TweetFollow Us on Twitter

Bezier Curve
Volume Number:5
Issue Number:1
Column Tag:C Workshop

Related Info: Quickdraw

Bezier Curve Ahead!

By David W. Smith, Los Gatos, CA

Note: Source code files accompanying article are located on MacTech CD-ROM or source code disks.

David W. Smith (no known relation to the Editor) is a Sr. Software Engineer at ACM Research, Inc., in Los Gatos.

There comes a time in the development of some applications when arcs and wedges just don’t cut the mustard. You want to draw a pretty curve from point A to point B, and QuickDraw isn’t giving you any help. It seems like a good time to reach for a computer graphics text, blow the dust off of your college math, and try to decipher their explanation of splines. Stop. All is not lost. The Bezier curve may be just what you need.

Bezier Curves

Bezier curves (pronounced “bez-yeah”, after their inventor, a French mathematician) are well suited to graphics applications on the Macintosh for a number of reasons. First, they’re simple to describe. A curve is a function of four points. Second, the curve is efficient to calculate. From a precomputed table, the segments of the curve can be produced using only fixed-point multiplication. No trig, no messy quadratics, and no inSANEity. Third, and, to some, the most important, the Bezier curve is directly supported by the PostScript curve and curveto operators, and is one of the components of PostScript’s outlined fonts. The Bezier curve is also one of the principle drawing elements of Adobe Illustrator™. (Recently, they’ve shown up in a number of other places.)

Bezier curves have some interesting properties. Unlike some other classes of curves, they can fold over on themselves. They can also be joined together to form smooth (continuous) shapes. Figure 1 shows a few Bezier curves, including two that are joined to form a smooth shape.

The Gruesome Details

The description of Bezier curves below is going to get a bit technical. If you’re not comfortable with the math, you can trust that the algorithm works, and skip ahead to the implementation. However, if you’re curious about how the curves work and how to optimize their implementation, or just don’t trust using code that you don’t understand, read on.

The Bezier curve is a parametric function of four points; two endpoints and two “control” points. The curve connects the endpoints, but doesn’t necessarily touch the control points. The general form Bezier equation, which describes each point on the curve as a function of time, is:

where P1 and P4 are the endpoints, P2 and P3 are the control points, and the wn’s are weighting functions, which blend the four points to produce the curve. (The weights are applied to the h and v components of each point independently.) The single parameter t represents time, and varies from 0 to 1. The full form of the Bezier curve is:

We know that the curve touches each endpoint, so it isn’t too surprising that at t=0 the first weighting function is 1 and all others are 0 (i.e., the initial point on the curve is the first endpoint). Likewise, at t=1, the fourth weighting function is 1 and the rest are 0. However, it’s what happens between 0 and 1 that’s really interesting. A quick side-trip into calculus to take some first derivatives tells us that the second weighting function is maximized (has its greatest impact on the curve) at t=1/3, and the third weight is maximized at t=2/3. But the clever part--the bit that the graphics books don’t bother to mention--run the curve backwards by solving the equation for 1-t, and you find that w1(t)=w4(1-t) and w2(t)=w3(1-t). As we’ll see below, this symmetry halves the effort needed to compute values for the weights.

Figure 1. Some Beizer Curves and Shapes

Implementing Bezier Curves

One strategy for implementing Bezier curves is to divide the curve into a fixed number of segments and then to pre-compute the values of the weighting functions for each of the segments. The greater the number of segments, the smoother the curve. (I’ve found that 16 works well for display purposes, but 32 is better for hardcopy.) Computing any given curve becomes a simple matter of using the four points and the precomputed weights to produce the end-points of the curve segments. Fixed-point math yields reasonable accuracy, and is a hands down winner over SANE on the older (pre-Mac II) Macs, so we’ll use it.

We can optimize the process a bit. The curve touches each endpoint, so we can assume weights of 0 or 1 and needn’t compute weights for these points. Another optimization saves both time and space. By taking advantage of the symmetric nature of the Bezier equation, we can compute arrays of values for the first two of the weighting functions, and obtain values for the other two weights by indexing backwards into the arrays.

Drawing the curve, given the endpoints of the segments, is the duty of QuickDraw (or of PostScript, if you’re really hacking).

The listing below shows a reasonably efficient implementation of Bezier curves in Lightspeed C™. A few reminders about fixed-point math: an integer times a fixed-point number yields a fixed-point number, and a fixed by fixed multiplication uses a trap. The storage requirement for the algorithm, assuming 16 segments, (32 fixed-point values), is around 32*4*4, or 512 bytes. The algorithm computes all of the segments before drawing them so that the drawing can be done at full speed. (Having all of the segments around at one time can be useful for other reasons.)

More Fun With Curves

Given an implementation for Bezier curves, there are some neat things that fall out for almost free. Drawing a set of joined curves within an OpenPoly/ClosePoly or an OpenRgn/CloseRgn envelope yields an object that can be filled with a pattern. (Shades of popular illustration packages?) For that matter, lines, arcs, wedges, and Bezier curves can be joined to produce complicated shapes, such as outlined fonts. Given the direct mapping to PostScript’s curve and curveto operators, Bezier curves are a natural for taking better advantage of the LaserWriter.

As mentioned above, Bezier curves can be joined smoothly to produce more complicated shapes (see figure 1). The catch is that the point at which two curves are joined, and the adjacent control points, must be colinear (i.e., the three points must lay on a line). If you take a close look at Adobe Illustrator’s drawing tool, you’ll see what this means.

One nonobvious use of Bezier curves is in animation. The endpoints of the segments can be used as anchor-points for redrawing an object, giving it the effect of moving smoothly along the curve. One backgammon program that I’ve seen moves the tiles along invisible Bezier curves, and the effect is very impressive. For animation, you would probably want to vary the number of segments. Fortunately, the algorithm below is easily rewritten to produce the nth segment of an m segment curve given the the end and control points.

Further Optimizations

If you’re really tight on space or pressed for speed, there are a few things that you can do to tighten up the algorithm. A bit of code space (and a negligible amount of time) can be preserved by eliminating the setup code in favor of statically initializing the weight arrays with precomputed constant values. Drawing can be optimized by using GetTrapAddress to find the address in ROM of lineto, and then by calling it directly from inline assembly language, bypassing the trap mechanism. I’ve found that neither optimization is necessary for reasonable performance.

/*
**  Bezier  --  Support for Bezier curves
** Herein reside support routines for drawing Bezier curves.
**  Copyright (C) 1987, 1988 David W. Smith
**  Submitted to MacTutor for their source-disk.
*/

#include <MacTypes.h>
/*
   The greater the number of curve segments, the smoother the curve, 
and the longer it takes to generate and draw.  The number below was pulled 
out of a hat, and seems to work o.k.
 */
#define SEGMENTS 16

static Fixedweight1[SEGMENTS + 1];
static Fixedweight2[SEGMENTS + 1];

#define w1(s)  weight1[s]
#define w2(s)  weight2[s]
#define w3(s)  weight2[SEGMENTS - s]
#define w4(s)  weight1[SEGMENTS - s]

/*
 *  SetupBezier  --  one-time setup code.
 * Compute the weights for the Bezier function.
 *  For the those concerned with space, the tables can be precomputed. 
Setup is done here for purposes of illustration.
 */
void
SetupBezier()
{
 Fixed  t, zero, one;
 int    s;

 zero  = FixRatio(0, 1);
 one   = FixRatio(1, 1);
 weight1[0] = one;
 weight2[0] = zero;
 for ( s = 1 ; s < SEGMENTS ; ++s ) {
 t = FixRatio(s, SEGMENTS);
 weight1[s] = FixMul(one - t, FixMul(one - t, one - t));
 weight2[s] = 3 * FixMul(t, FixMul(t - one, t - one));
 }
 weight1[SEGMENTS] = zero;
 weight2[SEGMENTS] = zero;
}

/*
 *  computeSegments  --  compute segments for the Bezier curve
 * Compute the segments along the curve.
 *  The curve touches the endpoints, so don’t bother to compute them.
 */
static void
computeSegments(p1, p2, p3, p4, segment)
 Point  p1, p2, p3, p4;
 Point  segment[];
{
 int    s;
 
 segment[0] = p1;
 for ( s = 1 ; s < SEGMENTS ; ++s ) {
 segment[s].v = FixRound(w1(s) * p1.v + w2(s) * p2.v +
 w3(s) * p3.v + w4(s) * p4.v);
 segment[s].h = FixRound(w1(s) * p1.h + w2(s) * p2.h +
 w3(s) * p3.h + w4(s) * p4.h);
 }
 segment[SEGMENTS] = p4;
}

/*
 *  BezierCurve  --  Draw a Bezier Curve
 * Draw a curve with the given endpoints (p1, p4), and the given 
 * control points (p2, p3).
 *  Note that we make no assumptions about pen or pen mode.
 */
void
BezierCurve(p1, p2, p3, p4)
 Point  p1, p2, p3, p4;
{
 int    s;
 Point  segment[SEGMENTS + 1];

 computeSegments(p1, p2, p3, p4, segment);
 MoveTo(segment[0].h, segment[0].v);

 for ( s = 1 ; s <= SEGMENTS ; ++s ) {
 if ( segment[s].h != segment[s - 1].h ||
  segment[s].v != segment[s - 1].v ) {
 LineTo(segment[s].h, segment[s].v);
 }
 }
}

/*
**  CurveLayer.c  
** These routines provide a layer of support between my bare-  
 bones application skeleton and the Bezier curve code.   
  There’s little here of interest outside of the mouse 
  tracking and the curve drawing.
**  David W. Smith
*/

#include “QuickDraw.h”
#include “MacTypes.h”
#include “FontMgr.h”
#include “WindowMgr.h”
#include “MenuMgr.h”
#include “TextEdit.h”
#include “DialogMgr.h”
#include “EventMgr.h”
#include “DeskMgr.h”
#include “FileMgr.h”
#include “ToolboxUtil.h”
#include “ControlMgr.h”

/*
 *  Tracker objects.  Similar to MacAPP trackers, but much,
 much simpler.
 */
struct Tracker
{
 void (*track)();
 int    thePoint;
};

static struct Tracker aTracker;
static struct Tracker bTracker;

/*
 *  The Bezier curve control points.
 */
Point   control[4] = {{144,72}, {72,144}, {216,144}, {144,216}};


/*
 *  Draw
 *  Called from the skeleton to update the window.  Draw the   
 initial curve.
 */
Draw()
{
 PenMode(patXor);
 DrawTheCurve(control, true);
}

/*
 *  DrawTheCurve
 * Draw the given Bezier curve in the current pen mode.Draw 
   the control points if requested.
 */
DrawTheCurve(c, drawPoints)
 Point  c[];
{
 if ( drawPoints )
 DrawThePoints(c);
 BezierCurve(c[0], c[1], c[2], c[3]);
}

/*
 *  DrawThePoints
 *  Draw all of the control points.
 */
DrawThePoints(c)
 Point  c[];
{
 int    n;
 
 for ( n = 0 ; n < 4 ; ++n ) {
 DrawPoint(c, n);
 }
}

/*
 *  DrawPoint
 *  Draw a single control point
 */
DrawPoint(c, n)
 Point  c[];
 int    n;
{
 PenSize(3, 3);
 MoveTo(c[n].h - 1, c[n].v - 1);
 LineTo(c[n].h - 1, c[n].v - 1);
 PenSize(1, 1);
}

/*
 * GetTracker
 * Produce a tracker object
 * Called by the skeleton to handle mouse-down events.
 * If the mouse touches a control point, return a tracker for
 that point. Otherwise, return a tracker that drags a gray 
 rectangle.
 */
struct Tracker *
GetTracker(point)
 Point  point;
{
 void   TrackPoint(), TrackSelect();
 int    i;

 aTracker.track = TrackPoint;

 for ( i = 0 ; i < 4 ; ++i ) {
 if ( TouchPoint(control[i], point) ) {
 aTracker.thePoint = i;
 return (&aTracker);
 }
 }
 bTracker.track = TrackSelect;
 return (&bTracker);
}

/*
 *  TouchPoint
 *  Do the points touch?
 */
#define abs(a) (a < 0 ? -(a) : (a))

TouchPoint(target, point)
 Point  target;
 Point  point;
{
 SubPt(point, &target);
 if ( abs(target.h) < 3 && abs(target.v) < 3 )
 return (1);
 return (0);
}

/*
 *  TrackPoint
 *  Called while dragging a control point.
 */
void
TrackPoint(tracker, point, phase)
 struct Tracker  *tracker;
 Point  point;
 int    phase;
{
 Point  savePoint;

 switch ( phase ) {
 case 1:
 /* initial click - XOR out the control point */
 DrawPoint(control, tracker->thePoint);
 break;
 case 2:
 /* drag - undraw the original curve and draw the new one */
 DrawTheCurve(control, false);
 control[tracker->thePoint] = point;
 DrawTheCurve(control, false);
 break;
 case 3:
 /* release - redraw the control point */
 DrawPoint(control, tracker->thePoint);
 break;
 }
}

/*
 *  TrackSelect
 *  Track a gray selection rectangle
 */
static Pointfirst;
static Rect r;

void
TrackSelect(tracker, point, phase)
 struct Tracker  *tracker;
 Point  point;
 int    phase;
{
 switch ( phase ) {
 case 1:
 PenPat(gray);
 first = point;
 SetupRect(&r, first, point);
 FrameRect(&r);
 break;
 case 2:
 FrameRect(&r);
 SetupRect(&r, first, point);
 FrameRect(&r);
 break;
 case 3:
 FrameRect(&r);
 PenPat(black);
 break;
 }
}

/*
 *  SetupRect
 *  Setup the rectangle for tracking.
 */
#define min(x, y) (((x) < (y)) ? (x) : (y))
#define max(x, y) (((x) > (y)) ? (x) : (y))

SetupRect(rect, point1, point2)
 Rect   *rect;
 Point  point1;
 Point  point2;
{
 SetRect(rect,
 min(point1.h, point2.h),
 min(point1.v, point2.v),
 max(point1.h, point2.h),
 max(point1.v, point2.v));
}

/*
**  Skeleton.c  --  A bare-bones skeleton.
** This has been hacked up to demonstrate Bezier curves.  
    Other than the tracking technique, there’s little here of 
    interest.
**  David W. Smith
*/

#include “QuickDraw.h”
#include “MacTypes.h”
#include “FontMgr.h”
#include “WindowMgr.h”
#include “MenuMgr.h”
#include “TextEdit.h”
#include “DialogMgr.h”
#include “EventMgr.h”
#include “DeskMgr.h”
#include “FileMgr.h”
#include “ToolboxUtil.h”
#include “ControlMgr.h”

WindowRecordwRecord;
WindowPtr myWindow;

/*
 *  main
 *  Initialize the world, then handle events until told to quit.
 */
main() 
{
 InitGraf(&thePort);
 InitFonts();
 FlushEvents(everyEvent, 0);
 InitWindows();
 InitMenus();
 InitDialogs(0L);
 InitCursor();
 MaxApplZone();

 SetupMenus();
 SetupWindow();
 SetupBezier();

 while ( DoEvent(everyEvent) )
 ;
}

/*
 *  SetupMenus
 *  For the purpose of this demo, we get somewhat non-standard and use 
no menus.  Closing the window quits.
 */
SetupMenus()
{
 DrawMenuBar();
}

/*
 *  SetupWindow
 *  Setup the window for the Bezier demo.
 */
SetupWindow()
{
 Rect   bounds;

 bounds = WMgrPort->portBits.bounds;
 bounds.top += 36;
 InsetRect(&bounds, 5, 5);

 myWindow = NewWindow(&wRecord, &bounds, “\pBezier Sampler - Click and 
Drag”, 1, noGrowDocProc, 0L, 1, 0L);
 
 SetPort(myWindow);
}

/*
 *  DoEvent
 *  Generic event handling.
 */
DoEvent(eventMask)
 int    eventMask;
{
 EventRecordmyEvent;
 WindowPtrwhichWindow;
 Rect   r;
 
 SystemTask();
 if ( GetNextEvent(eventMask, &myEvent) )
 {
 switch ( myEvent.what )
 {
 case mouseDown:
 switch ( FindWindow( myEvent.where, &whichWindow ) )
 {
 case inDesk: 
 break;
 case inGoAway:
 if ( TrackGoAway(myWindow, myEvent.where) )
 {
 HideWindow(myWindow);
 return (0);
 }
 break;
 case inMenuBar:
 return (DoCommand(MenuSelect(myEvent.where)));
 case inSysWindow:
 SystemClick(&myEvent, whichWindow);
 break;
 case inDrag:
 break;
 case inGrow:
 break;
 case inContent:
 DoContent(&myEvent);
 break;
 default:
 break;;
 }
 break;
 case keyDown:
 case autoKey: 
 break;
 case activateEvt:
 break;
 case updateEvt:
 DoUpdate();
 break;
 default:
 break;
 }
 }
 return(1);
}

/*
 *  DoCommand
 *  Command handling would normally go here.
 */
DoCommand(mResult)
 long   mResult;
{
 int    theItem, temp;
 Str255 name;
 WindowPeek wPtr;
 
 theItem = LoWord(mResult);

 switch ( HiWord(mResult) )
 {
 }

 HiliteMenu(0);
 return(1);
}

/*
 *  DoUpdate
 *  Generic update handler.
 */
DoUpdate()
{
 BeginUpdate(myWindow);
 Draw();
 EndUpdate(myWindow);
}

/*
 *  DoContent
 *  Handle mouse-downs in the content area by asking the application 
to produce a tracker object.  We then call the tracker repeatedly to 
track the mouse. This technique came originally (as nearly as I can tell) 
from Xerox, and is used in a modified form in MacApp.
 */
struct Tracker
{
 int    (*Track)();
};

int
DoContent(pEvent)
 EventRecord*pEvent;
{
 struct Tracker  *GetTracker();
 struct Tracker  *t;
 Point  point, newPoint;
 
 point = pEvent->where;
 GlobalToLocal(&point);
 t = GetTracker(point);
 if ( t ) {
 (*t->Track)(t, point, 1);
 while ( StillDown() ) {
 GetMouse(&newPoint);
 if ( newPoint.h != point.h || newPoint.v != point.v ) {
 point = newPoint;
 (*t->Track)(t, point, 2);
 }
 }
 (*t->Track)(t, point, 3);
 }
}

 

Community Search:
MacTech Search:

Software Updates via MacUpdate

Latest Forum Discussions

See All

Bound through time on the hunt for sneak...
Have you ever sat down and wondered what would happen if Dr Who and Sherlock Holmes went on an adventure? Well, besides probably being the best mash-up of English fiction, you'd get the Hidden Through Time series, and now Rogueside has announced... | Read more »
The secrets of Penacony might soon come...
Version 2.2 of Honkai: Star Rail is on the horizon and brings the culmination of the Penacony adventure after quite the escalation in the latest story quests. To help you through this new expansion is the introduction of two powerful new... | Read more »
The Legend of Heroes: Trails of Cold Ste...
I adore game series that have connecting lore and stories, which of course means the Legend of Heroes is very dear to me, Trails lore has been building for two decades. Excitedly, the next stage is upon us as Userjoy has announced the upcoming... | Read more »
Go from lowly lizard to wicked Wyvern in...
Do you like questing, and do you like dragons? If not then boy is this not the announcement for you, as Loongcheer Game has unveiled Quest Dragon: Idle Mobile Game. Yes, it is amazing Square Enix hasn’t sued them for copyright infringement, but... | Read more »
Aether Gazer unveils Chapter 16 of its m...
After a bit of maintenance, Aether Gazer has released Chapter 16 of its main storyline, titled Night Parade of the Beasts. This big update brings a new character, a special outfit, some special limited-time events, and, of course, an engaging... | Read more »
Challenge those pesky wyverns to a dance...
After recently having you do battle against your foes by wildly flailing Hello Kitty and friends at them, GungHo Online has whipped out another surprising collaboration for Puzzle & Dragons. It is now time to beat your opponents by cha-cha... | Read more »
Pack a magnifying glass and practice you...
Somehow it has already been a year since Torchlight: Infinite launched, and XD Games is celebrating by blending in what sounds like a truly fantastic new update. Fans of Cthulhu rejoice, as Whispering Mist brings some horror elements, and tests... | Read more »
Summon your guild and prepare for war in...
Netmarble is making some pretty big moves with their latest update for Seven Knights Idle Adventure, with a bunch of interesting additions. Two new heroes enter the battle, there are events and bosses abound, and perhaps most interesting, a huge... | Read more »
Make the passage of time your plaything...
While some of us are still waiting for a chance to get our hands on Ash Prime - yes, don’t remind me I could currently buy him this month I’m barely hanging on - Digital Extremes has announced its next anticipated Prime Form for Warframe. Starting... | Read more »
If you can find it and fit through the d...
The holy trinity of amazing company names have come together, to release their equally amazing and adorable mobile game, Hamster Inn. Published by HyperBeard Games, and co-developed by Mum Not Proud and Little Sasquatch Studios, it's time to... | Read more »

Price Scanner via MacPrices.net

Apple AirPods Pro with USB-C return to all-ti...
Amazon has Apple’s AirPods Pro with USB-C in stock and on sale for $179.99 including free shipping. Their price is $70 (28%) off MSRP, and it’s currently the lowest price available for new AirPods... Read more
Apple Magic Keyboards for iPads are on sale f...
Amazon has Apple Magic Keyboards for iPads on sale today for up to $70 off MSRP, shipping included: – Magic Keyboard for 10th-generation Apple iPad: $199, save $50 – Magic Keyboard for 11″ iPad Pro/... Read more
Apple’s 13-inch M2 MacBook Airs return to rec...
Apple retailers have 13″ MacBook Airs with M2 CPUs in stock and on sale this weekend starting at only $849 in Space Gray, Silver, Starlight, and Midnight colors. These are the lowest prices currently... Read more
Best Buy is clearing out iPad Airs for up to...
In advance of next week’s probably release of new and updated iPad Airs, Best Buy has 10.9″ M1 WiFi iPad Airs on record-low sale prices for up to $200 off Apple’s MSRP, starting at $399. Sale prices... Read more
Every version of Apple Pencil is on sale toda...
Best Buy has all Apple Pencils on sale today for $79, ranging up to 39% off MSRP for some models. Sale prices for online orders only, in-store prices may vary. Order online and choose free shipping... Read more
Sunday Sale: Apple Studio Display with Standa...
Amazon has the standard-glass Apple Studio Display on sale for $300 off MSRP for a limited time. Shipping is free: – Studio Display (Standard glass): $1299.97 $300 off MSRP For the latest prices and... Read more
Apple is offering significant discounts on 16...
Apple has a full line of 16″ M3 Pro and M3 Max MacBook Pros available, Certified Refurbished, starting at $2119 and ranging up to $600 off MSRP. Each model features a new outer case, shipping is free... Read more
Apple HomePods on sale for $30-$50 off MSRP t...
Best Buy is offering a $30-$50 discount on Apple HomePods this weekend on their online store. The HomePod mini is on sale for $69.99, $30 off MSRP, while Best Buy has the full-size HomePod on sale... Read more
Limited-time sale: 13-inch M3 MacBook Airs fo...
Amazon has the base 13″ M3 MacBook Air (8GB/256GB) in stock and on sale for a limited time for $989 shipped. That’s $110 off MSRP, and it’s the lowest price we’ve seen so far for an M3-powered... Read more
13-inch M2 MacBook Airs in stock today at App...
Apple has 13″ M2 MacBook Airs available for only $849 today in their Certified Refurbished store. These are the cheapest M2-powered MacBooks for sale at Apple. Apple’s one-year warranty is included,... Read more

Jobs Board

*Apple* App Developer - Datrose (United Stat...
…year experiencein programming and have computer knowledge with SWIFT. Job Responsibilites: Apple App Developer is expected to support essential tasks for the RxASL Read more
Omnichannel Associate - *Apple* Blossom Mal...
Omnichannel Associate - Apple Blossom Mall Location:Winchester, VA, United States (https://jobs.jcp.com/jobs/location/191170/winchester-va-united-states) - Apple Read more
Operations Associate - *Apple* Blossom Mall...
Operations Associate - Apple Blossom Mall Location:Winchester, VA, United States (https://jobs.jcp.com/jobs/location/191170/winchester-va-united-states) - Apple Read more
Cashier - *Apple* Blossom Mall - JCPenney (...
Cashier - Apple Blossom Mall Location:Winchester, VA, United States (https://jobs.jcp.com/jobs/location/191170/winchester-va-united-states) - Apple Blossom Mall Read more
*Apple* Software Engineer - HP Inc. (United...
…Mobile, Windows and Mac applications. We are seeking a high energy Senior Apple mobile engineer who can lead and drive application development while also enabling Read more
All contents are Copyright 1984-2011 by Xplain Corporation. All rights reserved. Theme designed by Icreon.