TweetFollow Us on Twitter

Multitasking
Volume Number:3
Issue Number:12
Column Tag:The Visiting Developer

Multitasking in MacScheme+Toolsmith™

By William Clinger, Tektronix Laboratories

Thanks to MultiFinder, everyone knows that multitasking lets you run more than one thing at once. In an operating system like MultiFinder, multitasking means that you can run more than one application at once. In a programming language, multitasking means that you can run several parts of your program at once. This article explains why you might want to use multitasking within a single program, and warns against a class of bugs that you must guard against when you do use multitasking. It also surveys the multitasking facilities in MacScheme+Toolsmith™, which are probably the best developed of any language for the Macintosh.

The Macintosh contains only one 68000 or 68020, but there will come a day when most computers contain many such processors. Then multitasking will make programs run faster because the processors will work as a team, with each processor working on its part of the problem to be solved. These pieces of a problem are of course called tasks.

A single hardware processor can work on only one task at a time. To get the effect of working on multiple tasks at once, the processor must switch between tasks. In MultiFinder, these switches occur only when a task calls GetNextEvent or WaitNextEvent. If a task were to get into an infinite loop where it never calls one of these routines, that would be the end of the multitasking. This is what people mean when they say that MultiFinder does non-preemptive multitasking. It never interrupts, or preempts, a running task. Task switches can occur only when a task yields control by calling GetNextEvent or WaitNextEvent. Applications are supposed to call these traps fairly often, so MultiFinder works well in practice.

MacScheme+Toolsmith, on the other hand, does preemptive multitasking. MacScheme programs do not have to call GetNextEvent or WaitNextEvent, because there is a separate task that calls these traps. Every so often, MacScheme+Toolsmith simply interrupts the currently executing task and switches to a new task. Preemptive multitasking is more reliable than non-preemptive multitasking because it works even when a buggy task gets into an infinite loop. This kind of reliability isn’t very important for an operating system like MultiFinder because applications aren’t supposed to be buggy, but it matters a lot for a development system like MacScheme+Toolsmith because all programs are buggy when you’re trying to debug them.

Why would anyone want to use multiple tasks within a single program? Why not perform the tasks sequentially--that is, one after the other? A good question. It turns out that multiple concurrent tasks within a single program are much more useful on the Macintosh than on most other computers. Consider, for example, the task of blinking the insertion point within a text window. That task lasts as long as the window is open. You can’t run tasks like that in sequence, because once you’ve started such a task you’d never get to any other tasks.

Does this seem artificial? How about the task that changes the cursor’s shape in response to its position on the screen? How about the task that updates the time displayed on the alarm clock? A considerable part of the Macintosh user interface really consists of concurrent tasks. Because the original concept of the Macintosh did not include real concurrent tasks, however, these features of the user interface have generally been programmed using such clumsy mechanisms as event loops and desk accessories.

An alternative is to use the vertical retrace manager to perform preemptive task scheduling. The operating system task that performs mouse tracking is one of the tasks that is programmed this way. The vertical retrace manager is not generally useful, though, because tasks that run during a vertical retrace interrupt are very restricted in what they can do and must yield control of the processor within a very short time.

The most general alternative is to use a language that supports concurrent tasks. User interface chores are routinely implemented as concurrent tasks by programmers using MacScheme+Toolsmith. To create a task in MacScheme+Toolsmith, you first create a procedure of no arguments that will perform the task. Then you pass that procedure as an argument to start-task. For example, you can define a task that perpetually increments a global variable n as follows:

>>> (define n 0)
n
>>> (define (loop1)
      (set! n (+ n 1))
      (loop1))
loop1
>>> (define t1 (start-task loop1))
t1

The call to start-task begins the concurrent task. You can observe its progress by checking on the value of n.

>>> n
46954
>>> n
103925
>>> n
165850
>>> n
184428

The value returned by start-task is a task object. You can kill the task by calling kill-task.

>>> n
718335
>>> n
728243
>>> (kill-task t1)
#t
>>> n
821130
>>> n
821130

If the procedure that was passed to start-task ever returns, the task will kill itself automatically. A task can kill itself explicitly by calling the kill-current-task procedure. If all tasks die, then a warning message will appear and a new task will be created for the read/eval/print loop. The kill-all-tasks procedure will track down and kill all tasks, including runaways, which is useful for debugging.

If an error occurs, task switches are disabled while you investigate the problem using the MacScheme debugger. This keeps variables from changing on you until you’ve figured out what’s going on. Tasking resumes when you’ve repaired the problem and continue the computation from the debugger.

You can improve the overall performance of a program by having your tasks call surrender-timeslice to force an immediate task switch whenever they don’t need to run again for a while. For example, a task that is blinking the insertion point in a window can afford to wait for a substantial fraction of a second before it blinks again. The surrender-timeslice procedure is analogous to the WaitNextEvent trap, which improves the tasking performance of MultiFinder when applications call it in preference to GetNextEvent.

Because it takes time to switch between tasks, you might think that on a single processor system such as the Macintosh programs that don’t use concurrent tasks would run faster than otherwise equivalent programs that are organized as concurrent tasks. That’s usually true, but not always. Figure 1 shows a procedure that takes a pattern x and arbitrarily many additional arguments, and tries to find one of them that is not equal to the pattern. If the program is such that most of the arguments are equal to the pattern, and the arguments are large structures (so it takes a long time to compare them against the pattern if they are equal), but there is usually one argument that is so different that it can quickly be determined to be unequal once the procedure gets around to trying it, then the procedure in Figure 2 will run faster on the average. The reason is that it conducts a breadth-first search using concurrent tasks instead of a sequential, depth-first search.

A breadth-first search could be programmed explicitly without using tasks, but that would make it much more complicated, and the resulting procedure might well run slower than the procedure in Figure 2 because the programmer would probably not be able to spend as much time optimizing the breadth-first search as was spent on the multitasking facilities of MacScheme+Toolsmith.

The procedure in Figure 2 works by creating a task for each argument except the first. Whenever a task finds that its argument is not equal to the pattern, then it stores its argument in a variable named ans. Meanwhile the procedure that created these tasks just waits for one of them to find the answer or for all of them to finish. How does it know when all of the tasks have finished? The task-count variable holds the number of tasks that have not yet finished. When it gets to zero, then either all the tasks have finished, or else one of the tasks has found an answer and has set the task-count to zero to indicate that the remaining tasks are irrelevant. When the task-count gets to zero, the main procedure kills all the tasks it has created, just in case some of them are still alive (it doesn’t hurt to kill a task twice), and returns the answer.

Actually, there is a very interesting bug in Figure 2. It has to do with the assignment

(set! task-count (- task-count 1))

that is executed whenever a task has found that its argument is equal to the pattern. Suppose two concurrent tasks, t1 and t2, try to execute this assignment at the same time. Suppose further that the value of task-count is 2, so that task-count should be 0 after both t1 and t2 have executed the assignment. If we’re extremely unlucky, then t1 might fetch the value of task-count, and then t2 might also fetch the value of task-count while t1 is still subtracting 1 from 2. Then t1 would store a 1 back in the variable, and so would t2. The variable would never reach zero, so the procedure would never return.

How do we fix this bug? The assignment must be executed as an uninterruptible atomic action, so that only one task at a time can execute any part of it. To accomplish this, MacScheme+Toolsmith supplies a procedure named call-without-interrupts that takes a procedure of no arguments and calls it uninterruptibly. We can therefore fix the bug by changing the assignment to

(call-without-interrupts
  (lambda ()
    (set! task-count (- task-count 1))))

This bug is typical of a new class of bugs that you must watch out for when using multitasking. At the operating system level, file i/o is the analog of assignment. Developers need to watch out for this class of bugs, which may show up whenever an application writes to a file that another application might read.

The worst thing about this kind of bug is that it never seems to show up when you test your program. It only shows up when your customers use it. The only way I know to avoid making mistakes like this is to gain lots of experience with multitasking, and to be fanatically careful about assignments, file i/o, and all other side effects (changes to shared state). Because this whole class of bugs is caused by side effects, many researchers believe that languages without side effects, such as pure Lisp, and languages like Scheme that encourage programmers to develop a style that uses relatively few side effects, will be the most practical languages for programming the powerful multiprocessor systems that are expected in the future.

MacScheme is a registered trademark of Semantic Microsystems, Inc. MacScheme+Toolsmith is a trademark of Semantic Microsystems, Inc.

===================================================
Figure 1.
(define (unequal1 x . lists)
  (cond ((null? lists) #f)
       ((equal? x (car lists))
        (apply unequal1 (cons x (cdr lists))))
       (else (car lists))))
===================================================
Figure 2.
(begin-tasking)

(define (unequal2 x . objects)
  (let* ((ans #f)
      (task-count (length objects))
      (tasks (map (lambda (y)
             (start-task
              (lambda ()
                (if (not (equal? x y))
                    (begin (set! ans y)
                           (set! task-count 0)))
                (set! task-count (- task-count 1)))))
           objects)))
   (while (> task-count 0)
          (surrender-timeslice))
   (for-each kill-task tasks)
   ans))
 

Community Search:
MacTech Search:

Software Updates via MacUpdate

How to deal with wind in Angry Birds Act...
Angry Birds Action! is a physics-based puzzler in which you're tasked with dragging and launching birds around an obstacle-littered field to achieve a set objective. It's simple enough at first, but when wind gets introduced things can get pretty... | Read more »
How to get three stars in every level of...
Angry Birds Action! is, essentially, a pinball-style take on the pull-and-fling action of the original games. When you first boot it up, you'll likely be wondering exactly what it is you have to do to get a good score. Well, never fear as 148Apps... | Read more »
The beginner's guide to Warbits
Warbits is a turn-based strategy that's clearly inspired by Nintendo's Advance Wars series. Since turn-based strategy games can be kind of tricky to dive into, see below for a few tips to help you in the beginning. Positioning is crucial [Read... | Read more »
How to upgrade your character in Spellsp...
So you’ve mastered the basics of Spellspire. By which I mean you’ve realised it’s all about spelling things in a spire. What next? Well you’re going to need to figure out how to toughen up your character. It’s all well and good being able to spell... | Read more »
5 slither.io mash-ups we'd love to...
If there's one thing that slither.io has proved, it's that the addictive gameplay of Agar.io can be transplanted onto basically anything and it will still be good fun. It wouldn't be surprising if we saw other developers jumping on the bandwagon,... | Read more »
How to navigate the terrain in Sky Charm...
Sky Charms is a whimsical match-'em up adventure that uses creative level design to really ramp up the difficulty. [Read more] | Read more »
Victorious Knight (Games)
Victorious Knight 1.3 Device: iOS Universal Category: Games Price: $1.99, Version: 1.3 (iTunes) Description: New challenges awaits you! Experience fresh RPG experience with a unique combat mechanic, packed with high quality 3D... | Read more »
Agent Gumball - Roguelike Spy Game (Gam...
Agent Gumball - Roguelike Spy Game 1.0 Device: iOS Universal Category: Games Price: $2.99, Version: 1.0 (iTunes) Description: Someone’s been spying on Gumball. What the what?! Two can play at that game! GO UNDERCOVERSneak past enemy... | Read more »
Runaway Toad (Games)
Runaway Toad 1.0 Device: iOS Universal Category: Games Price: $2.99, Version: 1.0 (iTunes) Description: It ain’t easy bein’ green! Tap, hold, and swipe to help Toad hop to safety in this gorgeous new action game from the creators of... | Read more »
PsyCard (Games)
PsyCard 1.0 Device: iOS Universal Category: Games Price: $1.99, Version: 1.0 (iTunes) Description: From the makers och Card City Nights, Progress To 100 and Ittle Dew PSYCARD is a minesweeper-like game set in a cozy cyberpunk... | Read more »

Price Scanner via MacPrices.net

Price drops on clearance 2015 13-inch MacBook...
B&H Photo has dropped prices on clearance 2015 13″ MacBook Airs by up to $250. Shipping is free, and B&H charges NY sales tax only: - 13″ 1.6GHz/4GB/128GB MacBook Air (MJVE2LL/A): $799, $200... Read more
Mac minis on sale for up to $100 off MSRP
B&H Photo has Mac minis on sale for up to $100 off MSRP including free shipping plus NY sales tax only: - 1.4GHz Mac mini: $449 $50 off MSRP - 2.6GHz Mac mini: $649 $50 off MSRP - 2.8GHz Mac mini... Read more
13-inch Retina MacBook Pros on sale for up to...
B&H Photo has 13″ Retina MacBook Pros on sale for $130-$200 off MSRP. Shipping is free, and B&H charges NY tax only: - 13″ 2.7GHz/128GB Retina MacBook Pro: $1169 $130 off MSRP - 13″ 2.7GHz/... Read more
Apple price trackers, updated continuously
Scan our Apple Price Trackers for the latest information on sales, bundles, and availability on systems from Apple’s authorized internet/catalog resellers. We update the trackers continuously: - 15″... Read more
SanDisk Half-Terabyte SSD Optimized for Every...
SanDisk Corporation has announced the SanDisk Z410 SSD, a cost-competitive, half-terabyte solid state drive (SSD) that enables manufacturers to design for a broad range of desktop PCs and laptops.... Read more
Churchill Downs Racetrack Selects VenueNext t...
Churchill Downs Racetrack has announced an agreement with VenueNext to implement its technology platform for the start of Churchill Downs 2016 Spring Meet, which includes the 142nd running of the... Read more
Record 700 Million Pounds of CE Recycled in 2...
The Consumer Technology Association (CTA) reports that a record-setting 700 million pounds of consumer electronics (CE) have been recycled under the eCycling Leadership Initiative (ELI). According to... Read more
Price drops on clearance 12-inch Retina MacBo...
B&H Photo has dropped prices on leftover 2015 12″ Retina MacBooks with models now available starting at $999. Shipping is free, and B&H charges NY tax only: - 12″ 1.1GHz Gray Retina MacBook... Read more
15-inch Retina MacBook Pros available for $20...
B&H Photo has 15″ Retina MacBook Pros on sale for up to $210 off MSRP. Shipping is free, and B&H charges NY tax only: - 15″ 2.2GHz Retina MacBook Pro: $1799 $200 off MSRP - 15″ 2.5GHz Retina... Read more
Target offers Apple Watch Sport for $50 off M...
Target has Apple Watch Sports on sale for $50 off MSRP for a limited time. Choose free shipping or free local store pickup (if available). Sale prices for online orders only, in-store prices may vary... Read more

Jobs Board

*Apple* Retail - Multiple Positions - Apple,...
Job Description: Sales Specialist - Retail Customer Service and Sales Transform Apple Store visitors into loyal Apple customers. When customers enter the store, Read more
Restaurant Manager (Neighborhood Captain) - A...
…in every aspect of daily operation. WHY YOU'LL LIKE IT: You'll be the Big Apple . You'll solve problems. You'll get to show your ability to handle the stress and Read more
Restaurant Manager (Neighborhood Captain) - A...
…in every aspect of daily operation. WHY YOU'LL LIKE IT: You'll be the Big Apple . You'll solve problems. You'll get to show your ability to handle the stress and Read more
Simply Mac *Apple* Specialist- Service Repa...
Simply Mac is the largest premier retailer of Apple products in the nation. In order to support our growing customer base, we are currently looking for a driven Read more
*Apple* Retail - Multiple Positions - Apple,...
Sales Specialist - Retail Customer Service and Sales Transform Apple Store visitors into loyal Apple customers. When customers enter the store, you're also the Read more
All contents are Copyright 1984-2011 by Xplain Corporation. All rights reserved. Theme designed by Icreon.