TweetFollow Us on Twitter

Avoiding traps
Volume Number:2
Issue Number:10
Column Tag:Advanced Macing

Reduce Your Time in the Traps!

By Mike Morton, Senior Software Engineer, Lotus Development Corp., Cambridge, MA

Life in the fast lane

The Macintosh ROM subroutines are called with “trap” instructions, intercepted by dispatching software which interprets the trap and calls the routine. This method is very general, providing compatibility with future ROMs and allowing buggy routines to be replaced.

It's also slow, taking about 45 microseconds for the dispatch process. This article tells you a way to avoid the dispatcher without losing its generality. Since the timing differences are measured in microseconds, there's also a discussion of techniques for measuring the time consumed by a piece of code. Also, a program is included to show the alternate way to call the ROM and how to measure the times used by different methods.

Avoiding traps

When a program executes a trap instruction, the 68000 detects the “error” and transfers control to the trap dispatcher pointed to by the longword at $0028. The dispatching software must, among other things:

• preserve some registers on the stack

• fetch the trap instruction from the code

• decide if the trap is a Toolbox or OS call

• look up the trap number to find whether the routine is in RAM or ROM, and what its address is

• handle the “auto-pop” and “pass A0” bits

• call the routine

• restore registers from the stack

Most of this work can be avoided if you know the routine's address and call it directly, but this is a bad idea for two reasons. First, the address may change in future ROMs. Second, Apple distributes “patches” to ROM routines by changing the dispatch table to call new versions in RAM -- if your program “knows” the address, it'll call the old, buggy ROM routines, ignoring the new RAM-based ones.

There is a balance between hardwiring the address and using the trap dispatcher for every call. The Toolbox “GetTrapAddress” function decodes a trap instruction for you and returns the address of the routine, just as the dispatcher does. You can do this decoding just once in your program, save the address, and repeatedly call it later.

The main reason not to bypass the dispatcher is that it saves a few registers across each call. If you're working in assembler, this is no problem -- just save registers yourself, as needed. In most high-level languages, it also won't be a problem, since the registers lost are typically scratch registers: D1, D2, and A2.

Fig. 1 Our TrapTime Utility shows the difference!

A high-level example

First, let's look at the normal way of calling a Toolbox routine: the simple “SetPt” procedure, which sets the coordinates of a Quickdraw “point”. The following example and the timing program are in TML Pascal; they should be easy to convert to other languages.

Most programs include the Quickdraw unit, which declares “setPt” with

procedure SetPt(VAR pt: point; h, v: integer); INLINE $A880;

When you call the routine with the statement

 setPt (myPt, x, y); { set the point }

it pushes the parameters on the stack and executes the instruction $A880 to trap to the dispatcher, which calls the routine. If you want to skip the cost of repeatedly decoding the trap, you can do it once like this:

 var setPtAddr:longint; { addr of setPt }
 setPtAddr := getTrapAddress ($A880);

To call this address, declare a new routine like SetPt, but which produces different in-line 68000 code:

procedure mySetPt
 (VAR pt: point; h, v: integer;
 addr: longint);
 INLINE $205F, $4E90;

Note the extra parameter to this routine: the address of the routine to be called. The instructions given in hex after the “INLINE” do a JSR to that address. The result is nearly the same as executing a trap, but faster.

Calling with this interface is almost like a normal call; pass the address as a parameter:

 mySetPt (myPt, x, y, setPtAddr);

This can be used for most Toolbox calls - just declare your own routine (choose any name) with the same parameters plus the address parameter, and include the exact same “INLINE” code after it. Don't forget to initialize the address with GetTrapAddress before calling, or awful things will happen.

Other high-level languages

You should be able to use this method with almost any language which allows you to insert assembler code in your high-level program. Some languages may have trouble calling the ROM directly -- for instance, many C compilers pass parameters differently than ROM routines do. Some C compilers allow you to choose the method of parameter passing; this will allow you to dispense with assembler altogether and just call the routine through a pointer (ask your nearest C guru how to do this).

More straightforward approaches

This approach assumes that “SetPt” is too slow. If you actually need Toolbox operations to be faster, consider writing the code yourself. You can write a procedure or function to assign two integers to the coordinates of a point -- or just do the assignment yourself. For a simple operation, this approach is preferable to spending lots of effort avoiding the trap dispatcher. (The “K.I.S.S.” rule applies here: “Keep It Simple, Stupid.”)

Speed improvements: hard data

Let's get quantitative. Consider four ways to assign to a point:

• the usual trap

• calling the ROM directly with INLINE

• calling your own procedure

• doing the assignment in-line

I wrote all four in Lisa Pascal and found these times on a Mac, and on a Lisa running MacWorks:

Table: Time to assign to a point

(all times in microseconds)

Mac Lisa/MacWorks

Normal “SetPt” trap 67.7 84.9

Pre-decoded call 22.8 25.6

Roll-your-own 34.5 35.2

Assign in-line 4.8 4.8

Writing your own procedure is slower than using the trap routine's address! The ROM is so fast, compared to compiled Pascal, that it's worth the slightly more complicated call. Part of the speed is because the ROM is tightly-coded; part is because the Mac's video refresh slows down code in RAM.

The fastest method is to forget about writing a procedure and do the assignment normally. This is fourteen times faster than using traps to call the ROM! (There's something to be said for the do-it-yourself approach.)

I tried running the program on a Mac Plus, since its ROM dispatch table has been expanded for faster trap calls. The time for a normal trap is 58.9 microseconds, instead of 67.7 microseconds. All the other times are nearly the same.

Speed improvements: summary

First, all this isn't worthwhile for most traps. If you want to speed up disk I/O, resource operations, etc., the microseconds saved at trap time are dwarfed by the amount of time for a disk transfer or to search a large resource. This trick is appropriate only in some situations.

Second, some routines are best done by hand in simple code in your program. ROM tools such as “SetPt” exist for your convenience, not because they're hard to code. If you find they're taking too much time, change them to a few lines of your own code.

But suppose you're trying to draw lines at top speed with repeated “LineTo” calls? Or use one of the simple bit manipulators in a loop? You may find that you can't easily write it yourself, but you can save 45 microseconds by calling into the ROM using a previously determined address. My estimate is that if a trap takes between 200 and 800 microseconds, you should consider skipping the dispatcher.

The timing program

The program “traptime” found the times given in the table. It has four procedures to time methods, and a “getbasetime” procedure to find the overhead of a loop with no calls. You can write a similar program using the same design in nearly any language.

Note that the program prints its results in ticks (60ths of a second) and doesn't compute the time for a loop iteration; I did the conversions to microseconds-per-iteration by hand, rather than trying to get Pascal to do fractional arithmetic.

Timing methods

Unfortunately, doing accurate timings is fraught with problems. This program tries to avoid these. Some points on timings:

• Repeat your measurements to help detect “random” factors. Small discrepancies should be averaged; large ones should be found and removed.

• Be careful when comparing routines: the four timing routines (and the “overhead” routine) are identical except for one section. Keeping this parallel structure makes your program a controlled experiment, helping you time only the differences between procedures.

• Vary the loop size; make sure that your time per iteration converges as your loop gets bigger.

• When waiting for the program, don't move the mouse or fiddle with the keyboard. This causes interrupts and affects the timings.

• I suspect you shouldn't have the disk spinning, nor have a debugger active while timing. (In practice, I can't detect any timing differences due to either of these factors.)

In short, timing is a scientific experiment and is easy to ruin by not controlling the environment carefully.


Bypassing the trap dispatcher can be a valuable technique in a limited number of situations, allowing you to cut about 45 microseconds off the time to call the ROM. It has some drawbacks such as losing register contents, and may be hard to implement in some higher-level languages. In addition, many ROM calls take so long that the savings isn't significant.

Whatever technique you're interesting in optimizing and timing, accurate measurement is a matter of a careful, controlled approach.

{ traptime -- A program to time various methods of doing a toolbox trap:
  The usual method, calling a user-written routine to do the work, doing 
the work in-line, and calling the ROM routine directly without going 
through the trap dispatcher. Times for all routines are written on the 
screen in ticks for a given number of calls, then the number of calls 
is varied for improved accuracy.

  Mike Morton, November 1985. Modified for TML Pascal, June 1986. }

program traptime (output);{ "(output)" lets us do writelns }

{$I MemTypes.ipas  }
{$I QuickDraw.ipas } { we use Quickdraw graphics }
{$I OSIntf.ipas }{ and OS definitions }
{$I ToolIntf.ipas }{ and Toolbox calls }

var         { program-wide variables }
  basetime: longint; { constant overhead for the loop }
  loops: longint;         { number of iterations to time }
  start: longint;         { starting tickcount for timing }
  Event:EventRecord; {simple event loop for cmd-3}
  DoIt: Boolean; {getnextevent boolean}
  Finished:Boolean;{event loop terminator}

{ getbasetime -- Find the time for the loop when nothing is done inside 
it.This tells us the overhead which should be subtracted from other timings. 

function getbasetime: longint;
var count: longint;        { loop counter }
  start := tickcount;        { snapshot starting time }
  for count := 1 to loops do        { loop a bunch of times... }
    ;           { ...doing nothing each time }
  getbasetime := tickcount-start;       { calculate elapsed time }
end;            { function "getbasetime" }

{ usualtime -- Find the time used to call the ROM the usual way.  This, 
and all timing routines, should look as much as possible like "getbasetime". 

function usualtime: longint;
  count: longint;        { loop counter }
  pt: point;        { point to assign to }
  x, y: integer;         { coordinates to assign to the point }
  start := tickcount;        { snapshot starting time }
  for count := 1 to loops do        { this time, inside the loop... }
    setpt (pt, x, y);        { ...we do the ROM call }
  usualtime := tickcount-start;          { calculate elapsed time }
end;            { function "usualtime" }

{ setmypt -- This isn't a timing function like the others; it's a replacement 
for the ROM's "setpt" routine, to see how fast we can do it ourselves. 
procedure setmypt (VAR pt: point; x, y: integer);
  pt.h := x; pt.v := y; { assign to the coordinates; easy! }
end;    { procedure "setmypt" }

{ myowntime -- Time assignment using our own procedure. }

function myowntime: longint;
  count: longint;        { loop counter }
  pt: point;        { point to assign to }
  x, y: integer;         { coordinates to assign to point }
  start := tickcount;        { snapshot starting time }
  for count := 1 to loops do        { this time, inside the loop... }
    setmypt (pt, x, y);           { ...we call our own routine }
  myowntime := tickcount-start;          { calculate elapsed time }
end;            { function myowntime }

{ inlintime -- The most straightforward way: we do the assignment in 
the loop. }

function inlintime: longint;
  count: longint;        { loop counter }
  pt: point;        { point to assign to }
  x, y: integer;         { coordinates to assign to point }
  start := tickcount;        { snapshot starting time }
  for count := 1 to loops do        { this time, inside the loop... }
    begin; pt.h := x; pt.v := y; end;   { ...we do assignment here }
  inlintime := tickcount-start;          { calculate elapsed time }
end;            { function inlintime }

{ setptx -- This is another replacement for "setpt".  It takes an extra 
parameter, the previously determined address of "setpt", and calls that 
address, leaving the other parameters for "setpt".  Unfortunately, TMLPascal 
doesn't mimic Lisa Pascal closely enough to allow us to generate more 
than one word of code in a single declaration.  So we have two procedures 
-- these MUST always be used together!  TML says their 2.0
 release of the compiler will be Lisa-compatible on this score, so this 
unsightly workaround won't be needed any more. }

procedure setptx1 (var pt: point; h, v: integer; addr: longint);
      INLINE   $205F; { MOVE.L   (A7)+,A0  
 ; pop routine's address into A0  }
procedure setptx2;
      INLINE   $4E90;{ JSR(A0);  and call that address }

{ gettrtime -- The last and most complicated way of calling the routine. 
 We use the trap address to call it directly. }

function gettrtime: longint;
  addr: longint;         { actual address of "setpt" }
  count: longint;        { loop counter }
  pt: point;        { point to assign to }
  x, y: integer;         { coordinates to assign to point }
  addr := gettrapaddress ($a880);    { find where routine lives }
  start := tickcount;         { snapshot starting time }
  for count := 1 to loops do begin { inside the loop... }
    setptx1 (pt, x, y, addr);          { ...we call on ROM  }
    setptx2;{ (kludge to sneak in 2nd instruction }
  gettrtime := tickcount-start;              { calculate elapsed time 
end;             { function gettrtime }

begin;          { *** main program *** }
  writeln ('If launching from a floppy, wait for it to stop and click 
to begin...');
  while not button do; while button do;      { wait for a click }

  loops := 10000;          { start with a small loop size... }
  while loops <= 1000000 do  { and go through several sizes}
    basetime := getbasetime;        { find constant overhead }

    writeln ('number of loops:', loops, '; base time is:', basetime);
    writeln ('time for usual method is..........: ', usualtime - basetime);
    writeln ('time for calling my own routine is: ', myowntime - basetime);
    writeln ('time for doing it in-line is......: ', inlintime - basetime);
    writeln ('time for doing it with gettrapaddr: ', gettrtime - basetime);

    loops := loops * 10;   { loop sizes increase exponentially }

   writeln ('click to exit or take snapshot ');
 if DoIt then
 Case Event.what of
  KeyDown: begin end;
  Mousedown: begin Finished:=true; end;
Until Finished;
end.            { of main program "traptime"  }



Community Search:
MacTech Search:

Software Updates via MacUpdate

Logic Pro X 10.3 - Music creation and au...
Logic Pro X is the most advanced version of Logic ever. Sophisticated new tools for professional songwriting, editing, and mixing are built around a modern interface that's designed to get creative... Read more
iMazing 2.1.8 - Complete iOS device mana...
iMazing (was DiskAid) is the ultimate iOS device manager with capabilities far beyond what iTunes offers. With iMazing and your iOS device (iPhone, iPad, or iPod), you can: Copy music to and from... Read more
Civilization VI 1.0.2 - Next iteration o...
Sid Meier’s Civilization VI is the next entry in the popular Civilization franchise. Originally created by legendary game designer Sid Meier, Civilization is a strategy game in which you attempt to... Read more
TurboTax 2016 - Manage your 2016 U.S. ta...
TurboTax guides you through your tax return step by step, does all the calculations, and checks your return for errors and overlooked deductions. It lets you file your return electronically to get... Read more
Microsoft Office 2016 15.30 - Popular pr...
Microsoft Office 2016 - Unmistakably Office, designed for Mac. The new versions of Word, Excel, PowerPoint, Outlook and OneNote provide the best of both worlds for Mac users - the familiar Office... Read more
FotoMagico 5.3 - Powerful slideshow crea...
FotoMagico lets you create professional slideshows from your photos and music with just a few, simple mouse clicks. It sports a very clean and intuitive yet powerful user interface. High image... Read more
Acorn 5.6.1 - Bitmap image editor.
Acorn is a new image editor built with one goal in mind - simplicity. Fast, easy, and fluid, Acorn provides the options you'll need without any overhead. Acorn feels right, and won't drain your bank... Read more
Dash 3.4.3 - Instant search and offline...
Dash is an API documentation browser and code snippet manager. Dash helps you store snippets of code, as well as instantly search and browse documentation for almost any API you might use (for a full... Read more
Microsoft Remote Desktop 8.0.37 - Connec...
With Microsoft Remote Desktop, you can connect to a remote PC and your work resources from almost anywhere. Experience the power of Windows with RemoteFX in a Remote Desktop client designed to help... Read more
Macs Fan Control - Monitor and c...
Macs Fan Control allows you to monitor and control almost any aspect of your computer's fans, with support for controlling fan speed, temperature sensors pane, menu-bar icon, and autostart with... Read more

ReSlice (Music)
ReSlice 1.0 Device: iOS Universal Category: Music Price: $9.99, Version: 1.0 (iTunes) Description: Audio Slice Machine Slice your audio samples with ReSlice and create flexible musical atoms which can be triggered by MIDI notes or... | Read more »
Stickman Surfer rides in with the tide t...
Stickson is back and this time he's taken up yet another extreme sport - surfing. Stickman Surfer is out this Thursday on both iOS and Android, so if you've been following the other Stickman adventures, you might be interested in picking this one... | Read more »
Z-Exemplar (Games)
Z-Exemplar 1.4 Device: iOS Universal Category: Games Price: $3.99, Version: 1.4 (iTunes) Description: | Read more »
5 dastardly difficult roguelikes like th...
Edmund McMillen's popular roguelike creation The Binding of Isaac: Rebirth has finally crawled onto mobile devices. It's a grotesque dual-stick shooter that tosses you into an endless, procedurally generated basement as you, the pitiable Isaac,... | Read more »
Last week on PocketGamer
Welcome to a weekly feature looking back on the past seven days of coverage on our sister website, PocketGamer. It’s taken a while for 2017 to really get going, at least when it comes to the world of portable gaming. Thank goodness, then, for... | Read more »
ROME: Total War - Barbarian Invasion set...
To the delight of mobile strategy fans, Feral Interactive released ROME: Total War just a few months ago. Now the game's expansion, Barbarian Invasion is marching onto iPads as a standalone release. [Read more] | Read more »
Yuri (Games)
Yuri 1.0 Device: iOS iPhone Category: Games Price: $3.99, Version: 1.0 (iTunes) Description: It's night. Yuri opens his eyes. He wakes up in a strange forest.The small, courageous explorer rides on his bed on casters in this... | Read more »
Space schmup Xenoraid launches on the Ap...
10Tons Xenoraid is out today on the App Store, bringing some high-speed space action to your mobile gadgets just in time for the weekend. The company's last premium title, another sci-fi game titled Neon Chrome, did quite well for itself, so... | Read more »
Star Wars: Force Arena Beginner's G...
Star Wars: Force Arena joined the populous ranks of Star Wars games on mobile today. It's a two-lane MOBA starring many familiar faces from George Lucas's famed sci-fi franchise. As with most games of this nature, Force Arena can be a little obtuse... | Read more »
Mysterium: The Board Game (Games)
Mysterium: The Board Game 1.0 Device: iOS Universal Category: Games Price: $6.99, Version: 1.0 (iTunes) Description: The official adaptation of the famous board game Mysterium! | Read more »

Price Scanner via

Laptop Market – Flight To Quality? – The ‘Boo...
Preliminary quarterly PC shipments data released by Gartner Inc. last week reveal an interesting disparity between sales performance of major name PC vendors as opposed to that of less well-known... Read more
IBM and Bell Transform Canadian Enterprise Mo...
IBM and Bell Canada have announced they are joining forces to offer IBM MobileFirst for iOS market-ready enterprise applications for iPad, iPhone or Apple Watch. Bell, Canada’s largest communications... Read more
Otter Products is Closing… For a Day of Givin...
On Thursday, Feb. 9, Otter Products is closing doors to open hearts. In partnership with the OtterCares Foundation, the company is pausing operations for a day so all employees can volunteer with... Read more
15-inch 2.2GHz Retina MacBook Pro on sale for...
Amazon has 2015 15″ 2.2GHz Retina MacBook Pros (MJLQ2LL/A) available for $1799.99 including free shipping. Apple charges $1999 for this model, so Amazon’s price is represents a $200 savings. Read more
Back in stock: Apple refurbished 13-inch Reti...
Apple has Certified Refurbished 2015 13″ Retina MacBook Pros available for up to $360 off original MSRP, starting at $1099. An Apple one-year warranty is included with each model, and shipping is... Read more
CalcTape for macOS 1.2 Adding Machine App for...
schoettler Software has announced CalcTape 1.2, an update to their desktop calculator for macOS. When it comes to adding long columns of numbers, doing complex calculations or playing around with... Read more
New MacBooks And MacBook Pros WIth Kaby Lake...
Digitimes’ Joseph Tsai cites a Chinese-language Economic Daily News (EDN) report that unnamed market watchers are predicting Apple MacBook shipments to grow 10 percent in 2017, and projecting 15... Read more
New 2016 13-inch MacBook Pros on sale for up...
B&H Photo has the new 2016 13″ MacBook Pros in stock today and on sale for up to $150 off MSRP. Shipping is free, and B&H charges NY sales tax only: - 13″ 2.9GHz/512GB Touch Bar MacBook Pro... Read more
New 15-inch Touch Bar MacBook Pros in stock a...
B&H Photo has the new 2016 15″ Apple Touch Bar MacBook Pros in stock today and on sale for up to $150 off MSRP. Shipping is free, and B&H charges NY sales tax only: - 15″ 2.7GHz Touch Bar... Read more
Opera Announces Neon Concept Browser For Mac
Opera is inviting users to get a glimpse of what Opera for computers could become with its Opera Neon browser concept. Each Opera Neon feature is described as “an alternate reality” for the Opera... Read more

Jobs Board

*Apple* Retail - Multiple Positions (Multi-L...
Job Description: Sales Specialist - Retail Customer Service and Sales Transform Apple Store visitors into loyal Apple customers. When customers enter the store, Read more
*Apple* Retail - Multiple Positions - Apple,...
Job Description: Sales Specialist - Retail Customer Service and Sales Transform Apple Store visitors into loyal Apple customers. When customers enter the store, Read more
*Apple* & PC Desktop Support Technician...
Apple & PC Desktop Support Technician job in Stamford, CT We have immediate job openings for several Desktop Support Technicians with one of our most well-known Read more
*Apple* macOS Systems Integration Administra...
…most exceptional support available in the industry. SCI is seeking an Junior Apple macOS systems integration administrator that will be responsible for providing Read more
*Apple* Premier Retailer - Service Technicia...
DescriptionSimply Mac is the largest premier retailer for Apple products and solutions. At Simply Mac we are all Apple , all the time. Same products. Same prices. Read more
All contents are Copyright 1984-2011 by Xplain Corporation. All rights reserved. Theme designed by Icreon.