TweetFollow Us on Twitter

Bezier Curve
Volume Number:5
Issue Number:1
Column Tag:C Workshop

Related Info: Quickdraw

Bezier Curve Ahead!

By David W. Smith, Los Gatos, CA

Note: Source code files accompanying article are located on MacTech CD-ROM or source code disks.

David W. Smith (no known relation to the Editor) is a Sr. Software Engineer at ACM Research, Inc., in Los Gatos.

There comes a time in the development of some applications when arcs and wedges just don’t cut the mustard. You want to draw a pretty curve from point A to point B, and QuickDraw isn’t giving you any help. It seems like a good time to reach for a computer graphics text, blow the dust off of your college math, and try to decipher their explanation of splines. Stop. All is not lost. The Bezier curve may be just what you need.

Bezier Curves

Bezier curves (pronounced “bez-yeah”, after their inventor, a French mathematician) are well suited to graphics applications on the Macintosh for a number of reasons. First, they’re simple to describe. A curve is a function of four points. Second, the curve is efficient to calculate. From a precomputed table, the segments of the curve can be produced using only fixed-point multiplication. No trig, no messy quadratics, and no inSANEity. Third, and, to some, the most important, the Bezier curve is directly supported by the PostScript curve and curveto operators, and is one of the components of PostScript’s outlined fonts. The Bezier curve is also one of the principle drawing elements of Adobe Illustrator™. (Recently, they’ve shown up in a number of other places.)

Bezier curves have some interesting properties. Unlike some other classes of curves, they can fold over on themselves. They can also be joined together to form smooth (continuous) shapes. Figure 1 shows a few Bezier curves, including two that are joined to form a smooth shape.

The Gruesome Details

The description of Bezier curves below is going to get a bit technical. If you’re not comfortable with the math, you can trust that the algorithm works, and skip ahead to the implementation. However, if you’re curious about how the curves work and how to optimize their implementation, or just don’t trust using code that you don’t understand, read on.

The Bezier curve is a parametric function of four points; two endpoints and two “control” points. The curve connects the endpoints, but doesn’t necessarily touch the control points. The general form Bezier equation, which describes each point on the curve as a function of time, is:

where P1 and P4 are the endpoints, P2 and P3 are the control points, and the wn’s are weighting functions, which blend the four points to produce the curve. (The weights are applied to the h and v components of each point independently.) The single parameter t represents time, and varies from 0 to 1. The full form of the Bezier curve is:

We know that the curve touches each endpoint, so it isn’t too surprising that at t=0 the first weighting function is 1 and all others are 0 (i.e., the initial point on the curve is the first endpoint). Likewise, at t=1, the fourth weighting function is 1 and the rest are 0. However, it’s what happens between 0 and 1 that’s really interesting. A quick side-trip into calculus to take some first derivatives tells us that the second weighting function is maximized (has its greatest impact on the curve) at t=1/3, and the third weight is maximized at t=2/3. But the clever part--the bit that the graphics books don’t bother to mention--run the curve backwards by solving the equation for 1-t, and you find that w1(t)=w4(1-t) and w2(t)=w3(1-t). As we’ll see below, this symmetry halves the effort needed to compute values for the weights.

Figure 1. Some Beizer Curves and Shapes

Implementing Bezier Curves

One strategy for implementing Bezier curves is to divide the curve into a fixed number of segments and then to pre-compute the values of the weighting functions for each of the segments. The greater the number of segments, the smoother the curve. (I’ve found that 16 works well for display purposes, but 32 is better for hardcopy.) Computing any given curve becomes a simple matter of using the four points and the precomputed weights to produce the end-points of the curve segments. Fixed-point math yields reasonable accuracy, and is a hands down winner over SANE on the older (pre-Mac II) Macs, so we’ll use it.

We can optimize the process a bit. The curve touches each endpoint, so we can assume weights of 0 or 1 and needn’t compute weights for these points. Another optimization saves both time and space. By taking advantage of the symmetric nature of the Bezier equation, we can compute arrays of values for the first two of the weighting functions, and obtain values for the other two weights by indexing backwards into the arrays.

Drawing the curve, given the endpoints of the segments, is the duty of QuickDraw (or of PostScript, if you’re really hacking).

The listing below shows a reasonably efficient implementation of Bezier curves in Lightspeed C™. A few reminders about fixed-point math: an integer times a fixed-point number yields a fixed-point number, and a fixed by fixed multiplication uses a trap. The storage requirement for the algorithm, assuming 16 segments, (32 fixed-point values), is around 32*4*4, or 512 bytes. The algorithm computes all of the segments before drawing them so that the drawing can be done at full speed. (Having all of the segments around at one time can be useful for other reasons.)

More Fun With Curves

Given an implementation for Bezier curves, there are some neat things that fall out for almost free. Drawing a set of joined curves within an OpenPoly/ClosePoly or an OpenRgn/CloseRgn envelope yields an object that can be filled with a pattern. (Shades of popular illustration packages?) For that matter, lines, arcs, wedges, and Bezier curves can be joined to produce complicated shapes, such as outlined fonts. Given the direct mapping to PostScript’s curve and curveto operators, Bezier curves are a natural for taking better advantage of the LaserWriter.

As mentioned above, Bezier curves can be joined smoothly to produce more complicated shapes (see figure 1). The catch is that the point at which two curves are joined, and the adjacent control points, must be colinear (i.e., the three points must lay on a line). If you take a close look at Adobe Illustrator’s drawing tool, you’ll see what this means.

One nonobvious use of Bezier curves is in animation. The endpoints of the segments can be used as anchor-points for redrawing an object, giving it the effect of moving smoothly along the curve. One backgammon program that I’ve seen moves the tiles along invisible Bezier curves, and the effect is very impressive. For animation, you would probably want to vary the number of segments. Fortunately, the algorithm below is easily rewritten to produce the nth segment of an m segment curve given the the end and control points.

Further Optimizations

If you’re really tight on space or pressed for speed, there are a few things that you can do to tighten up the algorithm. A bit of code space (and a negligible amount of time) can be preserved by eliminating the setup code in favor of statically initializing the weight arrays with precomputed constant values. Drawing can be optimized by using GetTrapAddress to find the address in ROM of lineto, and then by calling it directly from inline assembly language, bypassing the trap mechanism. I’ve found that neither optimization is necessary for reasonable performance.

/*
**  Bezier  --  Support for Bezier curves
** Herein reside support routines for drawing Bezier curves.
**  Copyright (C) 1987, 1988 David W. Smith
**  Submitted to MacTutor for their source-disk.
*/

#include <MacTypes.h>
/*
   The greater the number of curve segments, the smoother the curve, 
and the longer it takes to generate and draw.  The number below was pulled 
out of a hat, and seems to work o.k.
 */
#define SEGMENTS 16

static Fixedweight1[SEGMENTS + 1];
static Fixedweight2[SEGMENTS + 1];

#define w1(s)  weight1[s]
#define w2(s)  weight2[s]
#define w3(s)  weight2[SEGMENTS - s]
#define w4(s)  weight1[SEGMENTS - s]

/*
 *  SetupBezier  --  one-time setup code.
 * Compute the weights for the Bezier function.
 *  For the those concerned with space, the tables can be precomputed. 
Setup is done here for purposes of illustration.
 */
void
SetupBezier()
{
 Fixed  t, zero, one;
 int    s;

 zero  = FixRatio(0, 1);
 one   = FixRatio(1, 1);
 weight1[0] = one;
 weight2[0] = zero;
 for ( s = 1 ; s < SEGMENTS ; ++s ) {
 t = FixRatio(s, SEGMENTS);
 weight1[s] = FixMul(one - t, FixMul(one - t, one - t));
 weight2[s] = 3 * FixMul(t, FixMul(t - one, t - one));
 }
 weight1[SEGMENTS] = zero;
 weight2[SEGMENTS] = zero;
}

/*
 *  computeSegments  --  compute segments for the Bezier curve
 * Compute the segments along the curve.
 *  The curve touches the endpoints, so don’t bother to compute them.
 */
static void
computeSegments(p1, p2, p3, p4, segment)
 Point  p1, p2, p3, p4;
 Point  segment[];
{
 int    s;
 
 segment[0] = p1;
 for ( s = 1 ; s < SEGMENTS ; ++s ) {
 segment[s].v = FixRound(w1(s) * p1.v + w2(s) * p2.v +
 w3(s) * p3.v + w4(s) * p4.v);
 segment[s].h = FixRound(w1(s) * p1.h + w2(s) * p2.h +
 w3(s) * p3.h + w4(s) * p4.h);
 }
 segment[SEGMENTS] = p4;
}

/*
 *  BezierCurve  --  Draw a Bezier Curve
 * Draw a curve with the given endpoints (p1, p4), and the given 
 * control points (p2, p3).
 *  Note that we make no assumptions about pen or pen mode.
 */
void
BezierCurve(p1, p2, p3, p4)
 Point  p1, p2, p3, p4;
{
 int    s;
 Point  segment[SEGMENTS + 1];

 computeSegments(p1, p2, p3, p4, segment);
 MoveTo(segment[0].h, segment[0].v);

 for ( s = 1 ; s <= SEGMENTS ; ++s ) {
 if ( segment[s].h != segment[s - 1].h ||
  segment[s].v != segment[s - 1].v ) {
 LineTo(segment[s].h, segment[s].v);
 }
 }
}

/*
**  CurveLayer.c  
** These routines provide a layer of support between my bare-  
 bones application skeleton and the Bezier curve code.   
  There’s little here of interest outside of the mouse 
  tracking and the curve drawing.
**  David W. Smith
*/

#include “QuickDraw.h”
#include “MacTypes.h”
#include “FontMgr.h”
#include “WindowMgr.h”
#include “MenuMgr.h”
#include “TextEdit.h”
#include “DialogMgr.h”
#include “EventMgr.h”
#include “DeskMgr.h”
#include “FileMgr.h”
#include “ToolboxUtil.h”
#include “ControlMgr.h”

/*
 *  Tracker objects.  Similar to MacAPP trackers, but much,
 much simpler.
 */
struct Tracker
{
 void (*track)();
 int    thePoint;
};

static struct Tracker aTracker;
static struct Tracker bTracker;

/*
 *  The Bezier curve control points.
 */
Point   control[4] = {{144,72}, {72,144}, {216,144}, {144,216}};


/*
 *  Draw
 *  Called from the skeleton to update the window.  Draw the   
 initial curve.
 */
Draw()
{
 PenMode(patXor);
 DrawTheCurve(control, true);
}

/*
 *  DrawTheCurve
 * Draw the given Bezier curve in the current pen mode.Draw 
   the control points if requested.
 */
DrawTheCurve(c, drawPoints)
 Point  c[];
{
 if ( drawPoints )
 DrawThePoints(c);
 BezierCurve(c[0], c[1], c[2], c[3]);
}

/*
 *  DrawThePoints
 *  Draw all of the control points.
 */
DrawThePoints(c)
 Point  c[];
{
 int    n;
 
 for ( n = 0 ; n < 4 ; ++n ) {
 DrawPoint(c, n);
 }
}

/*
 *  DrawPoint
 *  Draw a single control point
 */
DrawPoint(c, n)
 Point  c[];
 int    n;
{
 PenSize(3, 3);
 MoveTo(c[n].h - 1, c[n].v - 1);
 LineTo(c[n].h - 1, c[n].v - 1);
 PenSize(1, 1);
}

/*
 * GetTracker
 * Produce a tracker object
 * Called by the skeleton to handle mouse-down events.
 * If the mouse touches a control point, return a tracker for
 that point. Otherwise, return a tracker that drags a gray 
 rectangle.
 */
struct Tracker *
GetTracker(point)
 Point  point;
{
 void   TrackPoint(), TrackSelect();
 int    i;

 aTracker.track = TrackPoint;

 for ( i = 0 ; i < 4 ; ++i ) {
 if ( TouchPoint(control[i], point) ) {
 aTracker.thePoint = i;
 return (&aTracker);
 }
 }
 bTracker.track = TrackSelect;
 return (&bTracker);
}

/*
 *  TouchPoint
 *  Do the points touch?
 */
#define abs(a) (a < 0 ? -(a) : (a))

TouchPoint(target, point)
 Point  target;
 Point  point;
{
 SubPt(point, &target);
 if ( abs(target.h) < 3 && abs(target.v) < 3 )
 return (1);
 return (0);
}

/*
 *  TrackPoint
 *  Called while dragging a control point.
 */
void
TrackPoint(tracker, point, phase)
 struct Tracker  *tracker;
 Point  point;
 int    phase;
{
 Point  savePoint;

 switch ( phase ) {
 case 1:
 /* initial click - XOR out the control point */
 DrawPoint(control, tracker->thePoint);
 break;
 case 2:
 /* drag - undraw the original curve and draw the new one */
 DrawTheCurve(control, false);
 control[tracker->thePoint] = point;
 DrawTheCurve(control, false);
 break;
 case 3:
 /* release - redraw the control point */
 DrawPoint(control, tracker->thePoint);
 break;
 }
}

/*
 *  TrackSelect
 *  Track a gray selection rectangle
 */
static Pointfirst;
static Rect r;

void
TrackSelect(tracker, point, phase)
 struct Tracker  *tracker;
 Point  point;
 int    phase;
{
 switch ( phase ) {
 case 1:
 PenPat(gray);
 first = point;
 SetupRect(&r, first, point);
 FrameRect(&r);
 break;
 case 2:
 FrameRect(&r);
 SetupRect(&r, first, point);
 FrameRect(&r);
 break;
 case 3:
 FrameRect(&r);
 PenPat(black);
 break;
 }
}

/*
 *  SetupRect
 *  Setup the rectangle for tracking.
 */
#define min(x, y) (((x) < (y)) ? (x) : (y))
#define max(x, y) (((x) > (y)) ? (x) : (y))

SetupRect(rect, point1, point2)
 Rect   *rect;
 Point  point1;
 Point  point2;
{
 SetRect(rect,
 min(point1.h, point2.h),
 min(point1.v, point2.v),
 max(point1.h, point2.h),
 max(point1.v, point2.v));
}

/*
**  Skeleton.c  --  A bare-bones skeleton.
** This has been hacked up to demonstrate Bezier curves.  
    Other than the tracking technique, there’s little here of 
    interest.
**  David W. Smith
*/

#include “QuickDraw.h”
#include “MacTypes.h”
#include “FontMgr.h”
#include “WindowMgr.h”
#include “MenuMgr.h”
#include “TextEdit.h”
#include “DialogMgr.h”
#include “EventMgr.h”
#include “DeskMgr.h”
#include “FileMgr.h”
#include “ToolboxUtil.h”
#include “ControlMgr.h”

WindowRecordwRecord;
WindowPtr myWindow;

/*
 *  main
 *  Initialize the world, then handle events until told to quit.
 */
main() 
{
 InitGraf(&thePort);
 InitFonts();
 FlushEvents(everyEvent, 0);
 InitWindows();
 InitMenus();
 InitDialogs(0L);
 InitCursor();
 MaxApplZone();

 SetupMenus();
 SetupWindow();
 SetupBezier();

 while ( DoEvent(everyEvent) )
 ;
}

/*
 *  SetupMenus
 *  For the purpose of this demo, we get somewhat non-standard and use 
no menus.  Closing the window quits.
 */
SetupMenus()
{
 DrawMenuBar();
}

/*
 *  SetupWindow
 *  Setup the window for the Bezier demo.
 */
SetupWindow()
{
 Rect   bounds;

 bounds = WMgrPort->portBits.bounds;
 bounds.top += 36;
 InsetRect(&bounds, 5, 5);

 myWindow = NewWindow(&wRecord, &bounds, “\pBezier Sampler - Click and 
Drag”, 1, noGrowDocProc, 0L, 1, 0L);
 
 SetPort(myWindow);
}

/*
 *  DoEvent
 *  Generic event handling.
 */
DoEvent(eventMask)
 int    eventMask;
{
 EventRecordmyEvent;
 WindowPtrwhichWindow;
 Rect   r;
 
 SystemTask();
 if ( GetNextEvent(eventMask, &myEvent) )
 {
 switch ( myEvent.what )
 {
 case mouseDown:
 switch ( FindWindow( myEvent.where, &whichWindow ) )
 {
 case inDesk: 
 break;
 case inGoAway:
 if ( TrackGoAway(myWindow, myEvent.where) )
 {
 HideWindow(myWindow);
 return (0);
 }
 break;
 case inMenuBar:
 return (DoCommand(MenuSelect(myEvent.where)));
 case inSysWindow:
 SystemClick(&myEvent, whichWindow);
 break;
 case inDrag:
 break;
 case inGrow:
 break;
 case inContent:
 DoContent(&myEvent);
 break;
 default:
 break;;
 }
 break;
 case keyDown:
 case autoKey: 
 break;
 case activateEvt:
 break;
 case updateEvt:
 DoUpdate();
 break;
 default:
 break;
 }
 }
 return(1);
}

/*
 *  DoCommand
 *  Command handling would normally go here.
 */
DoCommand(mResult)
 long   mResult;
{
 int    theItem, temp;
 Str255 name;
 WindowPeek wPtr;
 
 theItem = LoWord(mResult);

 switch ( HiWord(mResult) )
 {
 }

 HiliteMenu(0);
 return(1);
}

/*
 *  DoUpdate
 *  Generic update handler.
 */
DoUpdate()
{
 BeginUpdate(myWindow);
 Draw();
 EndUpdate(myWindow);
}

/*
 *  DoContent
 *  Handle mouse-downs in the content area by asking the application 
to produce a tracker object.  We then call the tracker repeatedly to 
track the mouse. This technique came originally (as nearly as I can tell) 
from Xerox, and is used in a modified form in MacApp.
 */
struct Tracker
{
 int    (*Track)();
};

int
DoContent(pEvent)
 EventRecord*pEvent;
{
 struct Tracker  *GetTracker();
 struct Tracker  *t;
 Point  point, newPoint;
 
 point = pEvent->where;
 GlobalToLocal(&point);
 t = GetTracker(point);
 if ( t ) {
 (*t->Track)(t, point, 1);
 while ( StillDown() ) {
 GetMouse(&newPoint);
 if ( newPoint.h != point.h || newPoint.v != point.v ) {
 point = newPoint;
 (*t->Track)(t, point, 2);
 }
 }
 (*t->Track)(t, point, 3);
 }
}

 

Community Search:
MacTech Search:

Software Updates via MacUpdate

Kodi 15.0.beta1 - Powerful media center...
Kodi (was XBMC) is an award-winning free and open-source (GPL) software media player and entertainment hub that can be installed on Linux, OS X, Windows, iOS, and Android, featuring a 10-foot user... Read more
DiskCatalogMaker 6.4.12 - Catalog your d...
DiskCatalogMaker is a simple disk management tool which catalogs disks. Simple, light-weight, and fast. Finder-like intuitive look and feel. Super-fast search algorithm. Can compress catalog data... Read more
Macs Fan Control 1.3.0.0 - Monitor and c...
Macs Fan Control allows you to monitor and control almost any aspect of your computer's fans, with support for controlling fan speed, temperature sensors pane, menu-bar icon, and autostart with... Read more
Lyn 1.5.11 - Lightweight image browser a...
Lyn is a lightweight and fast image browser and viewer designed for photographers, graphic artists and Web designers. Featuring an extremely versatile and aesthetically pleasing interface, it... Read more
NeoOffice 2014.11 - Mac-tailored, OpenOf...
NeoOffice is a complete office suite for OS X. With NeoOffice, users can view, edit, and save OpenOffice documents, PDF files, and most Microsoft Word, Excel, and PowerPoint documents. NeoOffice 3.x... Read more
LaunchBar 6.4 - Powerful file/URL/email...
LaunchBar is an award-winning productivity utility that offers an amazingly intuitive and efficient way to search and access any kind of information stored on your computer or on the Web. It provides... Read more
Remotix 3.1.4 - Access all your computer...
Remotix is a fast and powerful application to easily access multiple Macs (and PCs) from your own Mac. Features Complete Apple Screen Sharing support - including Mac OS X login, clipboard... Read more
DesktopLyrics 2.6.6 - Displays current i...
DesktopLyrics is an application that displays the lyrics of the song currently playing in "iTunes" right on your desktop. The lyrics for the song have to be set in iTunes; DesktopLyrics does nothing... Read more
VOX 2.5.1 - Music player that supports m...
VOX is a beautiful music player that supports many filetypes. The beauty is in its simplicity, yet behind the minimal exterior lies a powerful music player with a ton of features and support for all... Read more
Microsoft Remote Desktop 8.0.18 - Connec...
With Microsoft Remote Desktop, you can connect to a remote PC and your work resources from almost anywhere. Experience the power of Windows with RemoteFX in a Remote Desktop client designed to help... Read more

Biz Builder Delux (Games)
Biz Builder Delux 1.0.0 Device: iOS Universal Category: Games Price: $4.99, Version: 1.0.0 (iTunes) Description: Ah, there's nothing like the rhythmic bustle of a burgeoning business burg... especially when you're the one building it... | Read more »
Auroch Digital is Bringing Back Games Wo...
| Read more »
Carbo - Handwriting in the Digital Age...
Carbo - Handwriting in the Digital Age 1.0 Device: iOS Universal Category: Productivity Price: $3.99, Version: 1.0 (iTunes) Description: | Read more »
Draggy Dead (Games)
Draggy Dead 1.1 Device: iOS Universal Category: Games Price: $.99, Version: 1.1 (iTunes) Description: Ditch your dead end job and take up a rewarding career in Grave Robbing today!Guide the recently deceased to a fun filled life of... | Read more »
Bad Dinos (Games)
Bad Dinos 1.0.0 Device: iOS Universal Category: Games Price: $2.99, Version: 1.0.0 (iTunes) Description: | Read more »
The Apple Watch isn't Great as a Fi...
| Read more »
Show the World What You See With Stre.am...
Live broadcasting is getting popular on mobile devices, which is why you can now get Stre.am, by Infinite Takes. [Read more] | Read more »
PhotoTime's 2.1 Update Adds Apple W...
The latest PhotoTime update is adding even more functionality to the handy photo organizing app. Yep, including Apple Watch support. [Read more] | Read more »
Oh My Glob! Adventure Time Puzzle Quest...
Finn and Jake are taking over D3 Go!'s popular puzzle game series in the upcoming Adventure Time Puzzle Quest. [Read more] | Read more »
Earthcore: Shattered Elements - Tips, Tr...
At first glance, Earthcore: Shattered Elements seems like a rather simple card-battling game. Once you’re introduced to skills that will change quite a bit. Even more so once you start to acquire hero cards. But it’s not so complicated that we... | Read more »

Price Scanner via MacPrices.net

Memorial Day Weekend Sale: New 27-inch 3.3GHz...
Best Buy has the new 27″ 3.3GHz 5K iMac on sale for $1899.99 this weekend. Choose free shipping or free local store pickup (if available). Sale price for online orders only, in-store prices may vary... Read more
OtterBox Maximizes Portability, Productivity...
From the kitchen recipe book to the boarsroom presentation, the OtterBox Agility Tablet System turns tablets into one of the most versatile pieces of handheld technology available. Available now, the... Read more
Launch of New Car App Gallery and Open Develo...
Automatic, a company on a mission to bring the power of the Internet into every car, has announced the launch of the Automatic App Gallery, an app store for nearly every car or truck on the road... Read more
Memorial Day Weekend Sale: 13-inch 1.6GHz Mac...
Best Buy has the new 13″ 1.6GHz/128GB MacBook Air on sale for $849 on their online store this weekend. Choose free shipping or free local store pickup (if available). Sale price for online orders... Read more
Memorial Day Weekend Sale: 27-inch 3.5GHz 5K...
Best Buy has the 27″ 3.5GHz 5K iMac on sale for $2099.99 this weekend. Choose free shipping or free local store pickup (if available). Sale price for online orders only, in-store prices may vary.... Read more
Sale! 16GB iPad mini 3 for $349, save $50
B&H Photo has the 16GB iPad mini 3 WiFi on sale for $349 including free shipping plus NY sales tax only. Their price is $50 off MSRP, and it’s the lowest price available for this model. Read more
Price drop on 2014 15-inch Retina MacBook Pro...
B&H Photo has dropped prices on 2014 15″ Retina MacBook Pros by $200. Shipping is free, and B&H charges NY sales tax only: - 15″ 2.2GHz Retina MacBook Pro: $1799.99 save $200 - 15″ 2.5GHz... Read more
With a Mission to Make Mobile Free, Scratch W...
Scratch Wireless, claiming to be the world’s first truly free mobile service, has announced the availability of a new Scratch-enabled Android smartphone, the Coolpad Arise. The smartphone is equipped... Read more
First-Ever Titanium Alloy Curved iPhone 6 Scr...
One of the most common problems with mobile phones is damage to the screens. The slightest drop can cause a dreaded spider web of gashes and cracks in the glass panel surface that can cost $hundreds... Read more
Preorder new 12-inch MacBook, $10 off, save o...
Adorama has new 12″ Retina MacBooks available for preorder for $10 off MSRP including free shipping plus NY & NJ sales tax only. For a limited time, Adorama will include a free Apple USB-C to USB... Read more

Jobs Board

*Apple* Solutions Consultant - Retail Sales...
**Job Summary** As an Apple Solutions Consultant (ASC) you are the link between our customers and our products. Your role is to drive the Apple business in a retail Read more
*Apple* TV Live Streaming Frameworks Test En...
**Job Summary** Work and contribute towards the engineering of Apple 's state-of-the-art products involving video, audio, and graphics in Interactive Media Group (IMG) at Read more
*Apple* Retail - Multiple Positions (US) - A...
Sales Specialist - Retail Customer Service and Sales Transform Apple Store visitors into loyal Apple customers. When customers enter the store, you're also the Read more
Partner Marketing Manager, Merchant- *Apple*...
**Job Summary** The Apple Pay partner marketing team is looking for a marketing manager to develop and drive US marketing programs with our merchant partners. The right Read more
Technical Project Manager - *Apple* Pay - A...
**Job Summary** Apple Pay is seeking an experienced technical PM to…manage the on boarding of new merchants for the Apple Pay platform in the US Within this role you Read more
All contents are Copyright 1984-2011 by Xplain Corporation. All rights reserved. Theme designed by Icreon.