, or has failed due
   to integer overflow at some point.

   Under the Macintosh Programmer's Workshop, this program
   can be compiled and run as an MPW Tool.  Under other
   development systems, it may need some modification.

                           Jon Bell
                 Dept. of Physics & Comp. Sci.
                     Presbyterian College
                       Clinton SC 29325
                        CIS #70441,353                     }

USES RandomNumbers, Events;

var
k : longint;
x : extended;
stopTime : longint;

begin
{  First verify that the generator is working correctly.  }
InitRandomSeed (1);
writeln;
writeln ('The first ten random numbers are:');
writeln;
for k := 1 to 10 do
    writeln (RandomReal:20:18);
for k := 11 to 10000 do
    x := RandomReal;
writeln;
writeln ('After 10000 iterations,');
writeln ('the random seed is ', RandomSeed:1, '.');
writeln;
{  Now let's find out how fast the generator is. }
k := 0;
stopTime := TickCount + 3600;
while TickCount <= stopTime do
    begin
    x := RandomReal;
    k := k + 1
    end;
writeln ('In one second, ', trunc(k/60):1, 
         ' random numbers were generated.');
writeln
end.
Listing 2: SANERandomNumbers.p
UNIT RandomNumbers;

{  This unit provides a convenient interface to the SANE
   random number generator. }

INTERFACE

USES Sane;

procedure InitRandomSeed (newSeed : longint);

{  Initializes the random number seed to "newSeed".  You
   must call this procedure once, at the beginning of your
   program, before you use any of the following functions.
   As far as randomness is concerned, it makes no difference
   what value you use for "newSeed", so long as it isn't
   zero.  Using different seeds merely gives you different
   sequences of "random" numbers.  Using the same seed each
   time you run the program gives you the same sequence of
   "random" numbers each time, which may be useful for
   debugging. }

function RandomSeed : longint;

{   Returns the current value of the random number seed.   }

function RandomReal : extended;

{  Returns a real number, "randomly" selected from the
   interval [0,1].                                         }

function RandomInteger (max : longint) : longint;

{  Returns an integer, "randomly" selected from the
   interval [1,max].                                       }

IMPLEMENTATION

const
m = 2147483647;

var
seed : extended;

procedure InitRandomSeed (newSeed : longint);

begin
seed := newSeed
end;

function RandomSeed : longint;

begin
RandomSeed := round(seed)
end;

function RandomReal : extended;

begin
RandomReal := RandomX (seed) / m;
end;

function RandomInteger (max : longint) : longint;

var
ignore : extended;

begin
ignore := RandomX (seed);
RandomInteger := (round(seed) mod max) + 1
end;

END.
Listing 3: PasRandomNumbers.p
UNIT RandomNumbers;

{  This unit implements a "minimal standard" random number 
   generator. }

INTERFACE

procedure InitRandomSeed (newSeed : longint);

function RandomSeed : longint;

function RandomReal : extended;

function RandomInteger (max : longint) : longint;

IMPLEMENTATION

const
a = 16807;
m = 2147483647;
q = 127773;        { m div a }
r = 2836;          { m mod a }

{  NOTE:  Other possible values for these constants, which
   may give "better" results, are:

      a = 48271,  q = 44488,  r = 3399  or
      a = 69621,  q = 30845,  r = 23902,

   keeping m = 2147483647.                                 }

var
seed : longint;

procedure InitRandomSeed (newSeed : longint);

begin
seed := newSeed
end;

function RandomSeed : longint;

begin
RandomSeed := seed
end;

{private} procedure UpdateSeed;

var
lo, hi, test : longint;

begin
hi := seed div q;
lo := seed mod q;
test := a * lo - r * hi;
if test > 0 then
    seed := test
else
    seed := test + m
end;

function RandomReal : extended;

begin
UpdateSeed;
RandomReal := seed / m
end;

function RandomInteger (max : longint) : longint;

begin
UpdateSeed;
RandomInteger := (seed mod max) + 1
end;

END.
Listing 4: RandomNumbers.a
 MACHINE MC68020
         MC68881

;-----------------------------------------------------------
;  WARNING:  These routines require a 68020 or 68030 CPU,
;  and a 68881 or 68882 floating-point coprocessor!!!
;-----------------------------------------------------------
;  Numerical constants used in the seed-updating algorithm.

a           EQU         16807       ; multiplier
m           EQU         2147483647  ; modulus
q           EQU         127773      ; m div a
r           EQU         2836        ; m mod a

;-----------------------------------------------------------
;  The random number seed (a 32-bit integer) is a global
;  variable whose value is preserved between calls to
;  the random number functions.

Seed        DS.L  1

InitRandomSeed    PROC        EXPORT

;- - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
;  Initializes the random number seed to a specified value.
;
;  Pascal interface:
;      procedure InitRandomSeed (newSeed : longint);
;- - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

newSeed     EQU         8
ParamSize   EQU         4
LocalSize   EQU         0

            LINK        A6, #LocalSize
            MOVE.L      newSeed(A6), seed(A5)
            UNLK        A6
            RTD         #ParamSize

            DC.B        'INITRANDOMSEED'

RandomSeed        FUNC        EXPORT

;- - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
;  Returns the current value of the random number seed.
;
;  Pascal interface:
;      function RandomSeed : longint;
;- - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

result      EQU         8
LocalSize   EQU         0

            LINK        A6, #LocalSize
            MOVE.L      Seed(A5), result(A6)
            UNLK        A6
            RTS

            DC.B        'RANDOMSEED'

UpdateSeed        PROC

;- - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
;  Applies the Lehmer / Lewis-Goodman-Miller / Schrage
;  algorithm to update the random number seed.  This
;  procedure is not to be used outside this unit, therefore
;  it is not EXPORTed.
;
;  It stores the new seed in the global variable "Seed",
;  and leaves a copy in register D1 for use by the calling
;  routine.
;- - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

hi          EQU         D0
lo          EQU         D1

            MOVE.L      Seed(A5), hi
            TDIVS.L     #q, lo:hi
            MULS.L      #a, lo
            MULS.L      #r, hi
            SUB.L       hi, lo            
            BGT.S       StoreNewSeed
            ADD.L       #m, lo            ; if lo <= 0

StoreNewSeed

            MOVE.L      lo, Seed(A5)
            RTS

            DC.B        'UPDATESEED'

RandomReal        FUNC        EXPORT

;- - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
;  Updates the random number seed and returns a real number
;  in the range (0,1).
;
;  Pascal interface:
;      function RandomReal : extended;
;- - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

quotient    EQU         FP0
newSeed     EQU         D1
result      EQU         8
LocalSize   EQU         0

            LINK        A6, #LocalSize
            JSR         UpdateSeed
            FMOVE.L     newSeed, quotient
            FDIV.L      #m, quotient
            FMOVE.X     quotient, ([result,A6])
            UNLK        A6
            RTS

            DC.B        'RANDOMREAL'

RandomInteger     FUNC        EXPORT

;- - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
;  Updates the random number seed and returns a longint
;  in the range [1,max].
;
;  Pascal interface:
;      function RandomInteger (max : longint) : longint;
;- - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

dividend    EQU         D1
divisor     EQU         D0
result      EQU         8
max         EQU         12
LocalSize   EQU         0
ParamSize   EQU         4

            LINK        A6, #LocalSize
            JSR         UpdateSeed

            ; The new seed is now in "dividend."

            TDIVS.L     max(A6), divisor:dividend

            ; "Divisor" now contains the remainder.

            ADDQ.L      #1, divisor
            MOVE.L      divisor, result(A6)
            UNLK        A6
            RTD         #ParamSize

            DC.B        'RANDOMINTEGER'

            END
Listing 5: TestF77.f
C-----------------------------------------------------------
C  This program demonstrates the use of a hand-coded 
C  random-number generator in a Language Systems Fortran
C  program.  It can be linked with any of the following
C  object files:
C
C  SANERandomNumbers.p.o (SANE's random number generator)
C  PasRandomNumbers.p.o (hand-coded in Pascal)
C  RandomNumbers.a.o (hand-coded in assembly language)
C-----------------------------------------------------------
!!M Inlines.f
      IMPLICIT NONE
      INTEGER K, STOPTIME, RANDOMSEED
      EXTENDED X, RANDOMREAL
      EXTERNAL RANDOMREAL, RANDOMSEED
      CALL INITRANDOMSEED (%VAL(1))
      PRINT *
      PRINT *, 'The first ten random numbers are:'
      PRINT *
      DO K = 1, 10
         PRINT '(1X, F20.18)', RANDOMREAL()
      END DO
      DO K = 11, 10000
         X = RANDOMREAL()
      END DO
      PRINT *
      PRINT *, 'After 10000 iterations,'
      PRINT *, 'the random seed is ', RANDOMSEED(), '.'
      PRINT *
      K = 0
      STOPTIME = TICKCOUNT() + 3600
      DO WHILE (TICKCOUNT .LE. STOPTIME)
         X = RANDOMREAL()
         K = K + 1
      END DO
      PRINT *, 'In one second, ', K/60, 
     &         ' random numbers were generated.'
      PRINT *
      END

 
AAPL
$97.67
Apple Inc.
+0.64
MSFT
$44.50
Microsoft Corpora
+0.10
GOOG
$589.02
Google Inc.
-4.33

MacTech Search:
Community Search:

Software Updates via MacUpdate

TinkerTool 5.3 - Expanded preference set...
TinkerTool is an application that gives you access to additional preference settings Apple has built into Mac OS X. This allows to activate hidden features in the operating system and in some of the... Read more
Audio Hijack Pro 2.11.0 - Record and enh...
Audio Hijack Pro drastically changes the way you use audio on your computer, giving you the freedom to listen to audio when you want and how you want. Record and enhance any audio with Audio Hijack... Read more
Intermission 1.1.1 - Pause and rewind li...
Intermission allows you to pause and rewind live audio from any application on your Mac. Intermission will buffer up to 3 hours of audio, allowing users to skip through any assortment of audio... Read more
Autopano Giga 3.6 - Stitch multiple imag...
Autopano Giga allows you to stitch 2, 20, or 2,000 images. Version 3.0 integrates impressive new features that will definitely make you adopt Autopano Pro or Autopano Giga: Choose between 9... Read more
Airfoil 4.8.7 - Send audio from any app...
Airfoil allows you to send any audio to AirPort Express units, Apple TVs, and even other Macs and PCs, all in sync! It's your audio - everywhere. With Airfoil you can take audio from any... Read more
Microsoft Remote Desktop 8.0.8 - Connect...
With Microsoft Remote Desktop, you can connect to a remote PC and your work resources from almost anywhere. Experience the power of Windows with RemoteFX in a Remote Desktop client designed to help... Read more
xACT 2.30 - Audio compression toolkit. (...
xACT stands for X Aaudio Compression Toolkit, an application that encodes and decodes FLAC, SHN, Monkey’s Audio, TTA, Wavpack, and Apple Lossless files. It also can encode these formats to MP3, AAC... Read more
Firefox 31.0 - Fast, safe Web browser. (...
Firefox for Mac offers a fast, safe Web browsing experience. Browse quickly, securely, and effortlessly. With its industry-leading features, Firefox is the choice of Web development professionals... Read more
Little Snitch 3.3.3 - Alerts you to outg...
Little Snitch gives you control over your private outgoing data. Track background activityAs soon as your computer connects to the Internet, applications often have permission to send any... Read more
Thunderbird 31.0 - Email client from Moz...
As of July 2012, Thunderbird has transitioned to a new governance model, with new features being developed by the broader free software and open source community, and security fixes and improvements... Read more

Latest Forum Discussions

See All

Jacob Jones and the Bigfoot Mystery : Ep...
Jacob Jones and the Bigfoot Mystery : Episode 2 1.0 Device: iOS Universal Category: Games Price: $1.99, Version: 1.0 (iTunes) Description: Jacob Jones is back in Episode 2 of one of Apples 'Best of 2013' games and an App Store... | Read more »
New Trailer For Outcast Odyssey, A New K...
New Trailer For Outcast Odyssey, A New Kind of Card Battler Posted by Jennifer Allen on July 25th, 2014 [ permalink ] Out this Fall is a new kind of card battle game: Outcast Odyssey. | Read more »
Garfield: Survival of the Fattest Coming...
Garfield: Survival of the Fattest Coming to iOS this Fall Posted by Jennifer Allen on July 25th, 2014 [ permalink ] Who loves lasagna? Me. Also everyone’s favorite grumpy fat cat, Garfield. | Read more »
Happy Flock Review
Happy Flock Review By Andrew Fisher on July 25th, 2014 Our Rating: :: HERD IT ALL BEFOREUniversal App - Designed for iPhone and iPad Underneath the gloss of Happy Flock’s visuals is a game of very little substance. It’s cute, but... | Read more »
Square Register Updates Adds Offline Pay...
Square Register Updates Adds Offline Payments Posted by Ellis Spice on July 25th, 2014 [ permalink ] Universal App - Designed for iPhone and iPad | Read more »
Looking For Group – Hearthstone’s Curse...
For the first time since its release (which has thankfully been a much shorter window for iPad players than their PC counterparts), Blizzard’s wildly successful Hearthstone: Heroes of Warcraft CCG is sporting some brand new content: the single... | Read more »
Poptile Review
Poptile Review By Jennifer Allen on July 25th, 2014 Our Rating: :: SIMPLY FUNUniversal App - Designed for iPhone and iPad Simple yet a little bit glorious, Poptile is a satisfying entertaining puzzle game with oodles of the ‘one... | Read more »
Modern Combat 5: Blackout Review
Modern Combat 5: Blackout Review By Brittany Vincent on July 25th, 2014 Our Rating: :: LESS QQ, MORE PEW PEWUniversal App - Designed for iPhone and iPad The fifth entry into the blockbuster Modern Combat series is what mobile... | Read more »
Watch and Share Mobile Gameplay Videos W...
Watch and Share Mobile Gameplay Videos With Kamcord Posted by Jennifer Allen on July 25th, 2014 [ permalink ] iPhone App - Designed for the iPhone, compatible with the iPad | Read more »
THE KING OF FIGHTERS '98 (Games)
THE KING OF FIGHTERS '98 1.0 Device: iOS Universal Category: Games Price: $3.99, Version: 1.0 (iTunes) Description: Series’ masterpiece “KOF ’98” finally joins the battle on iPhone! FEATURES:■ The best game balance in the “KOF”... | Read more »

Price Scanner via MacPrices.net

iMacs on sale for $150 off MSRP, $250 off for...
Best Buy has iMacs on sale for up to $160 off MSRP for a limited time. Choose free home shipping or free instant local store pickup (if available). Prices are valid for online orders only, in-store... Read more
Mac minis on sale for $100 off MSRP, starting...
Best Buy has Mac minis on sale for $100 off MSRP. Choose free shipping or free instant local store pickup. Prices are for online orders only, in-store prices may vary: 2.5GHz Mac mini: $499.99 2.3GHz... Read more
Global Tablet Market Grows 11% in Q2/14 Notwi...
Worldwide tablet sales grew 11.0 percent year over year in the second quarter of 2014, with shipments reaching 49.3 million units according to preliminary data from the International Data Corporation... Read more
New iPhone 6 Models to Have Staggered Release...
Digitimes’ Cage Chao and Steve Shen report that according to unnamed sources in Apple’s upstream iPhone supply chain, the new 5.5-inch iPhone will be released several months later than the new 4.7-... Read more
New iOS App Helps People Feel Good About thei...
Mobile shoppers looking for big savings at their favorite stores can turn to the Goodshop app, a new iOS app with the latest coupons and deals at more than 5,000 online stores. In addition to being a... Read more
Save on 5th generation refurbished iPod touch...
The Apple Store has Apple Certified Refurbished 5th generation iPod touches available starting at $149. Apple’s one-year warranty is included with each model, and shipping is free. Many, but not all... Read more
What Should Apple’s Next MacBook Priority Be;...
Stabley Times’ Phil Moore says that after expanding its iMac lineup with a new low end model, Apple’s next Mac hardware decision will be how it wants to approach expanding its MacBook lineup as well... Read more
ArtRage For iPhone Painting App Free During C...
ArtRage for iPhone is currently being offered for free (regularly $1.99) during Comic-Con San Diego #SDCC, July 24-27, in celebration of the upcoming ArtRage 4.5 and other 64-bit versions of the... Read more
With The Apple/IBM Alliance, Is The iPad Now...
Almost since the iPad was rolled out in 2010, and especially after Apple made a 128 GB storage configuration available in 2012, there’s been debate over whether the iPad is a serious tool for... Read more
MacBook Airs on sale starting at $799, free s...
B&H Photo has the new 2014 MacBook Airs on sale for up to $100 off MSRP for a limited time. Shipping is free, and B&H charges NY sales tax only. They also include free copies of Parallels... Read more

Jobs Board

*Apple* Solutions Consultant (ASC) - Apple (...
**Job Summary** The ASC is an Apple employee who serves as an Apple brand ambassador and influencer in a Reseller's store. The ASC's role is to grow Apple Read more
*Apple* Solutions Consultant (ASC) - Apple (...
**Job Summary** The ASC is an Apple employee who serves as an Apple brand ambassador and influencer in a Reseller's store. The ASC's role is to grow Apple Read more
Sr. Project Manager for *Apple* Campus 2 -...
…the design and construction of one building or building components of the New Apple Campus located in Cupertino, CA. They will provide project management oversight for Read more
WW Sales Program Manager, *Apple* Online St...
**Job Summary** Imagine what you could do here. At Apple , great ideas have a way of becoming great products, services, and customer experiences very quickly. Bring Read more
*Apple* Solutions Consultant (ASC) - Apple (...
**Job Summary** The ASC is an Apple employee who serves as an Apple brand ambassador and influencer in a Reseller's store. The ASC's role is to grow Apple Read more
All contents are Copyright 1984-2011 by Xplain Corporation. All rights reserved. Theme designed by Icreon.