TweetFollow Us on Twitter

Line Art Rotation
Volume Number:6
Issue Number:5
Column Tag:C Forum

Related Info: Quickdraw

Line Art Rotation

By Jeffrey J. Martin, College Station, TX

Note: Source code files accompanying article are located on MacTech CD-ROM or source code disks.

[ Jeff Martin is a student at Texas A&M University working on his bachelors in computer science. He has been a personal computer technician at the campus computer center, a system operator on the campus mainframes, and now freelances graphic work for various professors. He hopes that one day a motion picture computer animation company will take him away from all of this.]

This being my first stab at an article, I will try to keep it short while leaving in all of the essential vitamins and nutrients. In that spirit my user interface will bring back nostalgic thoughts to those past Apple II and TRS-80 users, and any PC people will feel right at home.

The essence of this program is to show how a seemingly complicated transformation and rotation can be applied to an array of points that form any arbitrary line art.

Of course to form a transformation on the array of points (e.g. offset the points to the left) we simply add some delta x(dx) and/or delta y(dy) to every point:

/* 1 */


Now rotation is a little harder, but to spare you the heartache, it can be shown that for rotation about the origin(fig 1):

So the trick of rotating about some arbitrary point is to first transform that pivot point to be the origin(transforming every other point by the save amount). Second, perform the rotation of all points by the angle theta. Third, transform the pivot back(once again transforming all other points as well).

Now all of this may seem to be a costly maneuver, but the fact is that we can roll all of these into a single matrix multiplication, using homogeneous coordinates:


form one matrix.

Fig. 2 shows the multiplication of a homogeneous coordinate and a translation matrix. Please verify that this results in (X+dx,Y+dy) (if unfamiliar with matrix multiplication see mult procedure in program).

Similarly figure 3 shows multiplication with a rotation matrix - an exact translation of our rotation equations in matix form.

So the translation, rotation, and inverse translation matrices are as shown in figure 4. Which forms one matrix to be multiplied times the vertices.

The following program allows the user to enter in points with the mouse until a key is pressed. At that time the user then uses the mouse to enter a pivot point. The program uses the pivot point to form the translation and inverse translation matrices(from the x and y coordinates). The program then forms a rotation matrix of a constant rotation angle(Π/20) and calculates the new vertices based on the values of the old ones. The program undraws the old lines and redraws the new and calculates again until the object has rotated through a shift of 4Π(2 rotations). press the mouse button again to exit program.

Once again, I point out that the code does not follow the user guidelines, but then it is not exactly meant to be an application in itself. Build your own program around it and see what you can do. One suggestion is to cancel the erasing of the object to achieve spirograph patterns. I think too many of the submissions to MacTutor contain an interface that we all know too well, and for those just interested in the algorithms it can mean a lot of extra work. Have Fun.

/* 2 */

int errno;

void mult();  /*out matrix mult proc*/
/*floating value of points to avoid roundoff*/
typedef struct rec {float h,v;} points;
  int buttondown=0, /*flagg for mouse       */
      n=-1,         /*number of vertices    */
      keypressed=0, /*flagg for key         */
      flip=0,       /*to allow alternating  */
      flop=1,       /*vertices to be drawn  */
      i;            /*array counter         */
  float x,          /*angle counter         */
      T[3][3],      /*translation matrix    */
      Tinv[3][3],   /*translate back        */
      Rz[3][3],     /*rotate matrix         */
      c[3][3],      /*result of T&R         */
      d[3][3];      /*result of c&Tinv      */
  long curtick,     /*for delay loop        */
       lastick;     /*for delay loop        */
  EventRecord nextevent;/*to get mouse&key  */
  Point origin,dummy;   /*pivot and locator */
  points points[2][30];/*vertices(don’t draw Eiffel tower)  */
  WindowPtr scnwdw;    /*window pointer     */
  Rect      scnrect;   /*window rect        */
*  Set things up                     *
scnwdw=NewWindow(0,&scnrect,”\p”,TRUE,dBoxProc, -1,FALSE,0);
*  Get points                        *
      if(nextevent.what==mouseDown) buttondown=1;
      else if(nextevent.what==keyDown) keypressed=1;
    if(buttondown) /*get a point and draw it*/ 
    } /*end of get point*/
  }  /*end of get points*/
*  Get origin                        *
      if(nextevent.what==mouseDown) buttondown=1;
*  Make translation matrix           *
*  Rotate                            *
  x=0.157;  /*rotation angle - about 9 degrees*/
    }  /*end update points*/
    ForeColor(whiteColor);  /*undraw flop*/
    lastick=TickCount(); /*time delay for retace to improve animation*/
    do{curtick=TickCount();} while(lastick+1>curtick);
    for(i=1;i<=n;i++) LineTo((int)points[flop][i].h,(int)points[flop][i].v);
    ForeColor(blackColor);  /*draw flip*/
    do{curtick=TickCount();} while(lastick+1>curtick);
    for(i=1;i<=n;i++) LineTo((int)points[flip][i].h,(int)points[flip][i].v);
  }  /*end rotate*/
*  End everything                    *
      if(nextevent.what==mouseDown) buttondown=1;
}  /*program end*/

void mult(A,B,C)
  float A[][3],B[][3],C[][3];
  int i,j,k;
}  /*end mult*/

3D Modeling & Rotation

The main thrust of this exercise is to extend the line art rotation into 3D object rotation using the same techniques as the 2D, while also implementing parallel projection as our means of 3D modeling.

The first part of the exercise requires that we define an object in a structure that we can easily manipulate. Using a cube for simplicity, we will start by defining the center of the cube and an array of vertices, vertex[2][# of pts] (see GetPoints in program). Referring to fig. 1, each vertex corresponds to a corner of the cube. The second dimension of the array is to provide a destination for transformed vertices. Having both sets will allow us to undraw and immediately redraw the shape - minimizing the hangtime between redrawing allows for smoother animation.

Figure 1.

Next let us construct an array of lines connecting these vertices. Each element of the line array refers to the index of the beginning and ending vertex of that particular line. This array will never change. Think of when you roll a die - the edges still go between the same corners, but the position of the corners has changed.

The next construct is the translation and inverse translation matrixes. As in 2D rotation, we must transform our local center of rotation to the origin, rotate, then translate back.

The idea of homogeneous coordinates was introduced in the last article and is now extended into 3D by adding a fourth term. Fig. 2 shows our homogeneous coordinate as a 1x4 matrix times our translation matrix(4x4). The purpose of this multiplication is to add a dx, dy and dz to every point, in order to center our vertices about the origin. Please verify that the matrix multiplication results in X+dx,Y+dy,Z+dz (if unfamiliar with matrix multiplication see matmult in program).

Figure 2.

Now we once again reach the challenging concept of rotation. Although similar to 2D, we now have the option of rotating around the X and Y as well as the Z-axis.

The simplest, rotation about the z-axis, is just as in our 2D rotations, because none of the z-values change. If this is hard to understand, think about this: if you look straight down a pencil with the point a foot away from you and spin it a half turn, the point is still a foot away, but the writing is now on the other side. The equations for the changes in the X and Y are as follows:

  Xnew=XoldCos(Ø) + YoldSin(Ø)
  Ynew=-XoldSin(Ø) + YoldCos(Ø)

The 3D representation in matrix form with a vertex multiplication is in fig. 3. And the proof of all this is in that dusty old trigonometry book up on your shelf. (once again direct multiplication of fig. 3 will yield the preceding equations).

Figure 3.

Similarly rotation about the X axis changes none of the x-values, and rotation about Y changes none of the y-values. The transformation equations are given as follows:

Rotation about the X:

 Ynew=YoldCos(Ø) + ZoldSin(Ø)

Rotation about the Y:

   Xnew=XoldCos(Ø) - ZoldSin(Ø)
 Znew=XoldSin(Ø) + ZoldCos(Ø)

The corresponding matrices are shown in figures 4 and 5.

Figure 4.

Figure 5.

Once again we will construct a new array of vertices from a single transformation matrix formed from the translation to the origin, rotation about an axis, and translation back. Therefore creating the new vertices:


or after combining T*Rz*Tinv into a single Master Transformation(MT):


Finally the trick of parallel projection when viewing an object from down the Z axis is that all you have to do is draw lines between the x,y components of the points (ignore the z). For those mathematically inclined, you will realize that this is just the projection of those 3D lines on the X-Y plane (see fig. 6).

Figure 6.

The particular stretch of code I’ve included implements this transformation on the cube for rotation along the X and Y axes of the center of the cube using the arrow keys. The successive transformations of the vertices are loaded into the flip of the array (vertex[flip][pnt.#]). Then the flop is undrawn while the flip is drawn as mentioned previously and flip and flop are changed to their corresponding 0 or 1.

After launching, the application immediately draws the cube and then rotates it in response to the arrows. The program exits after a single mouse click.

Once again the code is not intended to match up to the guidelines - but is intended for use with other code or simple instructional purposes. It is concise as possible and should be easy to type in. A quick change to numofpts and numoflines as well as your own vertex and and line definitions would allow you to spin your favorite initial into its most flattering orientation.

The inspiration for this program came from the floating couch problem presented in Dirk Gently’s Holistic Detective Agency, by Douglas Adams. If enough interest is shown, perhaps a future article would include hidden line removal and color rendering techniques. After all, it was a red couch.

One last suggestion for those truly interested is to pull your shape definition in from a 3D cad program that will export in text format, such as Super 3D or AutoCad.

Anyway, on with the show

/* 3 */

/* Following is inline macro for drawing lines */
#define viewpts(s) {for(i=0;i<numoflns;i++)  \
                     { MoveTo((int)vertex[s][line[i].v1].x,  \
                       (int)vertex[s][line[i].v1].y); \
                       LineTo((int)vertex[s][line[i].v2].x, \
                       (int)vertex[s][line[i].v2].y); }}  
#define numofpts 8 /* A cube has eight vertices */
#define numoflns 12    /* lines for every face. */

/* the following are the data structs for vertices and lines*/ typedef 
struct rec1 {float x,y,z;} point3d;
typedef struct rec2 {int v1,v2;} edge;
void mult();/* Matrices multiplication */

  point3d vertex[2][8], /* array of 3D pts   */
          center;/* centroid of cube */
  edge    line[12];/* array of lines */
  int     buttondown=0, /* mousedwn flag(for prog end)*/
          keypressed=0,       /* keydwn flg(for arrows)     */
          flip=0,             /* This is index for vertex so*/
          flop=1,             /* can undraw flip & draw flop*/
          i,                  /* counter           */
          rot=0; /* Flag for direction of rotat*/
  long    low;   /* low word of keydwn message */
  float   a,/* Particular angle of rotat     */
          R[4][4], /* Rotation matrix*/
          c[4][4], /* Product of trans & rot mats*/
          d[4][4], /* Product of c and inv trans */
          T[4][4],Tinv[4][4], /* Translation & inv trans    */
          x=0.087266;/* Algle of rot in rad  */
  EventRecord nextevent;
  KeyMap    thekeys;
  WindowPtr scnwdw;
  Rect      scnrect;
*  Set things up *
*  Get points. Arbitrary cube.*

*  Rotate *
viewpts(flip);   /* This draws first set of pts*/
  while(!buttondown) /* Mini event loop*/
      if(nextevent.what==mouseDown) buttondown=1;
      else if(nextevent.what==keyDown) keypressed=1;
      else if(nextevent.what==autoKey) keypressed=1;
    if(keypressed) /* Find out which one     */
      if(low==126) {rot=1;a=-x;} /* Set dir flag and-*/
      if(low==124) {rot=2;a=-x;} /* angle(pos or neg */
      if(low==125) {rot=3;a=x;}
      if(low==123) {rot=4;a=x;}
        case 1:/* Both of these are rot about the X axis */
        case 3: R[0][0]=1;R[0][1]=0;R[0][2]=0;R[0][3]=0;
        case 2:/* Both of these are rot about the Y axis */
        case 4: 
      }  /*end switch*/
      mult(T,R,c); /* Combine trans & rotation */
      mult(c,Tinv,d);/* Combine that and inv trans */
      flip++;flip=flip%2;flop++;flop=flop%2; /* flip flop   */
      /* The following actually calculates new vert of rotat*/
       viewpts(flop);/* Undraw*/
       viewpts(flip);/* Draw*/
    }  /*end update points*/

*  End everything*
}  /*program end*/

void mult(A,B,C)
  float A[][4],B[][4],C[][4];
  int i,j,k;
}  /*end mult*/


Community Search:
MacTech Search:

Software Updates via MacUpdate

Little Snitch 3.5.3 - Alerts you about o...
Little Snitch gives you control over your private outgoing data. Track background activity As soon as your computer connects to the Internet, applications often have permission to send any... Read more
Cocktail 8.4 - General maintenance and o...
Cocktail is a general purpose utility for OS X that lets you clean, repair and optimize your Mac. It is a powerful digital toolset that helps hundreds of thousands of Mac users around the world get... Read more
PDFKey Pro 4.3 - Edit and print password...
PDFKey Pro can unlock PDF documents protected for printing and copying when you've forgotten your password. It can now also protect your PDF files with a password to prevent unauthorized access and/... Read more
Kodi 15.0.beta1 - Powerful media center...
Kodi (was XBMC) is an award-winning free and open-source (GPL) software media player and entertainment hub that can be installed on Linux, OS X, Windows, iOS, and Android, featuring a 10-foot user... Read more
DiskCatalogMaker 6.4.12 - Catalog your d...
DiskCatalogMaker is a simple disk management tool which catalogs disks. Simple, light-weight, and fast. Finder-like intuitive look and feel. Super-fast search algorithm. Can compress catalog data... Read more
Macs Fan Control - Monitor and c...
Macs Fan Control allows you to monitor and control almost any aspect of your computer's fans, with support for controlling fan speed, temperature sensors pane, menu-bar icon, and autostart with... Read more
Lyn 1.5.11 - Lightweight image browser a...
Lyn is a lightweight and fast image browser and viewer designed for photographers, graphic artists and Web designers. Featuring an extremely versatile and aesthetically pleasing interface, it... Read more
NeoOffice 2014.11 - Mac-tailored, OpenOf...
NeoOffice is a complete office suite for OS X. With NeoOffice, users can view, edit, and save OpenOffice documents, PDF files, and most Microsoft Word, Excel, and PowerPoint documents. NeoOffice 3.x... Read more
LaunchBar 6.4 - Powerful file/URL/email...
LaunchBar is an award-winning productivity utility that offers an amazingly intuitive and efficient way to search and access any kind of information stored on your computer or on the Web. It provides... Read more
Remotix 3.1.4 - Access all your computer...
Remotix is a fast and powerful application to easily access multiple Macs (and PCs) from your own Mac. Features Complete Apple Screen Sharing support - including Mac OS X login, clipboard... Read more

Crossy Road Devs Hipster Whale are Bring...
Hipster Whale, the minds behind the rather popular (and rather great) Crossy Road, have teamed-up with Bandai Namco to create PAC-MAN 256: an absolutely bonkers looking maze runner chaser thing. | Read more »
Meet the New Spotify Music
Spotify Music  has a lot going on. They're introducing 3 new modes to serve all your musical needs, with the "Now" start page  gives you curated playlists based on your particular tastes. As you listen the app will learn more about your tastes and... | Read more »
What the Apple Watch Gets Right, and Wha...
| Read more »
Celebrate PAC-MAN's 35th Birthday W...
BANDAI NAMCO Entertainment America is celebrating PAC-MAN's 35th anniversary by releasing updates for PAC-MAN and PAC-MAN Lite for iOS. [Read more] | Read more »
Strike Wing Episode 2 has Landed on the...
Strike Wing: Raptor Rising is an exciting space combat simulator by Crescent Moon Games, which was recently updated to continue the story with Episode 2. [Read more] | Read more »
Kiqplan Expands its Interactive Coaching...
The makers of Fitbug have been hard at work on their Kiqplan lineup, and have added four new summer themed plans to help you get the most out of your workout. [Read more] | Read more »
Make a Photobook in Minutes with Pictyea...
What happens when you can't stop taking photos and have an urge to create a photobook? Pictyear saves the day. [Read more] | Read more »
This Week at 148Apps: May 18-22, 2015
May Days at 148Apps How do you know what apps are worth your time and money? Just look to the review team at 148Apps. We sort through the chaos and find the apps you're looking for. The ones we love become Editor’s Choice, standing out above the... | Read more »
Biz Builder Delux (Games)
Biz Builder Delux 1.0.0 Device: iOS Universal Category: Games Price: $4.99, Version: 1.0.0 (iTunes) Description: Ah, there's nothing like the rhythmic bustle of a burgeoning business burg... especially when you're the one building it... | Read more »
Auroch Digital is Bringing Back Games Wo...
| Read more »

Price Scanner via

What Would the ideal Apple Productivity Platf...
For the past four years I’ve kept a foot in both the Mac and iPad camps respectively. my daily computing hours divided about 50/50 between the two devices with remarkable consistency. However, there’... Read more
New 13-inch 2.9GHz Retina MacBook Pro on sale...
B&H Photo has the 13″ 2.9GHz/512GB Retina MacBook Pro on sale for $1699.99 including free shipping plus NY tax only. Their price is $100 off MSRP, and it’s the lowest price for this model from... Read more
12-inch MacBook stock status for Monday, May...
The new 12″ Retina MacBooks are still on backorder at The Apple Store with a 3-5 week waiting period. However, a few models are in stock today at Apple resellers. Stock is limited, so act now if you’... Read more
New 27-inch 3.3GHz 5K iMac in stock with free...
Adorama has the new 27″ 3.3GHz 5K iMac in stock today for $1999 including free shipping plus NY & NJ sales tax only. Adorama will include a free copy of Apple’s 3-year AppleCare Protection Plan. Read more
Memorial Day Weekend Sale: New 27-inch 3.3GHz...
Best Buy has the new 27″ 3.3GHz 5K iMac on sale for $1899.99 this weekend. Choose free shipping or free local store pickup (if available). Sale price for online orders only, in-store prices may vary... Read more
OtterBox Maximizes Portability, Productivity...
From the kitchen recipe book to the boarsroom presentation, the OtterBox Agility Tablet System turns tablets into one of the most versatile pieces of handheld technology available. Available now, the... Read more
Launch of New Car App Gallery and Open Develo...
Automatic, a company on a mission to bring the power of the Internet into every car, has announced the launch of the Automatic App Gallery, an app store for nearly every car or truck on the road... Read more
Memorial Day Weekend Sale: 13-inch 1.6GHz Mac...
Best Buy has the new 13″ 1.6GHz/128GB MacBook Air on sale for $849 on their online store this weekend. Choose free shipping or free local store pickup (if available). Sale price for online orders... Read more
Memorial Day Weekend Sale: 27-inch 3.5GHz 5K...
Best Buy has the 27″ 3.5GHz 5K iMac on sale for $2099.99 this weekend. Choose free shipping or free local store pickup (if available). Sale price for online orders only, in-store prices may vary.... Read more
Sale! 16GB iPad mini 3 for $349, save $50
B&H Photo has the 16GB iPad mini 3 WiFi on sale for $349 including free shipping plus NY sales tax only. Their price is $50 off MSRP, and it’s the lowest price available for this model. Read more

Jobs Board

Architect / Senior Software Engineer, *Apple...
Changing the world is all in a day039s work at Apple . If you love innovation, here039s your chance to make a career of it. You039ll work hard. But the job comes with Read more
*Apple* Pay Support Readiness Project Manage...
Changing the world is all in a day039s work at Apple . If you love innovation, here039s your chance to make a career of it. You039ll work hard. But the job comes with Read more
Hardware Design Validation Engineer - *Apple...
**Job Summary** The Apple Watch team is looking for a Hardware Design Validation Engineer. This person will be part of the Apple Watch hardware team with Read more
Sr. Payment Program Manager, *Apple* Pay -...
**Job Summary** Apple Pay is an exciting environment and a…devices in a simple, private and secure way. The Apple Pay Team is looking for an experienced Senior Read more
Project Manager / Business Analyst, WW *Appl...
…a senior project manager / business analyst to work within our Worldwide Apple Fulfillment Operations and the Business Process Re-engineering team. This role will work Read more
All contents are Copyright 1984-2011 by Xplain Corporation. All rights reserved. Theme designed by Icreon.