TweetFollow Us on Twitter

SANE Normalized
Volume Number:6
Issue Number:1
Column Tag:XCMD Corner

SANE Normalized

By Donald Koscheka, Ernst & Young, MacTutor Contributing Editor

Note: Source code files accompanying article are located on MacTech CD-ROM or source code disks.

Ten years makes a big difference. When I started engineering school in 1973, I wanted to learn everything I could about the nascent microcomputer technology. For several years after graduation, however, I had trouble securing meaningful employment as a microcomputer engineer. With the exception of Silicon Valley and an instrumental little hotspot in Texas, there wasn’t much calling for people who knew about microcomputers. Employers were intrigued by my background, but they regarded the microcomputer as not much more than an interesting toy. They argued that micros didn’t have enough memory to do real work, they couldn’t do real number crunching, and so on.

I found myself apologizing for these shortcomings. Realizing that I would probably have to beef up my computer experience, I enrolled in graduate school in 1980 at the University of Illinois. At the time, the school used yet another derivative of the IBM 370. You can imagine my reaction when I discovered that this behemoth was running an operating system called CMS (Conversational Mode System or some such). The entire goal of this operating system was to transform this monolithic hunk of iron in hundreds of “virtual personal computers”. The same people that were pooh-poohing my microcomputer training were spending vast amounts of effort trying to make their mainframes look like personal computers!

Ten years later, I think it’s safe to say that the personal computer cum micro has come of age. Aside from the obvious advances in user interface design, tremendous progress has been made in the personal computer technology.

Nowhere is this more evident than in the floating point support that ships at no extra cost with each and every Macintosh: the Standard Apple Numerics Environment (SANE). Numerics on the Macintosh are as good as or better than numerics on many mainframes. The implications of this quiet little revolution are profound, you can trust your Macintosh to do real number crunching accurately and reliably!

SANE guarantees well-behaved results and you don’t have to be an expert in floating point arithmetic to use the Macintosh numerics package. If you do need to get into the details, SANE is beautifully documented in the Apple Numerics Manual, Second Addition by Addison Wesley. This is one of the best technical publications I have ever read; it is a paragon of simplicity and clarity.

I recently implemented a business graphics package as a set of XCMDs that accepts numbers from Hypercard and plots them into a windoid. I wanted to scale the picture so that it exactly fits within the dimensions of the windoid. I also didn’t want to limit the input data to the domain of integers; a floating point implementation was indicated.

When using SANE, the old adage that knowledge is power is a statement of fact (if one’s definition of power is the number of floating point operations per second). To exploit SANE, you should understand how floating point numbers work in the binary world.

HyperTalk’s callback mechnanism supports conversions between strings and extendeds (80 bit floating point numbers). While this is a good starting place, it only begins to untap the magic of SANE.

Floating point numbers come in a variety of flavors. You must consider factors such as range, precision, speed and space before settling on a format for your program. Simple applications might make do with the 32-bit single precision type, float. Most applications will be adequately served with the 64-bit double precision floating point type (double in “C” or Pascal). Understanding the internals of SANE can help you make a more informed decision.

For example, knowing that all SANE internal operations are performed on the extended type allows you to make an important design decision: if speed is important, you might want to consider doing all of your arithmetic with 80-bit extended numbers so that you can spare your code the overhead of automatic type conversions. If you know a priori that your product will have co-processor support, then the 96-bit extended type may better suit your needs.

For bean counters, there’s even a computational type that allows you to manipulate very large signed integers (64 bits).

The extended data type is the essential SANE type but it is implementation dependent. You should store your numbers in some other language specific format. If you intend to massage the data heavily, you might consider declaring your variables as extendeds so that no intermediate conversions will be made yielding speed for the potential loss of portability. This assumes that you have some worthwhile machine that you want to port to in the first place.

As I studied these floating point formats, I discovered some interesting properties of floating point representations in the binary world. I debug in TMON, so I need to be able to disassemble floating point numbers with the same ease that I disassemble integers. I needed to learn how to read floating point numbers from hex dumps. This is an illuminating exercise so I hope you won’t mind if I share it with you.

A decimal number can be broken down into the product of three numbers (if you ever learned how to use a slide rule, you’ll appreciate the value of this representation):

 -100110 = -1 * 1.001 * 103

Let’s call 1.001 the significand and 3 the exponent (the power of 10 that the significand is raised to). Any decimal number can be represented as the product of a sign, a significand and an exponent. It turns out that this is not just a property of decimal numbers. Binary numbers can be represented in the same fashion:

 1.001 * 23 

is equal to 9 base ten. Demonstrating this provides us with some insights into floating point numbers.

SANE stores numbers in either normalized or denormalized forms. Normalization maximizes precision for a given number of bits (can you prove this to yourself?) Unfortunately, very small numbers cannot be represented in this normalized format; how small the number has to be depends on the number of bits used to represent the number. Unless your idea of a fun afternoon is exploring the Mandelbrot set, you probably won’t need to concern yourself with the difference between normalized and denormalized numbers; suffice it to say that denormalized numbers are very small and characteristically hover around the origin.

SANE uses the format in figure 1 to store 80-bit normalized extended numbers.

Figure 1. Format of extended numbers in SANE.

The most significant bit is the sign bit, just as in signed integers. The next fifteen bits represent the exponent using the formula:

 2(e-16383)

This representation allows for numbers whose orders of magnitude range from 2-16385 to 2+16385. The next field in the number (the i-bit) is set if this is a normalized number, cleared otherwise. The “f” field represents the fractional portion of the significand. If the i-bit is set, then the significand is assembled as 1.f otherwise, the significand is assembled as 0.f. The exponent determines the range of the numbers while the significand determines the resolution of the numbers.

The complete representation for the extended type becomes the product of its components (for normalized numbers):

 (-1)s * 2(e-16383) * 1.f

To test this format, I wrote the following “C” program:

/* 1 */

main(){
 extended x;

 x = 9;
}

to determine the extended representation of 9 decimal. On debugging this number, I noticed that the integer 9 is first converted to a SANE extended which pops out as:

 $4002 9000 0000 0000 0000

To see if this is truly the extended representation of the number, let’s dissect it. The most significant bit is turned off so we know this is a positive number. The next 15 bits represent the exponent, in this case $4002 (hex) which is equal to 16386 decimal. Putting the sign and exponent together reveals the order of magnitude of the number:

 (-1)0 * 2(16386-16383) = 1 * 23 = 8

The rest of the number is the significand. The i-bit is set so this is a normalized number:

 1.0012

The significand is a binary fraction (the word decimal doesn’t quite seem to fit here).

When you see the decimal numbers 0.1, 0.01, 0.001 , you interpret them as 1/10, 1/100 and 1/1000 respectively. The binary numbers 0.12, 0.012 and 0.0012 have identical representations: 1/10, 1/100 and 1/1000 respectively, albeit in a different number system. To determine the value of a binary fraction, you need to know the decimal equivalent of these numbers. That’s simple: (1/10)2 is equivalent to (1/2)10. In the same fashion (1/100)2 = 1/4 and (1/1000)2 = 1/8. By now you should have inferred that these binary fractions are the negative powers of 2.

Armed with this knowledge, we can now determine that 1.0012 is equal to 1 + 1/8 or (1.125)10. We can now finish converting our extended number:

 1 * 23 * 1.125 = 8 * 1.125 = 9

If the significand raised to its exponent yields an integer (no fractional part) you can very quickly determine that value of the number:

  (-1)0 * 23 * 1.001 = 1 * 8 * 1.0012 = 910

In other words, just slide the significand to the right by the number of “decimal” places in the exponent. This is a simple trick that any student of the metric system understands but tends to be forgotten when we change to a non-decimal number system.

Try some of these problems on your own. You might want to consider exercises like finding the largest positive and negative numbers that a given format can represent. Equally interesting, is finding smallest number that can be represented in this format. What does 0 look like (watch this, it’s a trick question)?

Listing 1 contains a grab bag of SANE glue routines which I’ve provided as illustrations of how to interface with SANE. You may never need to use these conversions but knowing how this mechanism works will surely help you to debug code that references SANE.

SANE operations get dispatched via the trap _FP68K which most likely stands for “Floating Point, 68000” (SANE has been implemented on ALL Apple platforms since the mid-80s).

The conversions typically take an input parameter, an output parameter and an opword. The opwords are mnemonic, FX2D stands for extended to double and FL2X stands for long to extended. The conversion utilities in SANE give you a lot of control over how you want to represent your data and how you want to present it to the user. If you’re serious about these conversions, you might want to write a general purpose converter that can convert between any two formats.

If you want to explore SANE further, get a copy of the Apple Numerics Manual. The next time you run into one of those old hacks who believe that, “it ain’t a real computer unless it’s water cooled”, don’t get upset. They need all that power to compensate for the fact that some of those monoliths can’t even add as well as the Macintosh!

/* 2 */

void  ExtToDouble( ext, dbl )
 extended *ext;
 double *dbl;
/******************************
* given the extended IEEE number
* passed in, return its double
* representation
*
******************************/
{

asm{
 move.l 8(A6),-(sp); address of the extended
 move.l 12(A6),-(sp) ; address of the double
 move.w #FX2D,-(sp); push the appropriate opword
 _FP68K
 }
}

void  DoubleToExt( dbl, ext )
 double *dbl;
 extended *ext;
/******************************
* given the double number
* passed in, return its extended
* representation
*
******************************/
{

asm{
 move.l 8(A6),-(sp); address of the double
 move.l 12(A6),-(sp) ; address of the extended
 move.w #FD2X,-(sp); push the appropriate opword
 _FP68K
 }
}

void  LongToExt( lg, ext )
 long   *lg;
 extended *ext;
/******************************
* given the long  number
* passed in, return its extended
* representation
*
******************************/
{

asm{
 move.l 8(A6),-(sp); address of the long
 move.l 12(A6),-(sp) ; address of the extended
 move.w #FL2X,-(sp); push the appropriate opword
 _FP68K
 }
}

void  ExtToLong( ext, theint )
 extended *ext;
 long   *theint;
/******************************
* given the extended IEEE number
* passed in, return its long word
* representation
*
******************************/
{
asm{
 move.l 8(A6),-(sp); pointer to the extended
 move.l 12(A6),-(sp) ; address of the long
 move.w #FX2L,-(sp); push the appropriate opword
 _FP68K
 }
}

void  DoubleToLong( dbl, theint )
 double *dbl;
 long   *theint;
/******************************
* A simple conversion utility that might be useful
* for debugging at the TMON and MACSBUG level.
******************************/
{
 extended temp;
 
 DoubleToExt( dbl, &temp);
 ExtToLong( &temp, theint );
}

void  ExtendedToStr( ext, theStr )
 extended *ext;
 char   *theStr;
/*******************************
* convert an extended to a string
* 
* First convert the number to 
* a decimal record and then convert
* the decimal record to a string.
*
* The Hypercard callback “ExtToStr” does
* this for you.  I’ve added it here for those
* cases where you can’t make a callback
*
* The conversions uses the decimal record 
* structure that’s documented in Apple Numerics
* manual.
*******************************/
{
 decformdecrec;
 decimaldecnum;
 
 /*** convert the extended to a decimal ***/

 decrec.style = FIXEDDECIMAL;
 decrec.digits= 0;
 num2str( &decrec, *ext, theStr );
}

LISTING 1. Some Interesting SANE conversion utilities

 

Community Search:
MacTech Search:

Software Updates via MacUpdate

BetterTouchTool 2.260 - Customize Multi-...
BetterTouchTool adds many new, fully customizable gestures to the Magic Mouse, Multi-Touch MacBook trackpad, and Magic Trackpad. These gestures are customizable: Magic Mouse: Pinch in / out (zoom... Read more
Chromium 59.0.3071.115 - Fast and stable...
Chromium is an open-source browser project that aims to build a safer, faster, and more stable way for all Internet users to experience the web. Version 59.0.3071.115: This update has no Flash plug... Read more
SyncTwoFolders 2.2.3 - Syncs two user-sp...
SyncTwoFolders simply synchronizes two folders. It supports synchronization across mounted network drives and it is a possibility to run a simulation showing in a log what will be done. Please visit... Read more
Myriad 4.1 - $79.00
Myriad is, simply put, one of the best audio batch processors. Totally redesigned, it looks beautiful and delivers incredible performance. Let Myriad do the heavy lifting while you get back to doing... Read more
Suitcase Fusion 7 18.2.4 - Font manageme...
Suitcase Fusion 7 is the creative professional's font manager. Every professional font manager should deliver the basics: spectacular previews, powerful search tools, and efficient font organization... Read more
SoftRAID 5.6.1 - High-quality RAID manag...
SoftRAID allows you to create and manage disk arrays to increase performance and reliability. SoftRAID allows the user to create and manage RAID 4 and 5 volumes, RAID 1+0, and RAID 1 (Mirror) and... Read more
BetterTouchTool 2.25 - Customize Multi-T...
BetterTouchTool adds many new, fully customizable gestures to the Magic Mouse, Multi-Touch MacBook trackpad, and Magic Trackpad. These gestures are customizable: Magic Mouse: Pinch in / out (zoom... Read more
Google Chrome 59.0.3071.115 - Modern and...
Google Chrome is a Web browser by Google, created to be a modern platform for Web pages and applications. It utilizes very fast loading of Web pages and has a V8 engine, which is a custom built... Read more
Google Chrome 59.0.3071.115 - Modern and...
Google Chrome is a Web browser by Google, created to be a modern platform for Web pages and applications. It utilizes very fast loading of Web pages and has a V8 engine, which is a custom built... Read more
SoftRAID 5.6.1 - High-quality RAID manag...
SoftRAID allows you to create and manage disk arrays to increase performance and reliability. SoftRAID allows the user to create and manage RAID 4 and 5 volumes, RAID 1+0, and RAID 1 (Mirror) and... Read more

Latest Forum Discussions

See All

Ravenscroft 275 Piano (Music)
Ravenscroft 275 Piano 1.0.0 Device: iOS Universal Category: Music Price: $35.99, Version: 1.0.0 (iTunes) Description: Experience the splendor of a Ravenscroft Grand with the most realistic sounding piano ever created for iOS. Launch... | Read more »
This War of Mine gets a new ending and m...
This War of Mine just got a big new update, featuring free DLC that adds a new ending to the game, among other exciting changes. The update is celebrating the game's two-year release anniversary. Apart from the new ending, which will be quite... | Read more »
Summon eight new heroes in Fire Emblem H...
Nintendo keeps coming at us with Fire Emblem Heroes updates, and it doesn't look like that trend is stopping anytime soon. The folks behind the game have just announced the new War of the Clerics Voting Gauntlet, expected to start next Tuesday. [... | Read more »
The best deals on the App Store this wee...
iOS publishers are pulling out all the stops this week -- there's a huge number of seriously great games at discounted prices this week. Let's not waste any time and get right down to business. [Read more] | Read more »
The House of da Vinci (Games)
The House of da Vinci 1.0.0 Device: iOS Universal Category: Games Price: $4.99, Version: 1.0.0 (iTunes) Description: Enter The House of Da Vinci, a new must-try 3D puzzle adventure game. Solve mechanical puzzles, discover hidden... | Read more »
Solve the disappearance of history’s gre...
Blue Brain Games invites you to indulge in an immersive hands-on 3D puzzle adventure in similar vein to The Room series, with its debut release The House of Da Vinci. Set during the historic period of the Italian Renaissance (when Leonardo himself... | Read more »
Age of Rivals (Games)
Age of Rivals 3.3 Device: iOS Universal Category: Games Price: $.99, Version: 3.3 (iTunes) Description: Deep civilization-building strategy in a fast-paced card game! | Read more »
Panthera Frontier (Games)
Panthera Frontier 1.0 Device: iOS Universal Category: Games Price: $4.99, Version: 1.0 (iTunes) Description: | Read more »
Angry Birds Evolution beginner's gu...
Angry Birds changes things up a fair bit in its latest iteration, Angry Birds Evolution. The familiar sling-shot physics mechanics are still there, but the game now features team-based gameplay, RPG elements, and a new top-down view. With all of... | Read more »
Sega Forever is for the retro game fans
Sega is launching a new retro games service titled Sega Forever, in a move that's sure to delight games enthusiasts with a bit of nostalgia. Sega's releasing five classic games for free. The titles include Sonic the Hedgehog, Phantasy Star II,... | Read more »

Price Scanner via MacPrices.net

Use Apple’s Education discount to save up to...
Purchase a new Mac using Apple’s Education discount, and take up to $300 off MSRP. All teachers, students, and staff of any educational institution qualify for the discount. Shipping is free: - 15″ 2... Read more
Clearance 27-inch 3.3GHz 5K iMac available fo...
Amazon clearance 27″ 3.3GHz 5K iMacs (MK482LL/A) available for $1799.90 including free shipping. Their price is $500 off original MSRP, and it’s the lowest price available for this model from any... Read more
13-inch 1.8GHz/256GB MacBook Air on sale for...
B&H Photo has the updated 2017 13″ 1.8GHz/256GB MacBook Air (MQD42LL/A) in stock and on sale for $1129 including free shipping plus NY & NJ tax only. Their price is $70 off MSRP. Read more
27-inch 3.4GHz iMac on sale for $1699, save $...
B&H Photo has the new 2017 27″ 3.4GHz iMac (MNE92LL/A) in stock and on sale for $1699 including free shipping plus NY & NJ sales tax only. Their price is $100 off MSRP. Read more
21-inch 2.3GHz iMac on sale for $1049, save $...
B&H Photo has the new 2017 21″ 2.3GHz iMac (MMQA2LL/A) in stock and on sale for $1049 including free shipping plus NY & NJ tax only. Their price is $50 off MSRP. Read more
ABBYY TextGrabber 6 for iOS Implements Instan...
ABBYY has announced the release of TextGrabber 6.0.0, an important feature update to the company’s productivity app developed for iOS and Android devices. TextGrabber 6.0 now offers Real-Time... Read more
vPhone, First Smartphone That Can’t Be Lost,...
Austin, Texas based Hypori has introduced the vPhone, a virtual smartphone that affords every business user the benefits of separate work and personal phones, conveniently delivered on a single... Read more
Save this weekend with 2016 refurbished MacBo...
Apple has dropped prices on Certified Refurbished 2016 15″ and 13″ MacBook Pros by as much as $590 off original MSRP. An Apple one-year warranty is included with each model, and shipping is free: -... Read more
New 27-inch 3.4GHz iMac on sale for $1699, sa...
MacMall has the new 2017 27″ 3.4GHz iMac (MNE92LL/A) in stock and on sale for $1699 including free shipping. Their price is $100 off MSRP. Read more
Clearance 2016 MacBook Pros available for up...
B&H Photo has clearance 2016 13″ and 15″ MacBook Pros in stock today and on sale for up to $400 off original MSRP. Shipping is free, and B&H charges NY & NJ sales tax only: - 15″ 2.7GHz... Read more

Jobs Board

*Apple* News Product Marketing Mgr., Publish...
…organizational consensus on strategy and vision for publisher tools, authoring, and Apple News Format.Carries this strategy and vision across the organization to Read more
*Apple* Retail - Multiple Positions - Apple,...
Job Description: Sales Specialist - Retail Customer Service and Sales Transform Apple Store visitors into loyal Apple customers. When customers enter the store, Read more
Security Data Analyst - *Apple* Information...
…data sources need to be collected to allow Information Security to better protect Apple employees and customers from a wide range of threats.Act as the subject matter Read more
Lead *Apple* Solutions Consultant - Apple I...
…integrity, and trust.Success Metrics/Key Performance Indicators:Quantitative* Year over Year growth in Apple Product and Beyond the Box sales in the assigned Point of Read more
*Apple* Solutions Consultant till v%u00E5r...
…ethics, integrity, and trust.Success Metrics/Key Performance Indicators:QuantitativeYear over Year growth in Apple Product and Beyond the Box sales in the assigned Point Read more
All contents are Copyright 1984-2011 by Xplain Corporation. All rights reserved. Theme designed by Icreon.