TweetFollow Us on Twitter

Benchmarks 2
Volume Number:3
Issue Number:9
Column Tag:Mac Cad

Benchmarks Re-visited

By Paul Zarchan, Cambridge, Mass

With the emergence of the Mac 2 and the growing base of useful, easy to use scientific software, the field of desktop engineering will surely grow this year. The purpose of this article is to compare, from an engineering user point of view, the new Mac’s (using a Prodigy 4 as the equivalent of a Mac 2) with their counterparts in the IBM micro world, DEC mini world and IBM mainframe world. First the issue of compilation and linking will be addressed and then standardized benchmarks will be used to compare various machines from both a cost and performance point of view. Most of the non Mac results were provided to me by A. Tetewsky and D. Feenberg. These results will soon be published in Ref. 1.

Compiling and Linking

When using a compiled language for programming, such as FORTRAN, the issue of compile and link times is extremely important. In engineering applications, excessive compile and link times may make it worthwhile to develop engineering software in an interpretive language such as BASIC, and then port it to a compiled language after initial debugging and algorithm development have been completed. If switching languages may not be practical, it may be worthwhile to stay in FORTRAN but develop the engineering software on a computer with faster compilation times. After program development the source code can easily be ported to the computer of interest for final compilation.

Let’s consider an example in finding complex roots of real polynomials. The 144 lines of program source code for this example can be found in Ref. 2. This example, like that of the Butterworth example in Ref. 3, uses single precision arithmetic but unlike the Butterworth example has virtually no input/output code. In this root finding example, a solution is found for a 30th order, well-behaved polynomial. The compile and link times for the 144 lines of code, using MS FORTRAN (both in the Apple and non Apple world), are indicated in Table 1 for a variety of micros.

In this example, compilation and linking were done using a hard disk for the IBM AT and Compaq 386, while in the Macintosh world, compilation and linking were done in RAM. In the IBM world, compiling in RAM is not significantly faster than compiling from the hard disk. This will always be the case since the operating system software, DOS, is written for 64k segmented 8086/8088 processors. Although an operating system which is developed for the 80386 or OS/2 should be better and improve compilation times, it will not be available for at least one year. If history is any guide, the wait time may be significantly longer. In addition, due to memory segmentation and the lack of a FORTRAN editor (a word processor must be used), it may be difficult to fit all necessary engineering tools into RAM. In the Macintosh world, memory is linear and easily expandable with third party upgrades. For example a 512K Mac can be upgraded to 2 Megs for about $500. This permits the creation of a 1.5 Meg recoverable RAM disk which is large enough to fit FORTRAN and many other useful tools into RAM. Therefore, compiling in RAM with a Mac is much faster than compiling from a hard disk.

In addition, in the IBM world one must compile and link before the code can be executed. The user must nurse the computer through the compiling, linking and execution process. In the Macintosh world, linking is dynamic and therefore automatic from a user point of view. The user simply double clicks on “compile and execute” and the source code compiles, links and runs.

The execution time for this complex root finding example for a variety of micros appears in Table 2. In this example all the micros with the exception of the Mac Plus had math coprocessors.

The Table shows that, for this example, the Prodigy 4 is about 10 times faster than a Mac Plus, more than 5 times faster than an IBM AT and 2.5 times faster than a Compaq 386. In the IBM world, with the exception of the PC, the math coprocessor never seems to run at the same clock rate as the CPU. That is why for this example, an AT and PC (where the math coprocessor is matched to the CPU at 4.77 MHz) have similar execution times. The Compaq 386 is only twice as fast as the AT even though the Compaq has 32 bits rather than 16 bits and runs at 16 Mhz rather than 6 Mhz. In principal, when the IBM operating system software is written and a 16 MHz Intel 80387 math coprocessor becomes available, it should be in the same speed class as the Prodigy 4. Interestingly enough, the Compaq 386 is rated at 3.5 MIPs while the Prodigy 4 is only rated at 2.0 MIPs. We can see that in numerical applications, MIP ratings may not tell the whole story (see Ref. 4 for example).

Often the user may only be interested in the turn around time, which is the sum of the compile, link and execution times. For this example we can see by comparing Tables 1 and 2 that the turn around times are significantly better in the Macintosh world. Table 3 summarizes the results for the complex root example.

The sample problem only had 144 lines of FORTRAN code. If we consider a “traveling salesman” program using 1500 lines of FORTRAN code, the comparison of compile and linking times are even more dramatic. Table 4 shows that the Macintosh and Prodigy 4 are considerably faster for larger programs than either the IBM AT or Compaq 386.

Whetstone Benchmarking

The Whetstone benchmark, devised in England by Curnow and Wichman in the Feb. 1976 issue of the Computer Journal, is an attempt to cover a typical mix of all floating point operations. This benchmark contains linear arrays, and add, subtract, multiply, divide and transcendental operations. Whetstones were originally written in ALGOL, but later translated to FORTRAN in 1979 by D. Frank. Since that time, many computer manufacturers have rated their machines in terms of thousands of Whetstones per second or kw/sec. Higher Whetstone ratings mean more powerful machines. Table 5 presents single and double Whetstone ratings for a variety of micro, mini and mainframe computers. In addition, ratios referenced to Prodigy 4 speed are indicated in the Table. A ratio of 1.7 means that the computer is 1.7 times faster than the Prodigy 4. All computers, with the exception of the Mac Plus, have math coprocessors or floating point accelerators. The poor double precision Whetstone rating of the Mac Plus may, relative to the IBM PC, may be one of the reasons there has been a scarcity of scientific software for the Mac. Of course, we can see from this Table that the Prodigy 4 and hence new Mac 2 changes all that.

The Whetstone results of Table 5 (with no I/O) can be compared to the Butterworth simulation results( with considerable I/O and more representative of a realistic engineering application) of Ref. 3. Figure 1 shows that all the benchmarks, whether they be Whetstones or Butterworth simulations, yield about the same relative machine performance. Only the Mac Plus seems to yields results which are significantly benchmark dependent. It yields worse performance on the Whetstones because of it’s lack of a math coprocessor.

Figure 1 - Relative Machine Performance is Approximately Independent of Benchmark

The performance comparison of Fig. 1 can be placed into proper perspective when the cost of the host computer is considered. For simplicity, computer cost can be considered to be the machines purchase price only. This neglects the cost of the small army of technicians required to operate the larger machines and the cost of software leasing agreements. We can see from Fig. 2 that generally higher cost computers yield faster performance. However the cost is not always commensurate with the performance. For example, a VAX 11/780 is only 1.5 times as fast as a Prodigy 4 and yet is 40 times more expensive. An IBM 3084Q is 11.7 times faster than a Prodigy 4 and is 500 times more expensive. On the micro side an IBM RT is 2.5 times slower than a Prodigy 4 and yet costs twice as much.

Figure 2 - Micros are More Cost Effective Than Larger Machines

If we normalize the computer performance as measured by double precision whetstones per second to the computer purchase price we can generate “bang for the buck” information. More “bang for the buck” means that the computer yields a higher double precision Whetstone rating for less cost. Figure 3 presents this cost effectiveness information and shows that the Compaq 386, Prodigy 4 and Micro Vax 2 are very cost effective, with the Prodigy 4 yielding the most “bang for the buck”. The curve also indicates that if a micro can do the job, it is more cost effective from a performance point of view than a mainframe.

Figure 3 - Prodigy 4 Outperforms Every Other Computer

Summary

The intent of this article was to show that FORTRAN runs very efficiently on the Prodigy 4 (and hence Mac 2) when compared to non Apple micros. When compilation and linking times are taken into account, the comparison is even more dramatic. A relative performance curve is presented quantifying “bang for the buck” information for a variety of micros, minis and mainframes. As expected, the new Mac 2 appears to out- perform every other computer.

Acknowledgements

I wish to thank Micro/Systems, Av Tetewsky and Dan Feenberg for permitting me to extract from Ref. 1 the benchmark timings on all the non Apple machines and for providing the technical explanation for the “features” of the various DOS machines. In addition, I would like to thank Owen Deutsch, for providing me with the “travelling salesman” FORTRAN code.

References

1) Tetewsky, A. and Feenberg, D. “A Survey of 6 FORTRAN Compilers” to appear in Sept. 1987 edition of Micro/Systems Journal.

2) Press, N. H. et al, “Numerical Recipes The Art of Scientific Computation”, Cambridge University Press, 1986.

3) Zarchan, P. “New Mac Workstation Potential”, MacTutor, Vol. 3, No. 3, March 1987, pp 15-21.

4) Boston Computer Society IBM PC Report, “PC Technical Report: MIPs, MFlops, Benchmarks and Other Half-Truths”, May-June 1987.

5) Marshall, T., Jones, C., and Kluger, S. “Definicon 68020 Coprocessor”, BYTE, July 1986, pp 120-144.

 

Community Search:
MacTech Search:

Software Updates via MacUpdate

How to get all the crabs in Mr Crab 2
Mr. Crab 2 may look like a cutesy platformer for kids, but if you're the kind of person who likes to complete a game 100%, you'll soon realise that it's a tougher than a crustacean's shell. [Read more] | Read more »
How to be a star in Britney Spears: Amer...
If you've ever wanted to be a star, baby, then you've probably already checked out Britney Spears: American Dream and are happily making your way up the charts. But fame doesn't come easy, and everyone needs a helping hand sometimes. So we've got... | Read more »
AppSpy is hiring a part time Staff Write...
| Read more »
How to save lives in ER Surgery Simulato...
A serious earthquake has struck a nearby town in ER Surgery Simulator - Emergency Doctor, and it’s up to you to save the victims. [Read more] | Read more »
Tips and tricks to get a high score in G...
Ketchapp Games loves the endless runner genre. And its newest game, Gravity Switch, is no exception. Gravity Switch takes a fresh approach, though, as you move a block, suspended in zero gravity, safely through a maze of shifting pillars. If the... | Read more »
Tips and tricks to get a high score in S...
Smash Fu is a high-paced tile-tapping game that requires quick reflexes and some practice. You’ll have to smash bricks with the skill of a seasoned black belt to get a high score. To raise the stakes a bit, you’ll also have to avoid tapping any... | Read more »
How to keep the ball rolling in Dropple
If you're new to the minimalist puzzler Dropple, you may find yourself struggling to make it beyond the first couple of steps before your ball falls into the endless abyss below. [Read more] | Read more »
Game Craft releases new Legend of War ti...
Set for release at the end of this month, real time strategy title Legend of War seems sure to delight with a veritable feast of sweet features to get stuck into. Developed by Game Craft, the game is due for release through both the App Store and... | Read more »
How not to die in Traffic Rider
Traffic Rider, an Out Run-esque game in which your ride a motorcycle recklessly into trffic, might not seem particularly complicated. [Read more] | Read more »
How to adjust your chess game for Regici...
At first glance you might likenWarhammer 40,000: Regicide to Chess - and you'd be right. Regicideputs its own spin on the classic board game though, so some of your tried and true methods may not work quite so well here. [Read more] | Read more »

Price Scanner via MacPrices.net

Textkraft Professional Becomes A Mobile Produ...
The new update 4.1 of Textkraft Professional for the iPad comes with many new and updated features that will be particularly of interest to self-publishers of e-books. Highlights include import and... Read more
SnipNotes 2.0 – Intelligent note-taking for i...
Indie software developer Felix Lisczyk has announced the release and immediate availability of SnipNotes 2.0, the next major version of his productivity app for iOS devices and Apple Watch.... Read more
Pitch Clock – The Entrepreneur’s Wingman Laun...
Grand Rapids, Michigan based Skunk Tank has announced the release and immediate availability of Pitch Clock – The Entrepreneur’s Wingman 1.1, the company’s new business app available exclusively on... Read more
13-inch 2.9GHz Retina MacBook Pro on sale for...
B&H Photo has the 13″ 2.9GHz Retina MacBook Pro (model #MF841LL/A) on sale for $1599 including free shipping plus NY tax only. Their price is $200 off MSRP. Amazon also has the 13″ 3.9GHz Retina... Read more
Apple price trackers, updated continuously
Scan our Apple Price Trackers for the latest information on sales, bundles, and availability on systems from Apple’s authorized internet/catalog resellers. We update the trackers continuously: - 15″... Read more
Clearance 12-inch Retina MacBooks available s...
B&H Photo has dropped prices on leftover 2015 12″ Retina MacBooks with models now available starting at $999. Shipping is free, and B&H charges NY tax only: - 12″ 1.1GHz Gray Retina MacBook... Read more
Check Apple prices on any device with the iTr...
MacPrices is proud to offer readers a free iOS app (iPhones, iPads, & iPod touch) and Android app (Google Play and Amazon App Store) called iTracx, which allows you to glance at today’s lowest... Read more
New 2016 13-inch 256GB MacBook Air on sale fo...
B&H Photo has the new 13″ 1.6GHz/256GB MacBook Air (model MMGG2LL/A) on sale for $1149 including free shipping plus NY sales tax only. Their price is $50 off MSRP. Amazon has the 13″ 1.6GHz/256GB... Read more
Apple refurbished iPad Air 2s available start...
Apple has Certified Refurbished iPad Air 2 available starting at $339. Apple’s one-year warranty is included with each model, and shipping is free: - 128GB Wi-Fi iPad Air 2: $499 - 64GB Wi-Fi iPad... Read more
Accenture and Vatican Opera Romana Pellegrina...
Accenture has announced that the official mobile application for the Extraordinary Jubilee Year of Mercy declared by Pope Francis has been built and launched by Accenture Mobility, part of Accenture... Read more

Jobs Board

*Apple* Nissan Service Technicians - Apple A...
Apple Automotive is one of the fastest growing dealer...and it shows. Consider making the switch to the Apple Automotive Group today! At Apple Automotive , Read more
ISCS *Apple* ID Site Support Engineer - APP...
…position, we are looking for an individual who has experience supporting customers with Apple ID issues and enjoys this area of support. This person should be Read more
Automotive Sales Consultant - Apple Ford Linc...
…you. The best candidates are smart, technologically savvy and are customer focused. Apple Ford Lincoln Apple Valley is different, because: $30,000 annual salary Read more
*Apple* Support Technician II - Worldventure...
…global, fast growing member based travel company, is currently sourcing for an Apple Support Technician II to be based in our Plano headquarters. WorldVentures is Read more
Restaurant Manager (Neighborhood Captain) - A...
…in every aspect of daily operation. WHY YOU'LL LIKE IT: You'll be the Big Apple . You'll solve problems. You'll get to show your ability to handle the stress and Read more
All contents are Copyright 1984-2011 by Xplain Corporation. All rights reserved. Theme designed by Icreon.