TweetFollow Us on Twitter

Line Art Rotation
Volume Number:6
Issue Number:5
Column Tag:C Forum

Related Info: Quickdraw

Line Art Rotation

By Jeffrey J. Martin, College Station, TX

Note: Source code files accompanying article are located on MacTech CD-ROM or source code disks.

[ Jeff Martin is a student at Texas A&M University working on his bachelors in computer science. He has been a personal computer technician at the campus computer center, a system operator on the campus mainframes, and now freelances graphic work for various professors. He hopes that one day a motion picture computer animation company will take him away from all of this.]

This being my first stab at an article, I will try to keep it short while leaving in all of the essential vitamins and nutrients. In that spirit my user interface will bring back nostalgic thoughts to those past Apple II and TRS-80 users, and any PC people will feel right at home.

The essence of this program is to show how a seemingly complicated transformation and rotation can be applied to an array of points that form any arbitrary line art.

Of course to form a transformation on the array of points (e.g. offset the points to the left) we simply add some delta x(dx) and/or delta y(dy) to every point:

/* 1 */

for(i=0;i<numofpoints;i++)
  {points[i].h+=dx;points[i].v+=dy;}

Now rotation is a little harder, but to spare you the heartache, it can be shown that for rotation about the origin(fig 1):

So the trick of rotating about some arbitrary point is to first transform that pivot point to be the origin(transforming every other point by the save amount). Second, perform the rotation of all points by the angle theta. Third, transform the pivot back(once again transforming all other points as well).

Now all of this may seem to be a costly maneuver, but the fact is that we can roll all of these into a single matrix multiplication, using homogeneous coordinates:

where

form one matrix.

Fig. 2 shows the multiplication of a homogeneous coordinate and a translation matrix. Please verify that this results in (X+dx,Y+dy) (if unfamiliar with matrix multiplication see mult procedure in program).

Similarly figure 3 shows multiplication with a rotation matrix - an exact translation of our rotation equations in matix form.

So the translation, rotation, and inverse translation matrices are as shown in figure 4. Which forms one matrix to be multiplied times the vertices.

The following program allows the user to enter in points with the mouse until a key is pressed. At that time the user then uses the mouse to enter a pivot point. The program uses the pivot point to form the translation and inverse translation matrices(from the x and y coordinates). The program then forms a rotation matrix of a constant rotation angle(Π/20) and calculates the new vertices based on the values of the old ones. The program undraws the old lines and redraws the new and calculates again until the object has rotated through a shift of 4Π(2 rotations). press the mouse button again to exit program.

Once again, I point out that the code does not follow the user guidelines, but then it is not exactly meant to be an application in itself. Build your own program around it and see what you can do. One suggestion is to cancel the erasing of the object to achieve spirograph patterns. I think too many of the submissions to MacTutor contain an interface that we all know too well, and for those just interested in the algorithms it can mean a lot of extra work. Have Fun.

/* 2 */

#include<math.h>
int errno;

void mult();  /*out matrix mult proc*/
/*floating value of points to avoid roundoff*/
typedef struct rec {float h,v;} points;
main()
{
  int buttondown=0, /*flagg for mouse       */
      n=-1,         /*number of vertices    */
      keypressed=0, /*flagg for key         */
      flip=0,       /*to allow alternating  */
      flop=1,       /*vertices to be drawn  */
      i;            /*array counter         */
  float x,          /*angle counter         */
      T[3][3],      /*translation matrix    */
      Tinv[3][3],   /*translate back        */
      Rz[3][3],     /*rotate matrix         */
      c[3][3],      /*result of T&R         */
      d[3][3];      /*result of c&Tinv      */
  long curtick,     /*for delay loop        */
       lastick;     /*for delay loop        */
  EventRecord nextevent;/*to get mouse&key  */
  Point origin,dummy;   /*pivot and locator */
  points points[2][30];/*vertices(don’t draw Eiffel tower)  */
  WindowPtr scnwdw;    /*window pointer     */
  Rect      scnrect;   /*window rect        */
/*************************************
*  Set things up                     *
*************************************/
InitGraf(&thePort);
InitFonts();
InitWindows();
InitDialogs((Ptr)0L);
TEInit();
InitMenus();
scnrect=screenBits.bounds;
InsetRect(&scnrect,10,25);
scnwdw=NewWindow(0,&scnrect,”\p”,TRUE,dBoxProc, -1,FALSE,0);
SetPort(scnwdw);
InitCursor();
  
/*************************************
*  Get points                        *
*************************************/
  while(!keypressed)
  {
    buttondown=0;
    SystemTask();
    if(GetNextEvent(-1,&nextevent))
      if(nextevent.what==mouseDown) buttondown=1;
      else if(nextevent.what==keyDown) keypressed=1;
    if(buttondown) /*get a point and draw it*/ 
    {
      GetMouse(&dummy);
      points[0][++n].h=dummy.h;points[0][n].v=dummy.v; 
      if(n==0)
        MoveTo((int)points[0][0].h,(int)points[0][0].v);
      LineTo((int)points[0][n].h,(int)points[0][n].v);
    } /*end of get point*/
  }  /*end of get points*/
  
/*************************************
*  Get origin                        *
*************************************/
  buttondown=0;
  do
  {
    SystemTask();
    if(GetNextEvent(-1,&nextevent))
      if(nextevent.what==mouseDown) buttondown=1;
  }while(!buttondown);
  GetMouse(&origin);
  
/*************************************
*  Make translation matrix           *
*************************************/
  T[0][0]=1;T[0][1]=0;T[0][2]=0;
  T[1][0]=0;T[1][1]=1;T[1][2]=0;
  T[2][0]=-origin.h;T[2][1]=-origin.v;T[2][2]=1;
  Tinv[0][0]=1;Tinv[0][1]=0;Tinv[0][2]=0;
  Tinv[1][0]=0;Tinv[1][1]=1;Tinv[1][2]=0;
  Tinv[2][0]=origin.h;Tinv[2][1]=origin.v;Tinv[2][2]=1;
  Rz[0][2]=0;Rz[1][2]=0;Rz[2][0]=0;Rz[2][1]=0;Rz[2][2]=1;
/*************************************
*  Rotate                            *
*************************************/
  x=0.157;  /*rotation angle - about 9 degrees*/
  Rz[0][0]=Rz[1][1]=cos(x);Rz[0][1]=sin(x);
  Rz[1][0]=-Rz[0][1];
  mult(T,Rz,c);
  mult(c,Tinv,d);
  for(x=.157;x<=12.56;x+=0.157)
  {
    flip++;flip=flip%2;flop++;flop=flop%2;
    for(i=0;i<=n;i++)
    {
      points[flip][i].h=points[flop][i].h*d[0][0]
                    +points[flop][i].v*d[1][0]+1*d[2][0];
      points[flip][i].v=points[flop][i].h*d[0][1]
                    +points[flop][i].v*d[1][1]+1*d[2][1];
    }  /*end update points*/
    ForeColor(whiteColor);  /*undraw flop*/
    lastick=TickCount(); /*time delay for retace to improve animation*/
    do{curtick=TickCount();} while(lastick+1>curtick);
    MoveTo((int)points[flop][0].h,(int)points[flop][0].v);
    for(i=1;i<=n;i++) LineTo((int)points[flop][i].h,(int)points[flop][i].v);
    ForeColor(blackColor);  /*draw flip*/
    lastick=TickCount();    
    do{curtick=TickCount();} while(lastick+1>curtick);
    MoveTo((int)points[flip][0].h,(int)points[flip][0].v);
    for(i=1;i<=n;i++) LineTo((int)points[flip][i].h,(int)points[flip][i].v);
  }  /*end rotate*/
    
/*************************************
*  End everything                    *
*************************************/
  buttondown=0;
  do
  {
    SystemTask();
    if(GetNextEvent(-1,&nextevent))
      if(nextevent.what==mouseDown) buttondown=1;
  }while(!buttondown);
DisposeWindow(scnwdw);
}  /*program end*/

void mult(A,B,C)
  float A[][3],B[][3],C[][3];
{
  int i,j,k;
  
  for(i=0;i<=2;i++)
    for(j=0;j<=2;j++)
    {
      C[i][j]=0.0;
      for(k=0;k<=2;k++)
        C[i][j]+=A[i][k]*B[k][j];
    }
}  /*end mult*/

3D Modeling & Rotation

The main thrust of this exercise is to extend the line art rotation into 3D object rotation using the same techniques as the 2D, while also implementing parallel projection as our means of 3D modeling.

The first part of the exercise requires that we define an object in a structure that we can easily manipulate. Using a cube for simplicity, we will start by defining the center of the cube and an array of vertices, vertex[2][# of pts] (see GetPoints in program). Referring to fig. 1, each vertex corresponds to a corner of the cube. The second dimension of the array is to provide a destination for transformed vertices. Having both sets will allow us to undraw and immediately redraw the shape - minimizing the hangtime between redrawing allows for smoother animation.

Figure 1.

Next let us construct an array of lines connecting these vertices. Each element of the line array refers to the index of the beginning and ending vertex of that particular line. This array will never change. Think of when you roll a die - the edges still go between the same corners, but the position of the corners has changed.

The next construct is the translation and inverse translation matrixes. As in 2D rotation, we must transform our local center of rotation to the origin, rotate, then translate back.

The idea of homogeneous coordinates was introduced in the last article and is now extended into 3D by adding a fourth term. Fig. 2 shows our homogeneous coordinate as a 1x4 matrix times our translation matrix(4x4). The purpose of this multiplication is to add a dx, dy and dz to every point, in order to center our vertices about the origin. Please verify that the matrix multiplication results in X+dx,Y+dy,Z+dz (if unfamiliar with matrix multiplication see matmult in program).

Figure 2.

Now we once again reach the challenging concept of rotation. Although similar to 2D, we now have the option of rotating around the X and Y as well as the Z-axis.

The simplest, rotation about the z-axis, is just as in our 2D rotations, because none of the z-values change. If this is hard to understand, think about this: if you look straight down a pencil with the point a foot away from you and spin it a half turn, the point is still a foot away, but the writing is now on the other side. The equations for the changes in the X and Y are as follows:

  Xnew=XoldCos(Ø) + YoldSin(Ø)
  Ynew=-XoldSin(Ø) + YoldCos(Ø)

The 3D representation in matrix form with a vertex multiplication is in fig. 3. And the proof of all this is in that dusty old trigonometry book up on your shelf. (once again direct multiplication of fig. 3 will yield the preceding equations).

Figure 3.

Similarly rotation about the X axis changes none of the x-values, and rotation about Y changes none of the y-values. The transformation equations are given as follows:

Rotation about the X:

 Ynew=YoldCos(Ø) + ZoldSin(Ø)
 Znew=-YoldSin(Ø)+ZoldCos(Ø)

Rotation about the Y:

   Xnew=XoldCos(Ø) - ZoldSin(Ø)
 Znew=XoldSin(Ø) + ZoldCos(Ø)

The corresponding matrices are shown in figures 4 and 5.

Figure 4.

Figure 5.

Once again we will construct a new array of vertices from a single transformation matrix formed from the translation to the origin, rotation about an axis, and translation back. Therefore creating the new vertices:

 Vnew=Vold*T*Rz*Tinv

or after combining T*Rz*Tinv into a single Master Transformation(MT):

 Vnew=Vold*MT

Finally the trick of parallel projection when viewing an object from down the Z axis is that all you have to do is draw lines between the x,y components of the points (ignore the z). For those mathematically inclined, you will realize that this is just the projection of those 3D lines on the X-Y plane (see fig. 6).

Figure 6.

The particular stretch of code I’ve included implements this transformation on the cube for rotation along the X and Y axes of the center of the cube using the arrow keys. The successive transformations of the vertices are loaded into the flip of the array (vertex[flip][pnt.#]). Then the flop is undrawn while the flip is drawn as mentioned previously and flip and flop are changed to their corresponding 0 or 1.

After launching, the application immediately draws the cube and then rotates it in response to the arrows. The program exits after a single mouse click.

Once again the code is not intended to match up to the guidelines - but is intended for use with other code or simple instructional purposes. It is concise as possible and should be easy to type in. A quick change to numofpts and numoflines as well as your own vertex and and line definitions would allow you to spin your favorite initial into its most flattering orientation.

The inspiration for this program came from the floating couch problem presented in Dirk Gently’s Holistic Detective Agency, by Douglas Adams. If enough interest is shown, perhaps a future article would include hidden line removal and color rendering techniques. After all, it was a red couch.

One last suggestion for those truly interested is to pull your shape definition in from a 3D cad program that will export in text format, such as Super 3D or AutoCad.

Anyway, on with the show

/* 3 */

#include<math.h>
/* Following is inline macro for drawing lines */
#define viewpts(s) {for(i=0;i<numoflns;i++)  \
                     { MoveTo((int)vertex[s][line[i].v1].x,  \
                       (int)vertex[s][line[i].v1].y); \
                       LineTo((int)vertex[s][line[i].v2].x, \
                       (int)vertex[s][line[i].v2].y); }}  
 
#define numofpts 8 /* A cube has eight vertices */
#define numoflns 12    /* lines for every face. */

/* the following are the data structs for vertices and lines*/ typedef 
struct rec1 {float x,y,z;} point3d;
typedef struct rec2 {int v1,v2;} edge;
void mult();/* Matrices multiplication */

main()
{
  point3d vertex[2][8], /* array of 3D pts   */
          center;/* centroid of cube */
  edge    line[12];/* array of lines */
  int     buttondown=0, /* mousedwn flag(for prog end)*/
          keypressed=0,       /* keydwn flg(for arrows)     */
          flip=0,             /* This is index for vertex so*/
          flop=1,             /* can undraw flip & draw flop*/
          i,                  /* counter           */
          rot=0; /* Flag for direction of rotat*/
  long    low;   /* low word of keydwn message */
  float   a,/* Particular angle of rotat     */
          R[4][4], /* Rotation matrix*/
          c[4][4], /* Product of trans & rot mats*/
          d[4][4], /* Product of c and inv trans */
          T[4][4],Tinv[4][4], /* Translation & inv trans    */
          x=0.087266;/* Algle of rot in rad  */
  EventRecord nextevent;
  KeyMap    thekeys;
  WindowPtr scnwdw;
  Rect      scnrect;
/*********************************************
*  Set things up *
*********************************************/
InitGraf(&thePort);
InitFonts();
FlushEvents(everyEvent,0);
InitWindows();
InitMenus();
TEInit();
InitDialogs(0);
InitCursor();
scnrect=screenBits.bounds;
InsetRect(&scnrect,50,50);
scnwdw=NewWindow(0,&scnrect,”\p”,TRUE,dBoxProc,-1,FALSE,0);
  
/*********************************************
*  Get points. Arbitrary cube.*
*********************************************/
center.x=300;center.y=200;center.z=120;
vertex[0][0].x=280;vertex[0][0].y=220;vertex[0][0].z=100;
vertex[0][1].x=320;vertex[0][1].y=220;vertex[0][1].z=100;
vertex[0][2].x=320;vertex[0][2].y=180;vertex[0][2].z=100;
vertex[0][3].x=280;vertex[0][3].y=180;vertex[0][3].z=100;
vertex[0][4].x=280;vertex[0][4].y=220;vertex[0][4].z=140;
vertex[0][5].x=320;vertex[0][5].y=220;vertex[0][5].z=140;
vertex[0][6].x=320;vertex[0][6].y=180;vertex[0][6].z=140;
vertex[0][7].x=280;vertex[0][7].y=180;vertex[0][7].z=140;
line[0].v1=0;line[0].v2=1;
line[1].v1=1;line[1].v2=2;
line[2].v1=2;line[2].v2=3;
line[3].v1=3;line[3].v2=0;
line[4].v1=0;line[4].v2=4;
line[5].v1=1;line[5].v2=5;
line[6].v1=2;line[6].v2=6;
line[7].v1=3;line[7].v2=7;
line[8].v1=4;line[8].v2=5;
line[9].v1=5;line[9].v2=6;
line[10].v1=6;line[10].v2=7;
line[11].v1=7;line[11].v2=4;
T[0][0]=1;T[0][1]=0;T[0][2]=0;T[0][3]=0;
T[1][0]=0;T[1][1]=1;T[1][2]=0;T[1][3]=0;
T[2][0]=0;T[2][1]=0;T[2][2]=1;T[2][3]=0;
T[3][0]=-center.x;T[3][1]=-center.y;T[3][2]=-center.z;T[3][3]=1;
Tinv[0][0]=1;Tinv[0][1]=0;Tinv[0][2]=0;Tinv[0][3]=0;
Tinv[1][0]=0;Tinv[1][1]=1;Tinv[1][2]=0;Tinv[1][3]=0;
Tinv[2][0]=0;Tinv[2][1]=0;Tinv[2][2]=1;Tinv[2][3]=0;
Tinv[3][0]=center.x;Tinv[3][1]=center.y;Tinv[3][2]=center.z;Tinv[3][3]=1;

/*********************************************
*  Rotate *
*********************************************/
viewpts(flip);   /* This draws first set of pts*/
  while(!buttondown) /* Mini event loop*/
  {
    keypressed=0;
    SystemTask();
    if(GetNextEvent(-1,&nextevent))
      if(nextevent.what==mouseDown) buttondown=1;
      else if(nextevent.what==keyDown) keypressed=1;
      else if(nextevent.what==autoKey) keypressed=1;
    if(keypressed) /* Find out which one     */
    {
      keypressed=0;
      low=LoWord(nextevent.message);
      low=BitShift(low,-8);
      if(low==126) {rot=1;a=-x;} /* Set dir flag and-*/
      if(low==124) {rot=2;a=-x;} /* angle(pos or neg */
      if(low==125) {rot=3;a=x;}
      if(low==123) {rot=4;a=x;}
      switch(rot)
      {
        case 1:/* Both of these are rot about the X axis */
        case 3: R[0][0]=1;R[0][1]=0;R[0][2]=0;R[0][3]=0;
 R[1][0]=0;R[1][1]=cos(a);R[1][2]=sin(a);R[1][3]=0;
 R[2][0]=0;R[2][1]=-sin(a);R[2][2]=cos(a);R[2][3]=0;
 R[3][0]=0;R[3][1]=0;R[3][2]=0;R[3][3]=1;break;
        case 2:/* Both of these are rot about the Y axis */
        case 4: 
 R[0][0]=cos(a);
 R[0][1]=0;R[0][2]=-sin(a);R[0][3]=0;
       R[1][0]=0;R[1][1]=1;R[1][2]=0;R[1][3]=0;
       R[2][0]=sin(a);R[2][1]=0;R[2][2]=cos(a);R[2][3]=0;
       R[3][0]=0;R[3][1]=0;R[3][2]=0;R[3][3]=1;break;
      }  /*end switch*/
      mult(T,R,c); /* Combine trans & rotation */
      mult(c,Tinv,d);/* Combine that and inv trans */
      flip++;flip=flip%2;flop++;flop=flop%2; /* flip flop   */
      /* The following actually calculates new vert of rotat*/
      for(i=0;i<numofpts;i++)
      {
        vertex[flip][i].x=vertex[flop][i].x*d[0][0]
                    +vertex[flop][i].y*d[1][0]
                    +vertex[flop][i].z*d[2][0]
                    +1*d[3][0];
        vertex[flip][i].y=vertex[flop][i].x*d[0][1]
                    +vertex[flop][i].y*d[1][1]
                    +vertex[flop][i].z*d[2][1]
                    +1*d[3][1];
        vertex[flip][i].z=vertex[flop][i].x*d[0][2]
                    +vertex[flop][i].y*d[1][2]
                    +vertex[flop][i].z*d[2][2]
                    +1*d[3][2];
       }
       ForeColor(whiteColor);
       viewpts(flop);/* Undraw*/
       ForeColor(blackColor);
       viewpts(flip);/* Draw*/
    }  /*end update points*/
  }

/*********************************************
*  End everything*
*********************************************/
DisposeWindow(scnwdw);
}  /*program end*/

void mult(A,B,C)
  float A[][4],B[][4],C[][4];
{
  int i,j,k;
  
  for(i=0;i<=3;i++)
    for(j=0;j<=3;j++)
    {
      C[i][j]=0.0;
      for(k=0;k<=3;k++)
        C[i][j]+=A[i][k]*B[k][j];
    }
}  /*end mult*/

 
AAPL
$99.28
Apple Inc.
+1.61
MSFT
$43.87
Microsoft Corpora
+0.24
GOOG
$516.51
Google Inc.
+5.34

MacTech Search:
Community Search:

Software Updates via MacUpdate

TechTool Pro 7.0.5 - Hard drive and syst...
TechTool Pro is now 7, and this is the most advanced version of the acclaimed Macintosh troubleshooting utility created in its 20-year history. Micromat has redeveloped TechTool Pro 7 to be fully 64... Read more
Yasu 2.9.1 - System maintenance app; per...
Yasu was originally created with System Administrators who service large groups of workstations in mind, Yasu (Yet Another System Utility) was made to do a specific group of maintenance tasks... Read more
Hazel 3.3 - Create rules for organizing...
Hazel is your personal housekeeper, organizing and cleaning folders based on rules you define. Hazel can also manage your trash and uninstall your applications. Organize your files using a... Read more
Autopano Giga 3.7 - Stitch multiple imag...
Autopano Giga allows you to stitch 2, 20, or 2,000 images. Version 3.0 integrates impressive new features that will definitely make you adopt Autopano Pro or Autopano Giga: Choose between 9... Read more
MenuMeters 1.8 - CPU, memory, disk, and...
MenuMeters is a set of CPU, memory, disk, and network monitoring tools for Mac OS X. Although there are numerous other programs which do the same thing, none had quite the feature set I was looking... Read more
Coda 2.5 - One-window Web development su...
Coda is a powerful Web editor that puts everything in one place. An editor. Terminal. CSS. Files. With Coda 2, we went beyond expectations. With loads of new, much-requested features, a few... Read more
Arq 4.6.1 - Online backup to Google Driv...
Arq is super-easy online backup for the Mac. Back up to your own Google Drive storage (15GB free storage), your own Amazon Glacier ($.01/GB per month storage) or S3, or any SFTP server. Arq backs up... Read more
Airfoil 4.8.10 - Send audio from any app...
Airfoil allows you to send any audio to AirPort Express units, Apple TVs, and even other Macs and PCs, all in sync! It's your audio - everywhere. With Airfoil you can take audio from any... Read more
Apple iMovie 10.0.6 - Edit personal vide...
With an all-new design, Apple iMovie lets you enjoy your videos like never before. Browse your clips more easily, instantly share your favorite moments, and create beautiful HD movies and Hollywood-... Read more
Tunnelblick 3.4.1 - GUI for OpenVPN. (Fr...
Tunnelblick is a free, open source graphic user interface for OpenVPN on OS X. It provides easy control of OpenVPN client and/or server connections. It comes as a ready-to-use application with all... Read more

Latest Forum Discussions

See All

GAMEVIL Announces the Upcoming Launch of...
GAMEVIL Announces the Upcoming Launch of Mark of the Dragon Posted by Jessica Fisher on October 20th, 2014 [ permalink ] Mark of the Dragon, by GAMEVIL, put | Read more »
Find Free Food on Campus with Ypay
Find Free Food on Campus with Ypay Posted by Jessica Fisher on October 20th, 2014 [ permalink ] iPhone App - Designed for the iPhone, compatible with the iPad | Read more »
Strung Along Review
Strung Along Review By Jordan Minor on October 20th, 2014 Our Rating: :: GOT NO STRINGSUniversal App - Designed for iPhone and iPad A cool gimmick and a great art style keep Strung Along from completely falling apart.   | Read more »
P2P file transferring app Send Anywhere...
File sharing services like Dropbox have security issues. Email attachments can be problematic when it comes to sharing large files. USB dongles don’t fit into your phone. Send Anywhere, a peer-to-peer file transferring application, solves all of... | Read more »
Zero Age Review
Zero Age Review By Jordan Minor on October 20th, 2014 Our Rating: :: MORE THAN ZEROiPad Only App - Designed for the iPad With its mind-bending puzzles and spellbinding visuals, Zero Age has it all.   | Read more »
Hay Ewe Review
Hay Ewe Review By Campbell Bird on October 20th, 2014 Our Rating: :: SAVE YOUR SHEEPLEUniversal App - Designed for iPhone and iPad Pave the way for your flock in this line drawing puzzle game from the creators of Worms.   | Read more »
My Very Hungry Caterpillar (Education)
My Very Hungry Caterpillar 1.0.0 Device: iOS Universal Category: Education Price: $3.99, Version: 1.0.0 (iTunes) Description: Care for your very own Very Hungry Caterpillar! My Very Hungry Caterpillar will captivate you as he crawls... | Read more »
Dungeon Dick (Games)
Dungeon Dick 1.1 Device: iOS Universal Category: Games Price: $.99, Version: 1.1 (iTunes) Description: Dungeon Dick is a fantasy adventure where you must discover the wicked plot to destroy the lands . 'Fling' at your foes and land... | Read more »
Here’s How the Apple Watch Could Transfo...
With the Apple Watch’s generic release date of, “early 2015” hovering on the horizon, it’s only a matter of time before gamers begin to ask “What’s in it for us?” The obvious choice would be to place entire games directly on the face of the watch,... | Read more »
Republique Episode 3: Ones & Zeroes...
Republique Episode 3: Ones & Zeroes is Available Now Posted by Rob Rich on October 17th, 2014 [ permalink ] Universal App - Designed for iPhone and iPad | Read more »

Price Scanner via MacPrices.net

2013 15-inch 2.0GHz Retina MacBook Pro availa...
B&H Photo has leftover previous-generation 15″ 2.0GHz Retina MacBook Pros now available for $1599 including free shipping plus NY sales tax only. Their price is $400 off original MSRP. B&H... Read more
Updated iPad Prices
We’ve updated our iPad Air Price Tracker and our iPad mini Price Tracker with the latest information on prices and availability from Apple and other resellers, including the new iPad Air 2 and the... Read more
Apple Pay Available to Millions of Visa Cardh...
Visa Inc. brings secure, convenient payments to iPad Air 2 and iPad mini 3as well as iPhone 6 and 6 Plus. Starting October 20th, eligible Visa cardholders in the U.S. will be able to use Apple Pay,... Read more
Textkraft Pocket – the missing TextEdit for i...
infovole GmbH has announced the release and immediate availability of Textkraft Pocket 1.0, a professional text editor and note taking app for Apple’s iPhone. In March 2014 rumors were all about... Read more
C Spire to offer iPad Air 2 and iPad mini 3,...
C Spire on Friday announced that it will offer iPad Air 2 and iPad mini 3, both with Wi-Fi + Cellular, on its 4G+ LTE network in the coming weeks. C Spire will offer the new iPads with a range of... Read more
Belkin Announces Full Line of Keyboards and C...
Belkin International has unveiled a new lineup of keyboard cases and accessories for Apple’s newest iPads, featuring three QODE keyboards and a collection of thin, lightweight folios for both the... Read more
Verizon offers new iPad Air 2 preorders for $...
Verizon Wireless is accepting preorders for the new iPad Air 2, cellular models, for $100 off MSRP with a 2-year service agreement: - 16GB iPad Air 2 WiFi + Cellular: $529.99 - 64GB iPad Air 2 WiFi... Read more
Price drops on refurbished Mac minis, now ava...
The Apple Store has dropped prices on Apple Certified Refurbished previous-generation Mac minis, with models now available starting at $419. Apple’s one-year warranty is included with each mini, and... Read more
Apple refurbished 2014 MacBook Airs available...
The Apple Store has Apple Certified Refurbished 2014 MacBook Airs available for up to $180 off the cost of new models. An Apple one-year warranty is included with each MacBook, and shipping is free.... Read more
Refurbished 2013 MacBook Pros available for u...
The Apple Store has Apple Certified Refurbished 13″ and 15″ MacBook Pros available starting at $929. Apple’s one-year warranty is standard, and shipping is free: - 13″ 2.5GHz MacBook Pros (4GB RAM/... Read more

Jobs Board

Position Opening at *Apple* - Apple (United...
…customers purchase our products, you're the one who helps them get more out of their new Apple technology. Your day in the Apple Store is filled with a range of Read more
Position Opening at *Apple* - Apple (United...
**Job Summary** At the Apple Store, you connect business professionals and entrepreneurs with the tools they need in order to put Apple solutions to work in their Read more
Position Opening at *Apple* - Apple (United...
**Job Summary** The Apple Store is a retail environment like no other - uniquely focused on delivering amazing customer experiences. As an Expert, you introduce people Read more
Position Opening at *Apple* - Apple (United...
**Job Summary** As businesses discover the power of Apple computers and mobile devices, it's your job - as a Solutions Engineer - to show them how to introduce these Read more
Position Opening at *Apple* - Apple (United...
…Summary** As a Specialist, you help create the energy and excitement around Apple products, providing the right solutions and getting products into customers' hands. You Read more
All contents are Copyright 1984-2011 by Xplain Corporation. All rights reserved. Theme designed by Icreon.