Line Art Rotation
 Volume Number: 6 Issue Number: 5 Column Tag: C Forum

Related Info: Quickdraw

# Line Art Rotation

By Jeffrey J. Martin, College Station, TX

Note: Source code files accompanying article are located on MacTech CD-ROM or source code disks.

[ Jeff Martin is a student at Texas A&M University working on his bachelors in computer science. He has been a personal computer technician at the campus computer center, a system operator on the campus mainframes, and now freelances graphic work for various professors. He hopes that one day a motion picture computer animation company will take him away from all of this.]

This being my first stab at an article, I will try to keep it short while leaving in all of the essential vitamins and nutrients. In that spirit my user interface will bring back nostalgic thoughts to those past Apple II and TRS-80 users, and any PC people will feel right at home.

The essence of this program is to show how a seemingly complicated transformation and rotation can be applied to an array of points that form any arbitrary line art.

Of course to form a transformation on the array of points (e.g. offset the points to the left) we simply add some delta x(dx) and/or delta y(dy) to every point:

```/* 1 */

for(i=0;i<numofpoints;i++)
{points[i].h+=dx;points[i].v+=dy;}
```

Now rotation is a little harder, but to spare you the heartache, it can be shown that for rotation about the origin(fig 1):

So the trick of rotating about some arbitrary point is to first transform that pivot point to be the origin(transforming every other point by the save amount). Second, perform the rotation of all points by the angle theta. Third, transform the pivot back(once again transforming all other points as well).

Now all of this may seem to be a costly maneuver, but the fact is that we can roll all of these into a single matrix multiplication, using homogeneous coordinates:

where

form one matrix.

Fig. 2 shows the multiplication of a homogeneous coordinate and a translation matrix. Please verify that this results in (X+dx,Y+dy) (if unfamiliar with matrix multiplication see mult procedure in program).

Similarly figure 3 shows multiplication with a rotation matrix - an exact translation of our rotation equations in matix form.

So the translation, rotation, and inverse translation matrices are as shown in figure 4. Which forms one matrix to be multiplied times the vertices.

The following program allows the user to enter in points with the mouse until a key is pressed. At that time the user then uses the mouse to enter a pivot point. The program uses the pivot point to form the translation and inverse translation matrices(from the x and y coordinates). The program then forms a rotation matrix of a constant rotation angle(Π/20) and calculates the new vertices based on the values of the old ones. The program undraws the old lines and redraws the new and calculates again until the object has rotated through a shift of 4Π(2 rotations). press the mouse button again to exit program.

Once again, I point out that the code does not follow the user guidelines, but then it is not exactly meant to be an application in itself. Build your own program around it and see what you can do. One suggestion is to cancel the erasing of the object to achieve spirograph patterns. I think too many of the submissions to MacTutor contain an interface that we all know too well, and for those just interested in the algorithms it can mean a lot of extra work. Have Fun.

```/* 2 */

#include<math.h>
int errno;

void mult();  /*out matrix mult proc*/
/*floating value of points to avoid roundoff*/
typedef struct rec {float h,v;} points;
main()
{
int buttondown=0, /*flagg for mouse       */
n=-1,         /*number of vertices    */
keypressed=0, /*flagg for key         */
flip=0,       /*to allow alternating  */
flop=1,       /*vertices to be drawn  */
i;            /*array counter         */
float x,          /*angle counter         */
T[3][3],      /*translation matrix    */
Tinv[3][3],   /*translate back        */
Rz[3][3],     /*rotate matrix         */
c[3][3],      /*result of T&R         */
d[3][3];      /*result of c&Tinv      */
long curtick,     /*for delay loop        */
lastick;     /*for delay loop        */
EventRecord nextevent;/*to get mouse&key  */
Point origin,dummy;   /*pivot and locator */
points points[2][30];/*vertices(don’t draw Eiffel tower)  */
WindowPtr scnwdw;    /*window pointer     */
Rect      scnrect;   /*window rect        */
/*************************************
*  Set things up                     *
*************************************/
InitGraf(&thePort);
InitFonts();
InitWindows();
InitDialogs((Ptr)0L);
TEInit();
scnrect=screenBits.bounds;
InsetRect(&scnrect,10,25);
scnwdw=NewWindow(0,&scnrect,”\p”,TRUE,dBoxProc, -1,FALSE,0);
SetPort(scnwdw);
InitCursor();

/*************************************
*  Get points                        *
*************************************/
while(!keypressed)
{
buttondown=0;
if(GetNextEvent(-1,&nextevent))
if(nextevent.what==mouseDown) buttondown=1;
else if(nextevent.what==keyDown) keypressed=1;
if(buttondown) /*get a point and draw it*/
{
GetMouse(&dummy);
points[0][++n].h=dummy.h;points[0][n].v=dummy.v;
if(n==0)
MoveTo((int)points[0][0].h,(int)points[0][0].v);
LineTo((int)points[0][n].h,(int)points[0][n].v);
} /*end of get point*/
}  /*end of get points*/

/*************************************
*  Get origin                        *
*************************************/
buttondown=0;
do
{
if(GetNextEvent(-1,&nextevent))
if(nextevent.what==mouseDown) buttondown=1;
}while(!buttondown);
GetMouse(&origin);

/*************************************
*  Make translation matrix           *
*************************************/
T[0][0]=1;T[0][1]=0;T[0][2]=0;
T[1][0]=0;T[1][1]=1;T[1][2]=0;
T[2][0]=-origin.h;T[2][1]=-origin.v;T[2][2]=1;
Tinv[0][0]=1;Tinv[0][1]=0;Tinv[0][2]=0;
Tinv[1][0]=0;Tinv[1][1]=1;Tinv[1][2]=0;
Tinv[2][0]=origin.h;Tinv[2][1]=origin.v;Tinv[2][2]=1;
Rz[0][2]=0;Rz[1][2]=0;Rz[2][0]=0;Rz[2][1]=0;Rz[2][2]=1;
/*************************************
*  Rotate                            *
*************************************/
x=0.157;  /*rotation angle - about 9 degrees*/
Rz[0][0]=Rz[1][1]=cos(x);Rz[0][1]=sin(x);
Rz[1][0]=-Rz[0][1];
mult(T,Rz,c);
mult(c,Tinv,d);
for(x=.157;x<=12.56;x+=0.157)
{
flip++;flip=flip%2;flop++;flop=flop%2;
for(i=0;i<=n;i++)
{
points[flip][i].h=points[flop][i].h*d[0][0]
+points[flop][i].v*d[1][0]+1*d[2][0];
points[flip][i].v=points[flop][i].h*d[0][1]
+points[flop][i].v*d[1][1]+1*d[2][1];
}  /*end update points*/
ForeColor(whiteColor);  /*undraw flop*/
lastick=TickCount(); /*time delay for retace to improve animation*/
do{curtick=TickCount();} while(lastick+1>curtick);
MoveTo((int)points[flop][0].h,(int)points[flop][0].v);
for(i=1;i<=n;i++) LineTo((int)points[flop][i].h,(int)points[flop][i].v);
ForeColor(blackColor);  /*draw flip*/
lastick=TickCount();
do{curtick=TickCount();} while(lastick+1>curtick);
MoveTo((int)points[flip][0].h,(int)points[flip][0].v);
for(i=1;i<=n;i++) LineTo((int)points[flip][i].h,(int)points[flip][i].v);
}  /*end rotate*/

/*************************************
*  End everything                    *
*************************************/
buttondown=0;
do
{
if(GetNextEvent(-1,&nextevent))
if(nextevent.what==mouseDown) buttondown=1;
}while(!buttondown);
DisposeWindow(scnwdw);
}  /*program end*/

void mult(A,B,C)
float A[][3],B[][3],C[][3];
{
int i,j,k;

for(i=0;i<=2;i++)
for(j=0;j<=2;j++)
{
C[i][j]=0.0;
for(k=0;k<=2;k++)
C[i][j]+=A[i][k]*B[k][j];
}
}  /*end mult*/
```

## 3D Modeling & Rotation

The main thrust of this exercise is to extend the line art rotation into 3D object rotation using the same techniques as the 2D, while also implementing parallel projection as our means of 3D modeling.

The first part of the exercise requires that we define an object in a structure that we can easily manipulate. Using a cube for simplicity, we will start by defining the center of the cube and an array of vertices, vertex[2][# of pts] (see GetPoints in program). Referring to fig. 1, each vertex corresponds to a corner of the cube. The second dimension of the array is to provide a destination for transformed vertices. Having both sets will allow us to undraw and immediately redraw the shape - minimizing the hangtime between redrawing allows for smoother animation.

Figure 1.

Next let us construct an array of lines connecting these vertices. Each element of the line array refers to the index of the beginning and ending vertex of that particular line. This array will never change. Think of when you roll a die - the edges still go between the same corners, but the position of the corners has changed.

The next construct is the translation and inverse translation matrixes. As in 2D rotation, we must transform our local center of rotation to the origin, rotate, then translate back.

The idea of homogeneous coordinates was introduced in the last article and is now extended into 3D by adding a fourth term. Fig. 2 shows our homogeneous coordinate as a 1x4 matrix times our translation matrix(4x4). The purpose of this multiplication is to add a dx, dy and dz to every point, in order to center our vertices about the origin. Please verify that the matrix multiplication results in X+dx,Y+dy,Z+dz (if unfamiliar with matrix multiplication see matmult in program).

Figure 2.

Now we once again reach the challenging concept of rotation. Although similar to 2D, we now have the option of rotating around the X and Y as well as the Z-axis.

The simplest, rotation about the z-axis, is just as in our 2D rotations, because none of the z-values change. If this is hard to understand, think about this: if you look straight down a pencil with the point a foot away from you and spin it a half turn, the point is still a foot away, but the writing is now on the other side. The equations for the changes in the X and Y are as follows:

```  Xnew=XoldCos(Ø) + YoldSin(Ø)
Ynew=-XoldSin(Ø) + YoldCos(Ø)
```

The 3D representation in matrix form with a vertex multiplication is in fig. 3. And the proof of all this is in that dusty old trigonometry book up on your shelf. (once again direct multiplication of fig. 3 will yield the preceding equations).

Figure 3.

Similarly rotation about the X axis changes none of the x-values, and rotation about Y changes none of the y-values. The transformation equations are given as follows:

``` Ynew=YoldCos(Ø) + ZoldSin(Ø)
Znew=-YoldSin(Ø)+ZoldCos(Ø)
```

```   Xnew=XoldCos(Ø) - ZoldSin(Ø)
Znew=XoldSin(Ø) + ZoldCos(Ø)
```

The corresponding matrices are shown in figures 4 and 5.

Figure 4.

Figure 5.

Once again we will construct a new array of vertices from a single transformation matrix formed from the translation to the origin, rotation about an axis, and translation back. Therefore creating the new vertices:

``` Vnew=Vold*T*Rz*Tinv
```

or after combining T*Rz*Tinv into a single Master Transformation(MT):

``` Vnew=Vold*MT
```

Finally the trick of parallel projection when viewing an object from down the Z axis is that all you have to do is draw lines between the x,y components of the points (ignore the z). For those mathematically inclined, you will realize that this is just the projection of those 3D lines on the X-Y plane (see fig. 6).

Figure 6.

The particular stretch of code I’ve included implements this transformation on the cube for rotation along the X and Y axes of the center of the cube using the arrow keys. The successive transformations of the vertices are loaded into the flip of the array (vertex[flip][pnt.#]). Then the flop is undrawn while the flip is drawn as mentioned previously and flip and flop are changed to their corresponding 0 or 1.

After launching, the application immediately draws the cube and then rotates it in response to the arrows. The program exits after a single mouse click.

Once again the code is not intended to match up to the guidelines - but is intended for use with other code or simple instructional purposes. It is concise as possible and should be easy to type in. A quick change to numofpts and numoflines as well as your own vertex and and line definitions would allow you to spin your favorite initial into its most flattering orientation.

The inspiration for this program came from the floating couch problem presented in Dirk Gently’s Holistic Detective Agency, by Douglas Adams. If enough interest is shown, perhaps a future article would include hidden line removal and color rendering techniques. After all, it was a red couch.

One last suggestion for those truly interested is to pull your shape definition in from a 3D cad program that will export in text format, such as Super 3D or AutoCad.

Anyway, on with the show

```/* 3 */

#include<math.h>
/* Following is inline macro for drawing lines */
#define viewpts(s) {for(i=0;i<numoflns;i++)  \
{ MoveTo((int)vertex[s][line[i].v1].x,  \
(int)vertex[s][line[i].v1].y); \
LineTo((int)vertex[s][line[i].v2].x, \
(int)vertex[s][line[i].v2].y); }}

#define numofpts 8 /* A cube has eight vertices */
#define numoflns 12    /* lines for every face. */

/* the following are the data structs for vertices and lines*/ typedef
struct rec1 {float x,y,z;} point3d;
typedef struct rec2 {int v1,v2;} edge;
void mult();/* Matrices multiplication */

main()
{
point3d vertex[2][8], /* array of 3D pts   */
center;/* centroid of cube */
edge    line[12];/* array of lines */
int     buttondown=0, /* mousedwn flag(for prog end)*/
keypressed=0,       /* keydwn flg(for arrows)     */
flip=0,             /* This is index for vertex so*/
flop=1,             /* can undraw flip & draw flop*/
i,                  /* counter           */
rot=0; /* Flag for direction of rotat*/
long    low;   /* low word of keydwn message */
float   a,/* Particular angle of rotat     */
R[4][4], /* Rotation matrix*/
c[4][4], /* Product of trans & rot mats*/
d[4][4], /* Product of c and inv trans */
T[4][4],Tinv[4][4], /* Translation & inv trans    */
x=0.087266;/* Algle of rot in rad  */
EventRecord nextevent;
KeyMap    thekeys;
WindowPtr scnwdw;
Rect      scnrect;
/*********************************************
*  Set things up *
*********************************************/
InitGraf(&thePort);
InitFonts();
FlushEvents(everyEvent,0);
InitWindows();
TEInit();
InitDialogs(0);
InitCursor();
scnrect=screenBits.bounds;
InsetRect(&scnrect,50,50);
scnwdw=NewWindow(0,&scnrect,”\p”,TRUE,dBoxProc,-1,FALSE,0);

/*********************************************
*  Get points. Arbitrary cube.*
*********************************************/
center.x=300;center.y=200;center.z=120;
vertex[0][0].x=280;vertex[0][0].y=220;vertex[0][0].z=100;
vertex[0][1].x=320;vertex[0][1].y=220;vertex[0][1].z=100;
vertex[0][2].x=320;vertex[0][2].y=180;vertex[0][2].z=100;
vertex[0][3].x=280;vertex[0][3].y=180;vertex[0][3].z=100;
vertex[0][4].x=280;vertex[0][4].y=220;vertex[0][4].z=140;
vertex[0][5].x=320;vertex[0][5].y=220;vertex[0][5].z=140;
vertex[0][6].x=320;vertex[0][6].y=180;vertex[0][6].z=140;
vertex[0][7].x=280;vertex[0][7].y=180;vertex[0][7].z=140;
line[0].v1=0;line[0].v2=1;
line[1].v1=1;line[1].v2=2;
line[2].v1=2;line[2].v2=3;
line[3].v1=3;line[3].v2=0;
line[4].v1=0;line[4].v2=4;
line[5].v1=1;line[5].v2=5;
line[6].v1=2;line[6].v2=6;
line[7].v1=3;line[7].v2=7;
line[8].v1=4;line[8].v2=5;
line[9].v1=5;line[9].v2=6;
line[10].v1=6;line[10].v2=7;
line[11].v1=7;line[11].v2=4;
T[0][0]=1;T[0][1]=0;T[0][2]=0;T[0][3]=0;
T[1][0]=0;T[1][1]=1;T[1][2]=0;T[1][3]=0;
T[2][0]=0;T[2][1]=0;T[2][2]=1;T[2][3]=0;
T[3][0]=-center.x;T[3][1]=-center.y;T[3][2]=-center.z;T[3][3]=1;
Tinv[0][0]=1;Tinv[0][1]=0;Tinv[0][2]=0;Tinv[0][3]=0;
Tinv[1][0]=0;Tinv[1][1]=1;Tinv[1][2]=0;Tinv[1][3]=0;
Tinv[2][0]=0;Tinv[2][1]=0;Tinv[2][2]=1;Tinv[2][3]=0;
Tinv[3][0]=center.x;Tinv[3][1]=center.y;Tinv[3][2]=center.z;Tinv[3][3]=1;

/*********************************************
*  Rotate *
*********************************************/
viewpts(flip);   /* This draws first set of pts*/
while(!buttondown) /* Mini event loop*/
{
keypressed=0;
if(GetNextEvent(-1,&nextevent))
if(nextevent.what==mouseDown) buttondown=1;
else if(nextevent.what==keyDown) keypressed=1;
else if(nextevent.what==autoKey) keypressed=1;
if(keypressed) /* Find out which one     */
{
keypressed=0;
low=LoWord(nextevent.message);
low=BitShift(low,-8);
if(low==126) {rot=1;a=-x;} /* Set dir flag and-*/
if(low==124) {rot=2;a=-x;} /* angle(pos or neg */
if(low==125) {rot=3;a=x;}
if(low==123) {rot=4;a=x;}
switch(rot)
{
case 1:/* Both of these are rot about the X axis */
case 3: R[0][0]=1;R[0][1]=0;R[0][2]=0;R[0][3]=0;
R[1][0]=0;R[1][1]=cos(a);R[1][2]=sin(a);R[1][3]=0;
R[2][0]=0;R[2][1]=-sin(a);R[2][2]=cos(a);R[2][3]=0;
R[3][0]=0;R[3][1]=0;R[3][2]=0;R[3][3]=1;break;
case 2:/* Both of these are rot about the Y axis */
case 4:
R[0][0]=cos(a);
R[0][1]=0;R[0][2]=-sin(a);R[0][3]=0;
R[1][0]=0;R[1][1]=1;R[1][2]=0;R[1][3]=0;
R[2][0]=sin(a);R[2][1]=0;R[2][2]=cos(a);R[2][3]=0;
R[3][0]=0;R[3][1]=0;R[3][2]=0;R[3][3]=1;break;
}  /*end switch*/
mult(T,R,c); /* Combine trans & rotation */
mult(c,Tinv,d);/* Combine that and inv trans */
flip++;flip=flip%2;flop++;flop=flop%2; /* flip flop   */
/* The following actually calculates new vert of rotat*/
for(i=0;i<numofpts;i++)
{
vertex[flip][i].x=vertex[flop][i].x*d[0][0]
+vertex[flop][i].y*d[1][0]
+vertex[flop][i].z*d[2][0]
+1*d[3][0];
vertex[flip][i].y=vertex[flop][i].x*d[0][1]
+vertex[flop][i].y*d[1][1]
+vertex[flop][i].z*d[2][1]
+1*d[3][1];
vertex[flip][i].z=vertex[flop][i].x*d[0][2]
+vertex[flop][i].y*d[1][2]
+vertex[flop][i].z*d[2][2]
+1*d[3][2];
}
ForeColor(whiteColor);
viewpts(flop);/* Undraw*/
ForeColor(blackColor);
viewpts(flip);/* Draw*/
}  /*end update points*/
}

/*********************************************
*  End everything*
*********************************************/
DisposeWindow(scnwdw);
}  /*program end*/

void mult(A,B,C)
float A[][4],B[][4],C[][4];
{
int i,j,k;

for(i=0;i<=3;i++)
for(j=0;j<=3;j++)
{
C[i][j]=0.0;
for(k=0;k<=3;k++)
C[i][j]+=A[i][k]*B[k][j];
}
}  /*end mult*/
```

Community Search:
MacTech Search:

Microsoft Remote Desktop 8.0.16 - Connec...
With Microsoft Remote Desktop, you can connect to a remote PC and your work resources from almost anywhere. Experience the power of Windows with RemoteFX in a Remote Desktop client designed to help... Read more
Spotify 1.0.4.90. - Stream music, create...
Spotify is a streaming music service that gives you on-demand access to millions of songs. Whether you like driving rock, silky R&B, or grandiose classical music, Spotify's massive catalogue puts... Read more
djay Pro 1.1 - Transform your Mac into a...
djay Pro provides a complete toolkit for performing DJs. Its unique modern interface is built around a sophisticated integration with iTunes and Spotify, giving you instant access to millions of... Read more
Vivaldi 1.0.118.19 - Lightweight browser...
Vivaldi browser. In 1994, two programmers started working on a web browser. Our idea was to make a really fast browser, capable of running on limited hardware, keeping in mind that users are... Read more
Stacks 2.6.11 - New way to create pages...
Stacks is a new way to create pages in RapidWeaver. It's a plugin designed to combine drag-and-drop simplicity with the power of fluid layout. Features: Fluid Layout: Stacks lets you build pages... Read more
xScope 4.1.3 - Onscreen graphic measurem...
xScope is powerful set of tools that are ideal for measuring, inspecting, and testing on-screen graphics and layouts. Its tools float above your desktop windows and can be accessed via a toolbar,... Read more
Cyberduck 4.7 - FTP and SFTP browser. (F...
Cyberduck is a robust FTP/FTP-TLS/SFTP browser for the Mac whose lack of visual clutter and cleverly intuitive features make it easy to use. Support for external editors and system technologies such... Read more
Labels & Addresses 1.7 - Powerful la...
Labels & Addresses is a home and office tool for printing all sorts of labels, envelopes, inventory labels, and price tags. Merge-printing capability makes the program a great tool for holiday... Read more
teleport 1.2.1 - Use one mouse/keyboard...
teleport is a simple utility to let you use one single mouse and keyboard to control several of your Macs. Simply reach the edge of your screen, and your mouse teleports to your other Mac! The... Read more
Apple iMovie 10.0.8 - Edit personal vide...
With an all-new design, Apple iMovie lets you enjoy your videos like never before. Browse your clips more easily, instantly share your favorite moments, and create beautiful HD movies and Hollywood-... Read more

## Latest Forum Discussions

Use Batting Average and the Apple Watch...
Batting Average, by Pixolini, is designed to help you manage your statistics. Every time you go to bat, you can use your Apple Watch to track  your swings, strikes, and hits. [Read more] | Read more »
Celebrate Studio Pango's 3rd Annive...
It is time to party, Pangoland pals! Studio Pango is celebrating their 3rd birthday and their gift to you is a new update to Pangoland. [Read more] | Read more »
Become the World's Most Important D...
Must Deliver, by cherrypick games, is a top-down endless-runner witha healthy dose of the living dead. [Read more] | Read more »
SoundHound + LiveLyrics is Making its De...
SoundHound Inc. has announced that SoundHound + LiveLyrics, will be one of the first third-party apps to hit the Apple Watch. With  SoundHound you'll be able to tap on your watch and have the app recognize the music you are listening to, then have... | Read more »
Adobe Joins the Apple Watch Lineup With...
A whole tidal wave of apps are headed for the Apple Watch, and Adobe has joined in with 3 new ways to enhance your creativity and collaborate with others. The watch apps pair with iPad/iPhone apps to give you total control over your Adobe projects... | Read more »
Z Steel Soldiers, Sequel to Kavcom'...
Kavcom has released Z Steel Soldiers, which continues the story of the comedic RTS originally created by the Bitmap Brothers. [Read more] | Read more »
Seene Lets You Create 3D Images With You...
Seene, by Obvious Engineering, is a 3D capture app that's meant to allow you to create visually stunning 3D images with a tap of your finger, and then share them as a 3D photo, video or gif. [Read more] | Read more »
Lost Within - Tips, Tricks, and Strategi...
Have you just downloaded Lost Within and are you in need of a guiding hand? While it’s not the toughest of games out there you might still want some helpful tips to get you started. [Read more] | Read more »
The Petcube Camera is a device that lets you use live video to check in on your pet, talk to them, and play with them using a laser pointer - all while you're away. And the Petcube app is coming to the Apple Watch, so you'll be able to hang out with... | Read more »
Now You Can Manage Your Line2 Calls With...
You'll be able to get your Line2 cloud phone service on the Apple Watch very soon. The watch app can send and receive messages using hands-free voice dictation, or by selecting from a list of provided responses. [Read more] | Read more »

## Price Scanner via MacPrices.net

Intel Compute Stick: A New Mini-Computing For...
The Intel Compute Stick, a new pocket-sized computer based on a quad-core Intel Atom processor running Windows 8.1 with Bing, is available now through Intel Authorized Dealers across much of the... Read more
Heal to Launch First One-Touch House Call Doc...
Santa Monica, California based Heal, a pioneer in on-demand personal health care services — will offer the first one-touch, on-demand house call doctor app for the Apple Watch. Heal’s Watch app,... Read more
Mac Notebooks: Avoiding MagSafe Power Adapter...
Apple Support says proper usage, care, and maintenance of Your Mac notebook’s MagSafe power adapter can substantially increase the the adapter’s service life. Of course, MagSafe itself is an Apple... Read more
12″ Retina MacBook In Shootout With Air And P...
BareFeats’ rob-ART morgan has posted another comparison of the 12″ MacBook with other Mac laptops, noting that the general goodness of all Mac laptops can make which one to purchase a tough decision... Read more
FileMaker Go for iPad and iPhone: Over 1.5 Mi...
FileMaker has announced that its FileMaker Go for iPad and iPhone app has surpassed 1.5 million downloads from the iTunes App Store. The milestone confirms the continued popularity of the FileMaker... Read more
Sale! 13-inch 2.7GHz Retina MacBook Pro for \$...
Best Buy has the new 2015 13″ 2.7GHz/128GB Retina MacBook Pro on sale for \$1099 – \$200 off MSRP. Choose free shipping or free local store pickup (if available). Price for online orders only, in-... Read more
Minimalist MacBook Confirms Death of Steve Jo...
ReadWrite’s Adriana Lee has posted a eulogy for the “Digital Hub” concept Steve Jobs first proposed back in 2001, declaring the new 12-inch MacBook with its single, over-subscribed USB-C port to be... Read more
13-inch 2.7GHz Retina MacBook Pro for \$1234 w...
Adorama has the 13″ 2.7GHz/128GB Retina MacBook Pro in stock for \$1234.99 (\$65 off MSRP) including free shipping plus a free LG external DVD/CD optical drive. Adorama charges sales tax in NY & NJ... Read more
13-inch 2.5GHz MacBook Pro available for \$999...
Adorama has the 13-inch 2.5GHz MacBook Pro on sale for \$999 including free shipping plus NY & NJ sales tax only. Their price is \$100 off MSRP. Read more
Save up to \$600 with Apple refurbished Mac Pr...
The Apple Store is offering Apple Certified Refurbished Mac Pros for up to \$600 off the cost of new models. An Apple one-year warranty is included with each Mac Pro, and shipping is free. The... Read more

## Jobs Board

*Apple* Retail - Multiple Positions (US) - A...
Sales Specialist - Retail Customer Service and Sales Transform Apple Store visitors into loyal Apple customers. When customers enter the store, you're also the Read more
*Apple* Support Technician IV - Jack Henry a...
Job Description Jack Henry & Associates is seeking an Apple Support Technician. This position while acting independently, ensures the proper day-to-day control of Read more
*Apple* Client Systems Solution Specialist -...
…drive revenue and profit in assigned sales segment and/or region specific to the Apple brand and product sets. This person will work directly with CDW Account Managers Read more
*Apple* Software Support - Casper (Can work...
…experience . Full knowledge of Mac OS X and prior . Mac OSX / Server . Apple Remote Desktop . Process Documentation . Ability to prioritize multiple tasks in a fast pace Read more
*Apple* Software Support - Xerox Corporation...
…Imaging experience Full knowledge of Mac OS X and prior Mac OSX / Server Apple Remote Desktop Process Documentation Ability to prioritize multiple tasks in a fast pace Read more