TweetFollow Us on Twitter

Avoiding traps
Volume Number:2
Issue Number:10
Column Tag:Advanced Macing

Reduce Your Time in the Traps!

By Mike Morton, Senior Software Engineer, Lotus Development Corp., Cambridge, MA

Life in the fast lane

The Macintosh ROM subroutines are called with “trap” instructions, intercepted by dispatching software which interprets the trap and calls the routine. This method is very general, providing compatibility with future ROMs and allowing buggy routines to be replaced.

It's also slow, taking about 45 microseconds for the dispatch process. This article tells you a way to avoid the dispatcher without losing its generality. Since the timing differences are measured in microseconds, there's also a discussion of techniques for measuring the time consumed by a piece of code. Also, a program is included to show the alternate way to call the ROM and how to measure the times used by different methods.

Avoiding traps

When a program executes a trap instruction, the 68000 detects the “error” and transfers control to the trap dispatcher pointed to by the longword at $0028. The dispatching software must, among other things:

• preserve some registers on the stack

• fetch the trap instruction from the code

• decide if the trap is a Toolbox or OS call

• look up the trap number to find whether the routine is in RAM or ROM, and what its address is

• handle the “auto-pop” and “pass A0” bits

• call the routine

• restore registers from the stack

Most of this work can be avoided if you know the routine's address and call it directly, but this is a bad idea for two reasons. First, the address may change in future ROMs. Second, Apple distributes “patches” to ROM routines by changing the dispatch table to call new versions in RAM -- if your program “knows” the address, it'll call the old, buggy ROM routines, ignoring the new RAM-based ones.

There is a balance between hardwiring the address and using the trap dispatcher for every call. The Toolbox “GetTrapAddress” function decodes a trap instruction for you and returns the address of the routine, just as the dispatcher does. You can do this decoding just once in your program, save the address, and repeatedly call it later.

The main reason not to bypass the dispatcher is that it saves a few registers across each call. If you're working in assembler, this is no problem -- just save registers yourself, as needed. In most high-level languages, it also won't be a problem, since the registers lost are typically scratch registers: D1, D2, and A2.

Fig. 1 Our TrapTime Utility shows the difference!

A high-level example

First, let's look at the normal way of calling a Toolbox routine: the simple “SetPt” procedure, which sets the coordinates of a Quickdraw “point”. The following example and the timing program are in TML Pascal; they should be easy to convert to other languages.

Most programs include the Quickdraw unit, which declares “setPt” with

procedure SetPt(VAR pt: point; h, v: integer); INLINE $A880;

When you call the routine with the statement

 setPt (myPt, x, y); { set the point }

it pushes the parameters on the stack and executes the instruction $A880 to trap to the dispatcher, which calls the routine. If you want to skip the cost of repeatedly decoding the trap, you can do it once like this:

 var setPtAddr:longint; { addr of setPt }
  
 setPtAddr := getTrapAddress ($A880);

To call this address, declare a new routine like SetPt, but which produces different in-line 68000 code:

procedure mySetPt
 (VAR pt: point; h, v: integer;
 addr: longint);
 INLINE $205F, $4E90;

Note the extra parameter to this routine: the address of the routine to be called. The instructions given in hex after the “INLINE” do a JSR to that address. The result is nearly the same as executing a trap, but faster.

Calling with this interface is almost like a normal call; pass the address as a parameter:

 mySetPt (myPt, x, y, setPtAddr);

This can be used for most Toolbox calls - just declare your own routine (choose any name) with the same parameters plus the address parameter, and include the exact same “INLINE” code after it. Don't forget to initialize the address with GetTrapAddress before calling, or awful things will happen.

Other high-level languages

You should be able to use this method with almost any language which allows you to insert assembler code in your high-level program. Some languages may have trouble calling the ROM directly -- for instance, many C compilers pass parameters differently than ROM routines do. Some C compilers allow you to choose the method of parameter passing; this will allow you to dispense with assembler altogether and just call the routine through a pointer (ask your nearest C guru how to do this).

More straightforward approaches

This approach assumes that “SetPt” is too slow. If you actually need Toolbox operations to be faster, consider writing the code yourself. You can write a procedure or function to assign two integers to the coordinates of a point -- or just do the assignment yourself. For a simple operation, this approach is preferable to spending lots of effort avoiding the trap dispatcher. (The “K.I.S.S.” rule applies here: “Keep It Simple, Stupid.”)

Speed improvements: hard data

Let's get quantitative. Consider four ways to assign to a point:

• the usual trap

• calling the ROM directly with INLINE

• calling your own procedure

• doing the assignment in-line

I wrote all four in Lisa Pascal and found these times on a Mac, and on a Lisa running MacWorks:

Table: Time to assign to a point

(all times in microseconds)

Mac Lisa/MacWorks

Normal “SetPt” trap 67.7 84.9

Pre-decoded call 22.8 25.6

Roll-your-own 34.5 35.2

Assign in-line 4.8 4.8

Writing your own procedure is slower than using the trap routine's address! The ROM is so fast, compared to compiled Pascal, that it's worth the slightly more complicated call. Part of the speed is because the ROM is tightly-coded; part is because the Mac's video refresh slows down code in RAM.

The fastest method is to forget about writing a procedure and do the assignment normally. This is fourteen times faster than using traps to call the ROM! (There's something to be said for the do-it-yourself approach.)

I tried running the program on a Mac Plus, since its ROM dispatch table has been expanded for faster trap calls. The time for a normal trap is 58.9 microseconds, instead of 67.7 microseconds. All the other times are nearly the same.

Speed improvements: summary

First, all this isn't worthwhile for most traps. If you want to speed up disk I/O, resource operations, etc., the microseconds saved at trap time are dwarfed by the amount of time for a disk transfer or to search a large resource. This trick is appropriate only in some situations.

Second, some routines are best done by hand in simple code in your program. ROM tools such as “SetPt” exist for your convenience, not because they're hard to code. If you find they're taking too much time, change them to a few lines of your own code.

But suppose you're trying to draw lines at top speed with repeated “LineTo” calls? Or use one of the simple bit manipulators in a loop? You may find that you can't easily write it yourself, but you can save 45 microseconds by calling into the ROM using a previously determined address. My estimate is that if a trap takes between 200 and 800 microseconds, you should consider skipping the dispatcher.

The timing program

The program “traptime” found the times given in the table. It has four procedures to time methods, and a “getbasetime” procedure to find the overhead of a loop with no calls. You can write a similar program using the same design in nearly any language.

Note that the program prints its results in ticks (60ths of a second) and doesn't compute the time for a loop iteration; I did the conversions to microseconds-per-iteration by hand, rather than trying to get Pascal to do fractional arithmetic.

Timing methods

Unfortunately, doing accurate timings is fraught with problems. This program tries to avoid these. Some points on timings:

• Repeat your measurements to help detect “random” factors. Small discrepancies should be averaged; large ones should be found and removed.

• Be careful when comparing routines: the four timing routines (and the “overhead” routine) are identical except for one section. Keeping this parallel structure makes your program a controlled experiment, helping you time only the differences between procedures.

• Vary the loop size; make sure that your time per iteration converges as your loop gets bigger.

• When waiting for the program, don't move the mouse or fiddle with the keyboard. This causes interrupts and affects the timings.

• I suspect you shouldn't have the disk spinning, nor have a debugger active while timing. (In practice, I can't detect any timing differences due to either of these factors.)

In short, timing is a scientific experiment and is easy to ruin by not controlling the environment carefully.

Conclusion

Bypassing the trap dispatcher can be a valuable technique in a limited number of situations, allowing you to cut about 45 microseconds off the time to call the ROM. It has some drawbacks such as losing register contents, and may be hard to implement in some higher-level languages. In addition, many ROM calls take so long that the savings isn't significant.

Whatever technique you're interesting in optimizing and timing, accurate measurement is a matter of a careful, controlled approach.

{ traptime -- A program to time various methods of doing a toolbox trap:
  The usual method, calling a user-written routine to do the work, doing 
the work in-line, and calling the ROM routine directly without going 
through the trap dispatcher. Times for all routines are written on the 
screen in ticks for a given number of calls, then the number of calls 
is varied for improved accuracy.

  Mike Morton, November 1985. Modified for TML Pascal, June 1986. }

program traptime (output);{ "(output)" lets us do writelns }

{$I MemTypes.ipas  }
{$I QuickDraw.ipas } { we use Quickdraw graphics }
{$I OSIntf.ipas }{ and OS definitions }
{$I ToolIntf.ipas }{ and Toolbox calls }

var         { program-wide variables }
  basetime: longint; { constant overhead for the loop }
  loops: longint;         { number of iterations to time }
  start: longint;         { starting tickcount for timing }
  Event:EventRecord; {simple event loop for cmd-3}
  DoIt: Boolean; {getnextevent boolean}
  Finished:Boolean;{event loop terminator}

{ getbasetime -- Find the time for the loop when nothing is done inside 
it.This tells us the overhead which should be subtracted from other timings. 
}

function getbasetime: longint;
var count: longint;        { loop counter }
begin;
  start := tickcount;        { snapshot starting time }
  for count := 1 to loops do        { loop a bunch of times... }
    ;           { ...doing nothing each time }
  getbasetime := tickcount-start;       { calculate elapsed time }
end;            { function "getbasetime" }

{ usualtime -- Find the time used to call the ROM the usual way.  This, 
and all timing routines, should look as much as possible like "getbasetime". 
}

function usualtime: longint;
var
  count: longint;        { loop counter }
  pt: point;        { point to assign to }
  x, y: integer;         { coordinates to assign to the point }
begin;
  start := tickcount;        { snapshot starting time }
  for count := 1 to loops do        { this time, inside the loop... }
    setpt (pt, x, y);        { ...we do the ROM call }
  usualtime := tickcount-start;          { calculate elapsed time }
end;            { function "usualtime" }


{ setmypt -- This isn't a timing function like the others; it's a replacement 
for the ROM's "setpt" routine, to see how fast we can do it ourselves. 
}
procedure setmypt (VAR pt: point; x, y: integer);
begin;
  pt.h := x; pt.v := y; { assign to the coordinates; easy! }
end;    { procedure "setmypt" }

{ myowntime -- Time assignment using our own procedure. }

function myowntime: longint;
var
  count: longint;        { loop counter }
  pt: point;        { point to assign to }
  x, y: integer;         { coordinates to assign to point }
begin;
  start := tickcount;        { snapshot starting time }
  for count := 1 to loops do        { this time, inside the loop... }
    setmypt (pt, x, y);           { ...we call our own routine }
  myowntime := tickcount-start;          { calculate elapsed time }
end;            { function myowntime }

{ inlintime -- The most straightforward way: we do the assignment in 
the loop. }

function inlintime: longint;
var
  count: longint;        { loop counter }
  pt: point;        { point to assign to }
  x, y: integer;         { coordinates to assign to point }
begin;
  start := tickcount;        { snapshot starting time }
  for count := 1 to loops do        { this time, inside the loop... }
    begin; pt.h := x; pt.v := y; end;   { ...we do assignment here }
  inlintime := tickcount-start;          { calculate elapsed time }
end;            { function inlintime }

{ setptx -- This is another replacement for "setpt".  It takes an extra 
parameter, the previously determined address of "setpt", and calls that 
address, leaving the other parameters for "setpt".  Unfortunately, TMLPascal 
doesn't mimic Lisa Pascal closely enough to allow us to generate more 
than one word of code in a single declaration.  So we have two procedures 
-- these MUST always be used together!  TML says their 2.0
 release of the compiler will be Lisa-compatible on this score, so this 
unsightly workaround won't be needed any more. }

procedure setptx1 (var pt: point; h, v: integer; addr: longint);
      INLINE   $205F; { MOVE.L   (A7)+,A0  
 ; pop routine's address into A0  }
procedure setptx2;
      INLINE   $4E90;{ JSR(A0);  and call that address }

{ gettrtime -- The last and most complicated way of calling the routine. 
 We use the trap address to call it directly. }

function gettrtime: longint;
var
  addr: longint;         { actual address of "setpt" }
  count: longint;        { loop counter }
  pt: point;        { point to assign to }
  x, y: integer;         { coordinates to assign to point }
begin;
  addr := gettrapaddress ($a880);    { find where routine lives }
  start := tickcount;         { snapshot starting time }
  for count := 1 to loops do begin { inside the loop... }
    setptx1 (pt, x, y, addr);          { ...we call on ROM  }
    setptx2;{ (kludge to sneak in 2nd instruction }
  end;
  gettrtime := tickcount-start;              { calculate elapsed time 
}
end;             { function gettrtime }

begin;          { *** main program *** }
  writeln ('If launching from a floppy, wait for it to stop and click 
to begin...');
  while not button do; while button do;      { wait for a click }

  loops := 10000;          { start with a small loop size... }
  while loops <= 1000000 do  { and go through several sizes}
  begin;
    basetime := getbasetime;        { find constant overhead }

    writeln ('number of loops:', loops, '; base time is:', basetime);
    writeln ('time for usual method is..........: ', usualtime - basetime);
    writeln ('time for calling my own routine is: ', myowntime - basetime);
    writeln ('time for doing it in-line is......: ', inlintime - basetime);
    writeln ('time for doing it with gettrapaddr: ', gettrtime - basetime);
    writeln;

    loops := loops * 10;   { loop sizes increase exponentially }
  end;

  flushevents(EveryEvent,0);
   writeln ('click to exit or take snapshot ');
  Repeat
  systemtask;
 DoIt:=GetNextEvent(EveryEvent,Event);
 if DoIt then
 Case Event.what of
  KeyDown: begin end;
  Mousedown: begin Finished:=true; end;
  End;
Until Finished;
end.            { of main program "traptime"  }



!PAS$Xfer

trapspeed
PAS$Library
OSTraps
ToolTraps
$ 
 

Community Search:
MacTech Search:

Software Updates via MacUpdate

TechTool Pro 9.5.1 - Hard drive and syst...
TechTool Pro has long been one of the foremost utilities for keeping your Mac running smoothly and efficiently. With the release of version 9, it has become more proficient than ever. TechTool... Read more
Jamf Pro 9.99.0 - Powerful sysadmin/ente...
Jamf Pro (formerly Casper Suite) is the EMM tool that delights IT pros and the users they support by delivering on the promise of unified endpoint management for Apple devices. At Jamf, connecting... Read more
VueScan 9.5.78 - Scanner software with a...
VueScan is a scanning program that works with most high-quality flatbed and film scanners to produce scans that have excellent color fidelity and color balance. VueScan is easy to use, and has... Read more
Adobe Lightroom 6.10.1 - Import, develop...
Adobe Lightroom is available as part of Adobe Creative Cloud for as little as $9.99/month bundled with Photoshop CC as part of the photography package. Lightroom 6 is also available for purchase as a... Read more
iPhoto Library Manager 4.2.7 - Manage mu...
iPhoto Library Manager allows you to organize your photos among multiple iPhoto libraries, rather than having to store all of your photos in one giant library. You can browse the photos in all your... Read more
Smultron 9.4 - Easy-to-use, powerful tex...
Smultron 9 is an elegant and powerful text editor that is easy to use. Use it to create or edit any text document. Everything from a web page, a note or a script to any single piece of text or code.... Read more
TextSoap 8.4 - Automate tedious text doc...
TextSoap can automatically remove unwanted characters, fix up messed up carriage returns, and do pretty much anything else that we can think of to text. Save time and effort. Be more productive. Stop... Read more
Merlin Project 4.2.3 - $349.00
Merlin Project is the leading professional project management software for OS X. If you plan complex projects on your Mac, you won’t get far with a simple list of tasks. Good planning raises... Read more
QuarkXPress 13.0.0.0 - Desktop publishin...
QuarkXPress 2017 is the new version that raises the bar for design and productivity. With non-destructive graphics and image editing directly within your layout, you no longer have to choose between... Read more
Path Finder 7.5 - Powerful, award-winnin...
Path Finder makes you a master of file management. Take full control over your file system. Save your time: compare and synchronize folders, view hidden files, use Dual Pane and full keyboard... Read more

Latest Forum Discussions

See All

Zombie Gunship Survival Beginner's...
The much anticipated Zombie Gunship Survival is here. In this latest entry in the Zombie Gunship franchise, you're tasked with supporting ground troops and protecting your base from the zombie horde. There's a lot of rich base building fun, and... | Read more »
Mordheim: Warband Skirmish (Games)
Mordheim: Warband Skirmish 1.2.2 Device: iOS Universal Category: Games Price: $3.99, Version: 1.2.2 (iTunes) Description: Explore the ruins of the City of Mordheim, clash with other scavenging warbands and collect Wyrdstone -... | Read more »
Mordheim: Warband Skirmish brings tablet...
Legendary Games has just launched Mordheim: Warband Skirmish, a new turn-based action game for iOS and Android. | Read more »
Magikarp Jump splashes onto Android worl...
If you're tired ofPokémon GObut still want something to satisfy your mobilePokémon fix,Magikarp Jumpmay just do the trick. It's out now on Android devices the world over. While it looks like a simple arcade jumper, there's quite a bit more to it... | Read more »
Purrfectly charming open-world RPG Cat Q...
Cat Quest, an expansive open-world RPG from former Koei-Tecmo developers, got a new gameplay trailer today. The video showcases the combat and exploration features of this feline-themed RPG. Cat puns abound as you travel across a large map in a... | Read more »
Jaipur: A Card Game of Duels (Games)
Jaipur: A Card Game of Duels 1.0 Device: iOS Universal Category: Games Price: $1.99, Version: 1.0 (iTunes) Description: ** WARNING: iPad 2, iPad Mini 1 & iPhone 4S are NOT compatible. ** *** Special Launch Price for a limited... | Read more »
Subdivision Infinity (Games)
Subdivision Infinity 1.03 Device: iOS Universal Category: Games Price: $2.99, Version: 1.03 (iTunes) Description: Launch sale! 40% Off! Subdivision Infinity is an immersive and pulse pounding sci-fi 3D space shooter. https://www.... | Read more »
Clash of Clans' gets a huge new upd...
Clash of Clans just got a massive new update, and that's not hyperbole. The update easily tacks on a whole new game's worth of content to the hit base building game. In the update, that mysterious boat on the edge of the map has been repaired and... | Read more »
Thimbleweed Park officially headed to iO...
Welp, it's official. Thimbleweed Park will be getting a mobile version. After lots of wondering and speculation, the developers confirmed it today. Thimbleweed Park will be available on both iOS and Android sometime in the near future. There's no... | Read more »
Pokémon GO might be getting legendaries...
The long-awaited legendary Pokémon may soon be coming to Pokémon GO at long last. Data miners have already discovered that the legendary birds, Articuno, Moltres, and Zapdos are already in the game, it’s just a matter of time. [Read more] | Read more »

Price Scanner via MacPrices.net

Huawei Unveils New ‘Business-Styled’ MateBook...
Huawei has introduced a trio of new MateBook laptops, expanding its mobile portfolio and building on its success in delivering attractive and powerful high-end devices. The company claims the HUAWEI... Read more
Deal! Gold 12-inch 1.2GHz Retina MacBook for...
Amazon has the 2016 Gold 12″ 1.2GHz Retina MacBook (MLHF2LL/A) on sale for $350 off MSRP for a limited time. Shipping is free: - 12″ 1.2GHz Gold Retina MacBook: $1249.99 $350 off MSRP We expect this... Read more
13-inch 2.0GHz MacBook Pros on sale for $100...
B&H has the non-Touch Bar 13″ 2.0GHz MacBook Pros in stock today and on sale for $100 off MSRP. Shipping is free, and B&H charges NY & NJ sales tax only: - 13″ 2.0GHz MacBook Pro Space... Read more
15-inch 2.2GHz Retina MacBook Pro, Apple refu...
Apple has Certified Refurbished 2015 15″ 2.2GHz Retina MacBook Pros available for $1699. That’s $300 off MSRP, and it’s the lowest price available for a 15″ MacBook Pro. An Apple one-year warranty is... Read more
Apple refurbished 9-inch and 12-inch iPad Pro...
Apple has Certified Refurbished 9″ and 12″ Apple iPad Pros available for up to $160 off the cost of new iPads. An Apple one-year warranty is included with each model, and shipping is free: - 32GB 9″... Read more
Apple Certified Refurbished iMacs available f...
Apple has Certified Refurbished 2015 21″ & 27″ iMacs available for up to $350 off MSRP. Apple’s one-year warranty is standard, and shipping is free. The following models are available: - 21″ 3.... Read more
Sale! 15-inch 2.6GHz Silver Touch Bar MacBook...
DataVision has the 15″ 2.6GHz Silver Touch Bar MacBook Pro (MLW72LL/A) on sale for $2199 including free shipping. Their price is $200 off MSRP, and it’s the lowest price available for this model (... Read more
A Kaby Lake Processor Upgrade For The MacBook...
Now they tell me! Well, actually Apple hasn’t said anything official on the subject, but last week Bloomberg News’s Mark Gurman and Alex Webb cited unnamed “people familiar with the matter”... Read more
Kodak’s Camera-First Smartphone EKTRA Launche...
The Eastman Kodak Company and Bullitt Group have announced the availability of a U.S. GSM version of the KODAK EKTRA Smartphone. The U.S. launch coincides with a software update addressing requests... Read more
Apple Launches App Development Curriculum for...
Apple today launched a new app development curriculum designed for students who want to pursue careers in the fast-growing app economy. The curriculum is available as a free download today from Apple... Read more

Jobs Board

*Apple* Retail - Multiple Positions - Apple,...
Job Description: Sales Specialist - Retail Customer Service and Sales Transform Apple Store visitors into loyal Apple customers. When customers enter the store, Read more
*Apple* Retail - Multiple Positions - Apple,...
Job Description:SalesSpecialist - Retail Customer Service and SalesTransform Apple Store visitors into loyal Apple customers. When customers enter the store, Read more
*Apple* Systems Engineer - California Polyte...
Cal Poly, San Luis Obispo Apple Systems Engineer Department: ITS - Customer & Tech Support (134900) College/Division: Academic Affairs Salary Range: Position Read more
Best Buy *Apple* Computing Master - Best Bu...
**508718BR** **Job Title:** Best Buy Apple Computing Master **Location Number:** 001526-Odessa-Store **Job Description:** **What does a Best Buy Apple Computing Read more
Data Engineer - *Apple* Media Products - Ap...
Changing the world is all in a day's work at Apple . If you love innovation, here's your chance to make a career of it. You'll work hard. But the job comes with more Read more
All contents are Copyright 1984-2011 by Xplain Corporation. All rights reserved. Theme designed by Icreon.