TweetFollow Us on Twitter

SANE Normalized
Volume Number:6
Issue Number:1
Column Tag:XCMD Corner

SANE Normalized

By Donald Koscheka, Ernst & Young, MacTutor Contributing Editor

Note: Source code files accompanying article are located on MacTech CD-ROM or source code disks.

Ten years makes a big difference. When I started engineering school in 1973, I wanted to learn everything I could about the nascent microcomputer technology. For several years after graduation, however, I had trouble securing meaningful employment as a microcomputer engineer. With the exception of Silicon Valley and an instrumental little hotspot in Texas, there wasn’t much calling for people who knew about microcomputers. Employers were intrigued by my background, but they regarded the microcomputer as not much more than an interesting toy. They argued that micros didn’t have enough memory to do real work, they couldn’t do real number crunching, and so on.

I found myself apologizing for these shortcomings. Realizing that I would probably have to beef up my computer experience, I enrolled in graduate school in 1980 at the University of Illinois. At the time, the school used yet another derivative of the IBM 370. You can imagine my reaction when I discovered that this behemoth was running an operating system called CMS (Conversational Mode System or some such). The entire goal of this operating system was to transform this monolithic hunk of iron in hundreds of “virtual personal computers”. The same people that were pooh-poohing my microcomputer training were spending vast amounts of effort trying to make their mainframes look like personal computers!

Ten years later, I think it’s safe to say that the personal computer cum micro has come of age. Aside from the obvious advances in user interface design, tremendous progress has been made in the personal computer technology.

Nowhere is this more evident than in the floating point support that ships at no extra cost with each and every Macintosh: the Standard Apple Numerics Environment (SANE). Numerics on the Macintosh are as good as or better than numerics on many mainframes. The implications of this quiet little revolution are profound, you can trust your Macintosh to do real number crunching accurately and reliably!

SANE guarantees well-behaved results and you don’t have to be an expert in floating point arithmetic to use the Macintosh numerics package. If you do need to get into the details, SANE is beautifully documented in the Apple Numerics Manual, Second Addition by Addison Wesley. This is one of the best technical publications I have ever read; it is a paragon of simplicity and clarity.

I recently implemented a business graphics package as a set of XCMDs that accepts numbers from Hypercard and plots them into a windoid. I wanted to scale the picture so that it exactly fits within the dimensions of the windoid. I also didn’t want to limit the input data to the domain of integers; a floating point implementation was indicated.

When using SANE, the old adage that knowledge is power is a statement of fact (if one’s definition of power is the number of floating point operations per second). To exploit SANE, you should understand how floating point numbers work in the binary world.

HyperTalk’s callback mechnanism supports conversions between strings and extendeds (80 bit floating point numbers). While this is a good starting place, it only begins to untap the magic of SANE.

Floating point numbers come in a variety of flavors. You must consider factors such as range, precision, speed and space before settling on a format for your program. Simple applications might make do with the 32-bit single precision type, float. Most applications will be adequately served with the 64-bit double precision floating point type (double in “C” or Pascal). Understanding the internals of SANE can help you make a more informed decision.

For example, knowing that all SANE internal operations are performed on the extended type allows you to make an important design decision: if speed is important, you might want to consider doing all of your arithmetic with 80-bit extended numbers so that you can spare your code the overhead of automatic type conversions. If you know a priori that your product will have co-processor support, then the 96-bit extended type may better suit your needs.

For bean counters, there’s even a computational type that allows you to manipulate very large signed integers (64 bits).

The extended data type is the essential SANE type but it is implementation dependent. You should store your numbers in some other language specific format. If you intend to massage the data heavily, you might consider declaring your variables as extendeds so that no intermediate conversions will be made yielding speed for the potential loss of portability. This assumes that you have some worthwhile machine that you want to port to in the first place.

As I studied these floating point formats, I discovered some interesting properties of floating point representations in the binary world. I debug in TMON, so I need to be able to disassemble floating point numbers with the same ease that I disassemble integers. I needed to learn how to read floating point numbers from hex dumps. This is an illuminating exercise so I hope you won’t mind if I share it with you.

A decimal number can be broken down into the product of three numbers (if you ever learned how to use a slide rule, you’ll appreciate the value of this representation):

 -100110 = -1 * 1.001 * 103

Let’s call 1.001 the significand and 3 the exponent (the power of 10 that the significand is raised to). Any decimal number can be represented as the product of a sign, a significand and an exponent. It turns out that this is not just a property of decimal numbers. Binary numbers can be represented in the same fashion:

 1.001 * 23 

is equal to 9 base ten. Demonstrating this provides us with some insights into floating point numbers.

SANE stores numbers in either normalized or denormalized forms. Normalization maximizes precision for a given number of bits (can you prove this to yourself?) Unfortunately, very small numbers cannot be represented in this normalized format; how small the number has to be depends on the number of bits used to represent the number. Unless your idea of a fun afternoon is exploring the Mandelbrot set, you probably won’t need to concern yourself with the difference between normalized and denormalized numbers; suffice it to say that denormalized numbers are very small and characteristically hover around the origin.

SANE uses the format in figure 1 to store 80-bit normalized extended numbers.

Figure 1. Format of extended numbers in SANE.

The most significant bit is the sign bit, just as in signed integers. The next fifteen bits represent the exponent using the formula:

 2(e-16383)

This representation allows for numbers whose orders of magnitude range from 2-16385 to 2+16385. The next field in the number (the i-bit) is set if this is a normalized number, cleared otherwise. The “f” field represents the fractional portion of the significand. If the i-bit is set, then the significand is assembled as 1.f otherwise, the significand is assembled as 0.f. The exponent determines the range of the numbers while the significand determines the resolution of the numbers.

The complete representation for the extended type becomes the product of its components (for normalized numbers):

 (-1)s * 2(e-16383) * 1.f

To test this format, I wrote the following “C” program:

/* 1 */

main(){
 extended x;

 x = 9;
}

to determine the extended representation of 9 decimal. On debugging this number, I noticed that the integer 9 is first converted to a SANE extended which pops out as:

 $4002 9000 0000 0000 0000

To see if this is truly the extended representation of the number, let’s dissect it. The most significant bit is turned off so we know this is a positive number. The next 15 bits represent the exponent, in this case $4002 (hex) which is equal to 16386 decimal. Putting the sign and exponent together reveals the order of magnitude of the number:

 (-1)0 * 2(16386-16383) = 1 * 23 = 8

The rest of the number is the significand. The i-bit is set so this is a normalized number:

 1.0012

The significand is a binary fraction (the word decimal doesn’t quite seem to fit here).

When you see the decimal numbers 0.1, 0.01, 0.001 , you interpret them as 1/10, 1/100 and 1/1000 respectively. The binary numbers 0.12, 0.012 and 0.0012 have identical representations: 1/10, 1/100 and 1/1000 respectively, albeit in a different number system. To determine the value of a binary fraction, you need to know the decimal equivalent of these numbers. That’s simple: (1/10)2 is equivalent to (1/2)10. In the same fashion (1/100)2 = 1/4 and (1/1000)2 = 1/8. By now you should have inferred that these binary fractions are the negative powers of 2.

Armed with this knowledge, we can now determine that 1.0012 is equal to 1 + 1/8 or (1.125)10. We can now finish converting our extended number:

 1 * 23 * 1.125 = 8 * 1.125 = 9

If the significand raised to its exponent yields an integer (no fractional part) you can very quickly determine that value of the number:

  (-1)0 * 23 * 1.001 = 1 * 8 * 1.0012 = 910

In other words, just slide the significand to the right by the number of “decimal” places in the exponent. This is a simple trick that any student of the metric system understands but tends to be forgotten when we change to a non-decimal number system.

Try some of these problems on your own. You might want to consider exercises like finding the largest positive and negative numbers that a given format can represent. Equally interesting, is finding smallest number that can be represented in this format. What does 0 look like (watch this, it’s a trick question)?

Listing 1 contains a grab bag of SANE glue routines which I’ve provided as illustrations of how to interface with SANE. You may never need to use these conversions but knowing how this mechanism works will surely help you to debug code that references SANE.

SANE operations get dispatched via the trap _FP68K which most likely stands for “Floating Point, 68000” (SANE has been implemented on ALL Apple platforms since the mid-80s).

The conversions typically take an input parameter, an output parameter and an opword. The opwords are mnemonic, FX2D stands for extended to double and FL2X stands for long to extended. The conversion utilities in SANE give you a lot of control over how you want to represent your data and how you want to present it to the user. If you’re serious about these conversions, you might want to write a general purpose converter that can convert between any two formats.

If you want to explore SANE further, get a copy of the Apple Numerics Manual. The next time you run into one of those old hacks who believe that, “it ain’t a real computer unless it’s water cooled”, don’t get upset. They need all that power to compensate for the fact that some of those monoliths can’t even add as well as the Macintosh!

/* 2 */

void  ExtToDouble( ext, dbl )
 extended *ext;
 double *dbl;
/******************************
* given the extended IEEE number
* passed in, return its double
* representation
*
******************************/
{

asm{
 move.l 8(A6),-(sp); address of the extended
 move.l 12(A6),-(sp) ; address of the double
 move.w #FX2D,-(sp); push the appropriate opword
 _FP68K
 }
}

void  DoubleToExt( dbl, ext )
 double *dbl;
 extended *ext;
/******************************
* given the double number
* passed in, return its extended
* representation
*
******************************/
{

asm{
 move.l 8(A6),-(sp); address of the double
 move.l 12(A6),-(sp) ; address of the extended
 move.w #FD2X,-(sp); push the appropriate opword
 _FP68K
 }
}

void  LongToExt( lg, ext )
 long   *lg;
 extended *ext;
/******************************
* given the long  number
* passed in, return its extended
* representation
*
******************************/
{

asm{
 move.l 8(A6),-(sp); address of the long
 move.l 12(A6),-(sp) ; address of the extended
 move.w #FL2X,-(sp); push the appropriate opword
 _FP68K
 }
}

void  ExtToLong( ext, theint )
 extended *ext;
 long   *theint;
/******************************
* given the extended IEEE number
* passed in, return its long word
* representation
*
******************************/
{
asm{
 move.l 8(A6),-(sp); pointer to the extended
 move.l 12(A6),-(sp) ; address of the long
 move.w #FX2L,-(sp); push the appropriate opword
 _FP68K
 }
}

void  DoubleToLong( dbl, theint )
 double *dbl;
 long   *theint;
/******************************
* A simple conversion utility that might be useful
* for debugging at the TMON and MACSBUG level.
******************************/
{
 extended temp;
 
 DoubleToExt( dbl, &temp);
 ExtToLong( &temp, theint );
}

void  ExtendedToStr( ext, theStr )
 extended *ext;
 char   *theStr;
/*******************************
* convert an extended to a string
* 
* First convert the number to 
* a decimal record and then convert
* the decimal record to a string.
*
* The Hypercard callback “ExtToStr” does
* this for you.  I’ve added it here for those
* cases where you can’t make a callback
*
* The conversions uses the decimal record 
* structure that’s documented in Apple Numerics
* manual.
*******************************/
{
 decformdecrec;
 decimaldecnum;
 
 /*** convert the extended to a decimal ***/

 decrec.style = FIXEDDECIMAL;
 decrec.digits= 0;
 num2str( &decrec, *ext, theStr );
}

LISTING 1. Some Interesting SANE conversion utilities

 

Community Search:
MacTech Search:

Software Updates via MacUpdate

BBEdit 11.1.1 - Powerful text and HTML e...
BBEdit is the leading professional HTML and text editor for the Mac. Specifically crafted in response to the needs of Web authors and software developers, this award-winning product provides a... Read more
CrossOver 14.1.3 - Run Windows apps on y...
CrossOver can get your Windows productivity applications and PC games up and running on your Mac quickly and easily. CrossOver runs the Windows software that you need on Mac at home, in the office,... Read more
Little Snitch 3.5.3 - Alerts you about o...
Little Snitch gives you control over your private outgoing data. Track background activity As soon as your computer connects to the Internet, applications often have permission to send any... Read more
OmniGraffle Pro 6.2.3 - Create diagrams,...
OmniGraffle Pro helps you draw beautiful diagrams, family trees, flow charts, org charts, layouts, and (mathematically speaking) any other directed or non-directed graphs. We've had people use... Read more
OmniFocus 2.2 - GTD task manager with iO...
OmniFocus helps you manage your tasks the way that you want, freeing you to focus your attention on the things that matter to you most. Capturing tasks and ideas is always a keyboard shortcut away in... Read more
Cocktail 8.4 - General maintenance and o...
Cocktail is a general purpose utility for OS X that lets you clean, repair and optimize your Mac. It is a powerful digital toolset that helps hundreds of thousands of Mac users around the world get... Read more
PDFKey Pro 4.3 - Edit and print password...
PDFKey Pro can unlock PDF documents protected for printing and copying when you've forgotten your password. It can now also protect your PDF files with a password to prevent unauthorized access and/... Read more
Kodi 15.0.beta1 - Powerful media center...
Kodi (was XBMC) is an award-winning free and open-source (GPL) software media player and entertainment hub that can be installed on Linux, OS X, Windows, iOS, and Android, featuring a 10-foot user... Read more
DiskCatalogMaker 6.4.12 - Catalog your d...
DiskCatalogMaker is a simple disk management tool which catalogs disks. Simple, light-weight, and fast. Finder-like intuitive look and feel. Super-fast search algorithm. Can compress catalog data... Read more
Macs Fan Control 1.3.0.0 - Monitor and c...
Macs Fan Control allows you to monitor and control almost any aspect of your computer's fans, with support for controlling fan speed, temperature sensors pane, menu-bar icon, and autostart with... Read more

Moleskine Timepage – Calendar for iCloud...
Moleskine Timepage – Calendar for iCloud, Google & Exchange 1.0 Device: iOS iPhone Category: Productivity Price: $4.99, Version: 1.0 (iTunes) Description: The most elegant calendar for your pocket and wrist, Timepage is a... | Read more »
QuizUp Gets Social in its New Update
Plain Vanilla Corp has released a new and improved version of their popular trivia game, QuizUp. The app now emphasizes social play so you can challenge friends from all over the world. [Read more] | Read more »
The Deep (Games)
The Deep 1.0 Device: iOS Universal Category: Games Price: $1.99, Version: 1.0 (iTunes) Description: Swipe Controls Delve into the deep in this retro rogue-like! Swipe to move your diver around and keep away from the enemies as you... | Read more »
Battle of Gods: Ascension (Games)
Battle of Gods: Ascension 1.0 Device: iOS Universal Category: Games Price: $2.99, Version: 1.0 (iTunes) Description: TURN-BASED TACTICAL COMBATFight tactical battles against the forces of Hades! In Battle of Gods: Ascension you play... | Read more »
Shadowmatic's Latest Update Adds a...
Shadowmatic's shadowy shadow-ness is getting a little shadowy-er thanks to a recent update that adds an Arcade Mode. [Read more] | Read more »
Sunrise Calendar and Slack Have Assimila...
Wunderlist is perhaps one of the most populat and beloved productivity apps on the App Store - and now it's gone and incorporated itself into other useful services like Sunrise Calendar and Slack. [Read more] | Read more »
Crossy Road Devs Hipster Whale are Bring...
Hipster Whale, the minds behind the rather popular (and rather great) Crossy Road, have teamed-up with Bandai Namco to create PAC-MAN 256: an absolutely bonkers looking maze runner chaser thing. | Read more »
Meet the New Spotify Music
Spotify Music  has a lot going on. They're introducing 3 new modes to serve all your musical needs, with the "Now" start page  gives you curated playlists based on your particular tastes. As you listen the app will learn more about your tastes and... | Read more »
What the Apple Watch Gets Right, and Wha...
| Read more »
Celebrate PAC-MAN's 35th Birthday W...
BANDAI NAMCO Entertainment America is celebrating PAC-MAN's 35th anniversary by releasing updates for PAC-MAN and PAC-MAN Lite for iOS. [Read more] | Read more »

Price Scanner via MacPrices.net

What Would the ideal Apple Productivity Platf...
For the past four years I’ve kept a foot in both the Mac and iPad camps respectively. my daily computing hours divided about 50/50 between the two devices with remarkable consistency. However, there’... Read more
PageMeUp 1.2.1 Ten Dollar Page Layout Applica...
Paris, France-based Softobe, an OS X software development company, has announced that their PageMeUp v. 1.2.1, is available on the Mac App Store for $9.99. The license can be installed on up to 5... Read more
Eight New Products For USB Type-C Application...
Fresco Logic, specialists in advanced connectivity technologies and ICs, has introduced two new product families targeting the Type-C connector recently introduced across a number of consumer... Read more
Scripps National Spelling Bee Launches Buzzwo...
Scripps National Spelling Bee fans can monitor the action at the 2015 Spelling Bee with the new Buzzworthy app for iOS, Android and Windows mobile devices. The free Buzzworthy app provides friendly... Read more
13-inch 2.5GHz MacBook Pro on sale for $120 o...
B&H Photo has the 13″ 2.5GHz MacBook Pro on sale for $979 including free shipping plus NY sales tax only. Their price is $120 off MSRP, and it’s the lowest price for this model (except for Apple’... Read more
27-inch 3.3GHz 5K iMac on sale for $1899, $10...
B&H Photo has the new 27″ 3.3GHz 5K iMac on sale for $1899.99 including free shipping plus NY tax only. Their price is $100 off MSRP. Read more
Save up to $50 on iPad Air 2, NY tax only, fr...
B&H Photo has iPad Air 2s on sale for up to $50 off MSRP including free shipping plus NY sales tax only: - 16GB iPad Air 2 WiFi: $469 $30 off - 64GB iPad Air 2 WiFi: $549.99 $50 off - 128GB iPad... Read more
Updated Mac Price Trackers
We’ve updated our Mac Price Trackers with the latest information on prices, bundles, and availability on systems from Apple’s authorized internet/catalog resellers: - 15″ MacBook Pros - 13″ MacBook... Read more
New 13-inch 2.9GHz Retina MacBook Pro on sale...
B&H Photo has the 13″ 2.9GHz/512GB Retina MacBook Pro on sale for $1699.99 including free shipping plus NY tax only. Their price is $100 off MSRP, and it’s the lowest price for this model from... Read more
Apple refurbished 2014 MacBook Airs available...
The Apple Store has Apple Certified Refurbished 2014 MacBook Airs available starting at $679. An Apple one-year warranty is included with each MacBook, and shipping is free: - 11″ 1.4GHz/128GB... Read more

Jobs Board

*Apple* Solutions Consultant - Retail Sales...
**Job Summary** As an Apple Solutions Consultant (ASC) you are the link between our customers and our products. Your role is to drive the Apple business in a retail Read more
*Apple* Watch SW Application Project Manager...
**Job Summary** The Apple Watch software team is looking for an Application Engineering Project Manager to work on new projects for Apple . The successful candidate Read more
Engineering Manager for *Apple* Maps on the...
…the Maps App Team get to take part in just about any new feature in Apple Maps, often contributing a majority of the feature work. In our day-to-day engineering work, we Read more
Senior Software Engineer - *Apple* SIM - Ap...
Changing the world is all in a day039s work at Apple . If you love innovation, here039s your chance to make a career of it. You039ll work hard. But the job comes with Read more
Lead *Apple* Solutions Consultant - Retail...
**Job Summary** Job Summary The Lead ASC is an Apple employee who serves as the Apple business manager and influencer in a hyper-business critical Reseller's store Read more
All contents are Copyright 1984-2011 by Xplain Corporation. All rights reserved. Theme designed by Icreon.