TweetFollow Us on Twitter

Line Art Rotation
Volume Number:6
Issue Number:5
Column Tag:C Forum

Related Info: Quickdraw

Line Art Rotation

By Jeffrey J. Martin, College Station, TX

Note: Source code files accompanying article are located on MacTech CD-ROM or source code disks.

[ Jeff Martin is a student at Texas A&M University working on his bachelors in computer science. He has been a personal computer technician at the campus computer center, a system operator on the campus mainframes, and now freelances graphic work for various professors. He hopes that one day a motion picture computer animation company will take him away from all of this.]

This being my first stab at an article, I will try to keep it short while leaving in all of the essential vitamins and nutrients. In that spirit my user interface will bring back nostalgic thoughts to those past Apple II and TRS-80 users, and any PC people will feel right at home.

The essence of this program is to show how a seemingly complicated transformation and rotation can be applied to an array of points that form any arbitrary line art.

Of course to form a transformation on the array of points (e.g. offset the points to the left) we simply add some delta x(dx) and/or delta y(dy) to every point:

/* 1 */


Now rotation is a little harder, but to spare you the heartache, it can be shown that for rotation about the origin(fig 1):

So the trick of rotating about some arbitrary point is to first transform that pivot point to be the origin(transforming every other point by the save amount). Second, perform the rotation of all points by the angle theta. Third, transform the pivot back(once again transforming all other points as well).

Now all of this may seem to be a costly maneuver, but the fact is that we can roll all of these into a single matrix multiplication, using homogeneous coordinates:


form one matrix.

Fig. 2 shows the multiplication of a homogeneous coordinate and a translation matrix. Please verify that this results in (X+dx,Y+dy) (if unfamiliar with matrix multiplication see mult procedure in program).

Similarly figure 3 shows multiplication with a rotation matrix - an exact translation of our rotation equations in matix form.

So the translation, rotation, and inverse translation matrices are as shown in figure 4. Which forms one matrix to be multiplied times the vertices.

The following program allows the user to enter in points with the mouse until a key is pressed. At that time the user then uses the mouse to enter a pivot point. The program uses the pivot point to form the translation and inverse translation matrices(from the x and y coordinates). The program then forms a rotation matrix of a constant rotation angle(Π/20) and calculates the new vertices based on the values of the old ones. The program undraws the old lines and redraws the new and calculates again until the object has rotated through a shift of 4Π(2 rotations). press the mouse button again to exit program.

Once again, I point out that the code does not follow the user guidelines, but then it is not exactly meant to be an application in itself. Build your own program around it and see what you can do. One suggestion is to cancel the erasing of the object to achieve spirograph patterns. I think too many of the submissions to MacTutor contain an interface that we all know too well, and for those just interested in the algorithms it can mean a lot of extra work. Have Fun.

/* 2 */

int errno;

void mult();  /*out matrix mult proc*/
/*floating value of points to avoid roundoff*/
typedef struct rec {float h,v;} points;
  int buttondown=0, /*flagg for mouse       */
      n=-1,         /*number of vertices    */
      keypressed=0, /*flagg for key         */
      flip=0,       /*to allow alternating  */
      flop=1,       /*vertices to be drawn  */
      i;            /*array counter         */
  float x,          /*angle counter         */
      T[3][3],      /*translation matrix    */
      Tinv[3][3],   /*translate back        */
      Rz[3][3],     /*rotate matrix         */
      c[3][3],      /*result of T&R         */
      d[3][3];      /*result of c&Tinv      */
  long curtick,     /*for delay loop        */
       lastick;     /*for delay loop        */
  EventRecord nextevent;/*to get mouse&key  */
  Point origin,dummy;   /*pivot and locator */
  points points[2][30];/*vertices(don’t draw Eiffel tower)  */
  WindowPtr scnwdw;    /*window pointer     */
  Rect      scnrect;   /*window rect        */
*  Set things up                     *
scnwdw=NewWindow(0,&scnrect,”\p”,TRUE,dBoxProc, -1,FALSE,0);
*  Get points                        *
      if(nextevent.what==mouseDown) buttondown=1;
      else if(nextevent.what==keyDown) keypressed=1;
    if(buttondown) /*get a point and draw it*/ 
    } /*end of get point*/
  }  /*end of get points*/
*  Get origin                        *
      if(nextevent.what==mouseDown) buttondown=1;
*  Make translation matrix           *
*  Rotate                            *
  x=0.157;  /*rotation angle - about 9 degrees*/
    }  /*end update points*/
    ForeColor(whiteColor);  /*undraw flop*/
    lastick=TickCount(); /*time delay for retace to improve animation*/
    do{curtick=TickCount();} while(lastick+1>curtick);
    for(i=1;i<=n;i++) LineTo((int)points[flop][i].h,(int)points[flop][i].v);
    ForeColor(blackColor);  /*draw flip*/
    do{curtick=TickCount();} while(lastick+1>curtick);
    for(i=1;i<=n;i++) LineTo((int)points[flip][i].h,(int)points[flip][i].v);
  }  /*end rotate*/
*  End everything                    *
      if(nextevent.what==mouseDown) buttondown=1;
}  /*program end*/

void mult(A,B,C)
  float A[][3],B[][3],C[][3];
  int i,j,k;
}  /*end mult*/

3D Modeling & Rotation

The main thrust of this exercise is to extend the line art rotation into 3D object rotation using the same techniques as the 2D, while also implementing parallel projection as our means of 3D modeling.

The first part of the exercise requires that we define an object in a structure that we can easily manipulate. Using a cube for simplicity, we will start by defining the center of the cube and an array of vertices, vertex[2][# of pts] (see GetPoints in program). Referring to fig. 1, each vertex corresponds to a corner of the cube. The second dimension of the array is to provide a destination for transformed vertices. Having both sets will allow us to undraw and immediately redraw the shape - minimizing the hangtime between redrawing allows for smoother animation.

Figure 1.

Next let us construct an array of lines connecting these vertices. Each element of the line array refers to the index of the beginning and ending vertex of that particular line. This array will never change. Think of when you roll a die - the edges still go between the same corners, but the position of the corners has changed.

The next construct is the translation and inverse translation matrixes. As in 2D rotation, we must transform our local center of rotation to the origin, rotate, then translate back.

The idea of homogeneous coordinates was introduced in the last article and is now extended into 3D by adding a fourth term. Fig. 2 shows our homogeneous coordinate as a 1x4 matrix times our translation matrix(4x4). The purpose of this multiplication is to add a dx, dy and dz to every point, in order to center our vertices about the origin. Please verify that the matrix multiplication results in X+dx,Y+dy,Z+dz (if unfamiliar with matrix multiplication see matmult in program).

Figure 2.

Now we once again reach the challenging concept of rotation. Although similar to 2D, we now have the option of rotating around the X and Y as well as the Z-axis.

The simplest, rotation about the z-axis, is just as in our 2D rotations, because none of the z-values change. If this is hard to understand, think about this: if you look straight down a pencil with the point a foot away from you and spin it a half turn, the point is still a foot away, but the writing is now on the other side. The equations for the changes in the X and Y are as follows:

  Xnew=XoldCos(Ø) + YoldSin(Ø)
  Ynew=-XoldSin(Ø) + YoldCos(Ø)

The 3D representation in matrix form with a vertex multiplication is in fig. 3. And the proof of all this is in that dusty old trigonometry book up on your shelf. (once again direct multiplication of fig. 3 will yield the preceding equations).

Figure 3.

Similarly rotation about the X axis changes none of the x-values, and rotation about Y changes none of the y-values. The transformation equations are given as follows:

Rotation about the X:

 Ynew=YoldCos(Ø) + ZoldSin(Ø)

Rotation about the Y:

   Xnew=XoldCos(Ø) - ZoldSin(Ø)
 Znew=XoldSin(Ø) + ZoldCos(Ø)

The corresponding matrices are shown in figures 4 and 5.

Figure 4.

Figure 5.

Once again we will construct a new array of vertices from a single transformation matrix formed from the translation to the origin, rotation about an axis, and translation back. Therefore creating the new vertices:


or after combining T*Rz*Tinv into a single Master Transformation(MT):


Finally the trick of parallel projection when viewing an object from down the Z axis is that all you have to do is draw lines between the x,y components of the points (ignore the z). For those mathematically inclined, you will realize that this is just the projection of those 3D lines on the X-Y plane (see fig. 6).

Figure 6.

The particular stretch of code I’ve included implements this transformation on the cube for rotation along the X and Y axes of the center of the cube using the arrow keys. The successive transformations of the vertices are loaded into the flip of the array (vertex[flip][pnt.#]). Then the flop is undrawn while the flip is drawn as mentioned previously and flip and flop are changed to their corresponding 0 or 1.

After launching, the application immediately draws the cube and then rotates it in response to the arrows. The program exits after a single mouse click.

Once again the code is not intended to match up to the guidelines - but is intended for use with other code or simple instructional purposes. It is concise as possible and should be easy to type in. A quick change to numofpts and numoflines as well as your own vertex and and line definitions would allow you to spin your favorite initial into its most flattering orientation.

The inspiration for this program came from the floating couch problem presented in Dirk Gently’s Holistic Detective Agency, by Douglas Adams. If enough interest is shown, perhaps a future article would include hidden line removal and color rendering techniques. After all, it was a red couch.

One last suggestion for those truly interested is to pull your shape definition in from a 3D cad program that will export in text format, such as Super 3D or AutoCad.

Anyway, on with the show

/* 3 */

/* Following is inline macro for drawing lines */
#define viewpts(s) {for(i=0;i<numoflns;i++)  \
                     { MoveTo((int)vertex[s][line[i].v1].x,  \
                       (int)vertex[s][line[i].v1].y); \
                       LineTo((int)vertex[s][line[i].v2].x, \
                       (int)vertex[s][line[i].v2].y); }}  
#define numofpts 8 /* A cube has eight vertices */
#define numoflns 12    /* lines for every face. */

/* the following are the data structs for vertices and lines*/ typedef 
struct rec1 {float x,y,z;} point3d;
typedef struct rec2 {int v1,v2;} edge;
void mult();/* Matrices multiplication */

  point3d vertex[2][8], /* array of 3D pts   */
          center;/* centroid of cube */
  edge    line[12];/* array of lines */
  int     buttondown=0, /* mousedwn flag(for prog end)*/
          keypressed=0,       /* keydwn flg(for arrows)     */
          flip=0,             /* This is index for vertex so*/
          flop=1,             /* can undraw flip & draw flop*/
          i,                  /* counter           */
          rot=0; /* Flag for direction of rotat*/
  long    low;   /* low word of keydwn message */
  float   a,/* Particular angle of rotat     */
          R[4][4], /* Rotation matrix*/
          c[4][4], /* Product of trans & rot mats*/
          d[4][4], /* Product of c and inv trans */
          T[4][4],Tinv[4][4], /* Translation & inv trans    */
          x=0.087266;/* Algle of rot in rad  */
  EventRecord nextevent;
  KeyMap    thekeys;
  WindowPtr scnwdw;
  Rect      scnrect;
*  Set things up *
*  Get points. Arbitrary cube.*

*  Rotate *
viewpts(flip);   /* This draws first set of pts*/
  while(!buttondown) /* Mini event loop*/
      if(nextevent.what==mouseDown) buttondown=1;
      else if(nextevent.what==keyDown) keypressed=1;
      else if(nextevent.what==autoKey) keypressed=1;
    if(keypressed) /* Find out which one     */
      if(low==126) {rot=1;a=-x;} /* Set dir flag and-*/
      if(low==124) {rot=2;a=-x;} /* angle(pos or neg */
      if(low==125) {rot=3;a=x;}
      if(low==123) {rot=4;a=x;}
        case 1:/* Both of these are rot about the X axis */
        case 3: R[0][0]=1;R[0][1]=0;R[0][2]=0;R[0][3]=0;
        case 2:/* Both of these are rot about the Y axis */
        case 4: 
      }  /*end switch*/
      mult(T,R,c); /* Combine trans & rotation */
      mult(c,Tinv,d);/* Combine that and inv trans */
      flip++;flip=flip%2;flop++;flop=flop%2; /* flip flop   */
      /* The following actually calculates new vert of rotat*/
       viewpts(flop);/* Undraw*/
       viewpts(flip);/* Draw*/
    }  /*end update points*/

*  End everything*
}  /*program end*/

void mult(A,B,C)
  float A[][4],B[][4],C[][4];
  int i,j,k;
}  /*end mult*/


Community Search:
MacTech Search:

Software Updates via MacUpdate

VirtualBox 5.1.30 - x86 virtualization s...
VirtualBox is a family of powerful x86 virtualization products for enterprise as well as home use. Not only is VirtualBox an extremely feature rich, high performance product for enterprise customers... Read more
ScreenFlow 7.1.1 - Create screen recordi...
ScreenFlow is powerful, easy-to-use screencasting software for the Mac. With ScreenFlow you can record the contents of your entire monitor while also capturing your video camera, microphone and your... Read more
Adobe Flash Player - Plug-in...
Adobe Flash Player is a cross-platform, browser-based application runtime that provides uncompromised viewing of expressive applications, content, and videos across browsers and operating systems.... Read more
Xcode 9.0.1 - Integrated development env...
Xcode includes everything developers need to create great applications for Mac, iPhone, iPad, and Apple Watch. Xcode provides developers a unified workflow for user interface design, coding, testing... Read more
TotalFinder 1.10.2 - Adds tabs, hotkeys,...
TotalFinder is a universally acclaimed navigational companion for your Mac. Enhance your Mac's Finder with features so smart and convenient, you won't believe you ever lived without them. Features... Read more
Backblaze - Online backup serv...
Backblaze is an online backup service designed from the ground-up for the Mac. With unlimited storage available for $5 per month, as well as a free 15-day trial, peace of mind is within reach with... Read more
Postbox 5.0.20 - Powerful and flexible e...
Postbox is a new email application that helps you organize your work life and get stuff done. It has all the elegance and simplicity of Apple Mail, but with more power and flexibility to manage even... Read more
Corel Painter - Digital art s...
Corel Painter lets you advance your digital art style with painted textures, subtle glazing brushwork, interactive gradients, and realistic Natural-Media. Easily transition from traditional to... Read more
QuarkXPress - Desktop publishin...
QuarkXPress 2017 is the new version that raises the bar for design and productivity. With non-destructive graphics and image editing directly within your layout, you no longer have to choose between... Read more
Backblaze - Online backup serv...
Backblaze is an online backup service designed from the ground-up for the Mac. With unlimited storage available for $5 per month, as well as a free 15-day trial, peace of mind is within reach with... Read more

Home Street guide - how to make friends...
From the creators of Food Street comes Home Street, a new simulation game that tasks you with building a social network and designing a beautiful home. It's a bit like The Sims, but you won't have to worry about the daily chores involved (feeding,... | Read more »
Color Ballz guide - how to bounce to the...
Color Ballz is an addictive new arcade title from Ketchapp Studios. It takes old school mechanics from games like Brickles and puts a fun twist on it. Your job? To catch balls with a paddle and send them back into a chute to be carried back to... | Read more »
Q&A: A-33 Studio explains why Combat...
When it comes to mobile FPS, it’s often tricky to get the fundamentals right on a platform lacking a physical controller, large display and hefty RAM. With Combat Squad: Project Wednesday, A-33 Studio bravely took on the challenge of making a... | Read more »
Taichi Panda 3: Dragon Hunter guide - ti...
Taichi Panda 3: Dragon Hunter launched this week to players all over the world. It's a beautiful mobile MMORPG that blends elements of Eastern and Western fantasy. It reminds us of a mix between World of Warcraft and Jade Empire. MMO's can have a... | Read more »
The best new games we played this week -...
Phew. It has been a week, but now it's time to relax, put your feet up, and enjoy some brand new mobile games. It was a bit of slow week, but there's still plenty of new titles to add to your collection. Here are four of our favorites. [Read... | Read more »
Yoink - Improved Drag and Drop (Product...
Yoink - Improved Drag and Drop 1.0 Device: iOS Universal Category: Productivity Price: $2.99, Version: 1.0 (iTunes) Description: Yoink for iPad and iPhone lets you easily and quickly store items you drag, copy or share, for later use... | Read more »
Cottage Garden (Games)
Cottage Garden 1.11 Device: iOS Universal Category: Games Price: $4.99, Version: 1.11 (iTunes) Description: | Read more »
Into the Dead 2 guide - how to survive t...
Into the Dead 2 is an endless gunner, of sorts, with a lot of grit and satisfying gunplay behind it. The game looks amazing, and tells an effective story to boot. Plus, it has some quality voice acting behind it to really bring the story to life... | Read more »
Smash Up - The Card Game (Games)
Smash Up - The Card Game 1.0.7 Device: iOS Universal Category: Games Price: $4.99, Version: 1.0.7 (iTunes) Description: ***“It’s a goofy theme with fun art and high replayability, but beneath that veneer of casual play is a great... | Read more »
Dive in to Combat Squad if you’re lookin...
Earlier this year, A-33 Studio made the leap from developing Counter Strike Online to launching its very own FPS for the mobile. Combat Squad: Project Wednesday pits your team of mercs against the world in multiplayer death matches, so if you’re on... | Read more »

Price Scanner via

Sale! 10″ Apple WiFi iPad Pros for up to $100...
B&H Photo has 10.5″ WiFi iPad Pros in stock today and on sale for $50-$100 off MSRP. Each iPad includes free shipping, and B&H charges sales tax in NY & NJ only: – 10.5″ 64GB iPad Pro: $... Read more
Apple iMacs on sale for up to $130 off MSRP w...
B&H Photo has 21-inch and 27-inch iMacs in stock and on sale for up to $130 off MSRP including free shipping. B&H charges sales tax in NY & NJ only: – 27″ 3.8GHz iMac (MNED2LL/A): $2179 $... Read more
2017 3.5GHz 6-Core Mac Pro on sale for $2799,...
B&H Photo has the 2017 3.5GHz 6-Core Mac Pro (MD878LL/A) on sale today for $2799 including free shipping plus NY & NJ sales tax only . Their price is $200 off MSRP. Read more
12″ 1.2GHz Space Gray MacBook on sale for $11...
Amazon has the 2017 12″ 1.2GHz Space Gray Retina MacBook on sale for $100 off MSRP. Shipping is free: 12″ 1.2GHz Space Gray MacBook: $1199.99 $100 off MSRP Read more
Bare Bones Software Releases macOS High Sierr...
Bare Bones Software has announced the release and immediate availability of BBEdit 12.0, a significant upgrade to its professional strength text and code editor. BBEdit 12 introduces a new foundation... Read more
Yale Announces Availability of Apple HomeKit-...
Yale Locks & Hardware has announced that Apple HomeKit support for its Assure Lock family is available this month. The new Yale iM1 Network Module, which provides support for the Apple Home app... Read more
Clearance 2016 13″ MacBook Pros, refurbished,...
Apple has Certified Refurbished 2016 13″ MacBook Pros available starting at $1189. An Apple one-year warranty is included with each model, and shipping is free: – 13″ 2.9GHz/512GB Touch Bar Gray... Read more
12-inch 64GB iPad Pro on sale for $749, save...
Adorama has 12″ 64GB iPad Pros on sale today for $749 including free shipping plus NY & NJ sales tax only. Their price is $50 off MSRP. Read more
13″ 3.1GHz/256GB Silver MacBook Pro on sale f...
Amazon has the Silver 13″ 3.1GHz/256GB MacBook Pro (MPXX2LL/A) on sale for $1699 including free shipping. Their price is $100 off MSRP. Read more
12″ MacBook available for $1099 with Apple re...
Apple has Certified Refurbished 2017 12″ Retina MacBooks available for $200-$240 off the cost of new models. Apple will include a standard one-year warranty with each MacBook, and shipping is free.... Read more

Jobs Board

*Apple* Retail - Multiple Positions - Apple,...
Job Description:SalesSpecialist - Retail Customer Service and SalesTransform Apple Store visitors into loyal Apple customers. When customers enter the store, Read more
*Apple* Retail - Multiple Positions - Apple,...
Job Description: Sales Specialist - Retail Customer Service and Sales Transform Apple Store visitors into loyal Apple customers. When customers enter the store, Read more
*Apple* Retail - Multiple Positions - Farmin...
Sales Specialist - Retail Customer Service and Sales Transform Apple Store visitors into loyal Apple customers. When customers enter the store, you're also the Read more
*Apple* Retail - Multiple Positions - Apple...
Sales Specialist - Retail Customer Service and Sales Transform Apple Store visitors into loyal Apple customers. When customers enter the store, you're also the Read more
*Apple* Retail - Multiple Positions - Apple...
Sales Specialist - Retail Customer Service and Sales Transform Apple Store visitors into loyal Apple customers. When customers enter the store, you're also the Read more
All contents are Copyright 1984-2011 by Xplain Corporation. All rights reserved. Theme designed by Icreon.