TweetFollow Us on Twitter

June 94 - BALANCE OF POWER

BALANCE OF POWER

Enhancing PowerPC Native Speed

DAVE EVANS

[IMAGE 055-057_Balance_of_Power1.GIF]

When you convert your applications to native PowerPC code, they run lightning fast. To get the most out of RISC processors, however, you need to pay close attention to your code structure and execution. Fast code is no longer measured solely by an instruction timing table. The Power PC 601 processor includes pipelining, multi-issue and speculative execution, branch prediction, and a set associative cache. All these things make it hard to know what code will run fastest on a Power Macintosh.

Writing tight code for the PowerPC processor isn't hard, especially with a good optimizing compiler to help you. In this column I'll pass on some of what I've learned about tuning Power PC code. There are gotchas and coding habits to avoid, and there are techniques for squeezing the most from your speed-critical native code. For a good introduction to RISC pipelining and related concepts that appear in this column, see "Making the Leap to PowerPC" in Issue 16.

MEASURING YOUR SPEED
The power of RISC lies in the ability to execute one or more instructions every machine clock cycle, but RISC processors can do this only in the best of circumstances. At their worst they're as slow as CISC processors. The following loop, for example, averages only one calculation every 2.8 cycles:

float a[], b[], c[], d, e;
for (i=0; i < gArraySize; i++) {
  e = b[i] + c[i] / d;
  a[i] = MySubroutine(b[i], e);
}

By restructuring the code and using other techniques from this column, you can make significant improvements. This next loop generates the same result, yet averages one calculation every 1.9 cycles -- about 50% faster.

reciprocalD = 1 / d;
for (i=0; i < gArraySize; i+=2) {
  float result, localB, localC, localE;
  float result2, localB2, localC2, localE2;

  localB = b[i];
  localC = c[i];
  localB2 = b[i+1];
  localC2 = c[i+1];

  localE = localB + (localC * reciprocalD);
  localE2 = localB2 + (localC2 * reciprocalD);
  InlineSubroutine(&result, localB, localE);
  InlineSubroutine(&result2, localB2, localE2);

  a[i] = result;
  a[i+1] = result2;
}

The rest of this column explains the techniques I just used for that speed gain. They include expanding loops, scoping local variables, using inline routines, and using faster math operations.

UNDERSTANDING YOUR COMPILER
Your compiler is your best friend, and you should try your hardest to understand its point of view. You should understand how it looks at your code and what assumptions and optimizations it's allowed to make. The more you empathize with your compiler, the more you'll recognize opportunities for optimization.

An optimizing compiler reorders instructions to improve speed. Executing your code line by line usually isn't optimal, because the processor stalls to wait for dependent instructions. The compiler tries to move instr uctions that are independent into the stall points. For example, consider this code:

first = input * numerator;
second = first / denominator;
output = second + adjustment;

Each line depends on the previous line's result, and the compiler will be hard pressed to keep the pipeline full of useful work. This simple example could cause 46 stalled cycles on the PowerPC 601, so the compiler will look at other nearby code for independent instructions to move into the stall points.

EXPANDING YOUR LOOPS
Loops are often your most speed-critical code, and you can improve their performance in several ways. Loop expanding is one of the simplest methods. The idea is to perform more than one independent operation in a loop, so that the compiler can reorder more work in the pipeline and thus prevent the processor from stalling.

For example, in this loop there's too little work to keep the processor busy:

float a[], b[], c[], d;
for (i=0; i < multipleOfThree; i++) {
  a[i] = b[i] + c[i] * d;
}

If we know the data always occurs in certain sized increments, we can do more steps in each iteration, as in the following:

for (i=0; i < multipleOfThree; i+=3) {
  a[i] = b[i] + c[i] * d;
  a[i+1] = b[i+1] + c[i+1] * d;
  a[i+2] = b[i+2] + c[i+2] * d;
}

On a CISC processor the second loop wouldn't be much faster, but on the Power PC processor the second loop is twice as fast as the first. This is because the compiler can schedule independent instructions to keep the pipeline constantly moving. (If the data doesn't occur in nice increments, you can still expand the loop; just add a small loop at the end to handle the extra iterations.)Be careful not to expand a loop too much, though. Very large loops won't fit in the cache, causing cache misses for each iteration. In addition, the larger a loop gets, the less work can be done entirely in registers. Expand too much and the compiler will have to use memory  to store intermediate results, outweighing your marginal gains. Besides, you get the biggest gains from the first few expansions.

SCOPING YOUR VARIABLES
If you're new to RISC, you'll be impressed by the number of registers available on the PowerPC chip -- 32 general registers and 32 floating-point registers. By having so many, the processor can often avoid slow memory operations. Your compiler will take advantage of this when it can, but you can help it by carefully scoping your variables and using lots of local variables.

The "scope" of a variable is the area of code in which it is valid. Your compiler examines the scope of each variable when it schedules registers, and your code can provide valuable information about the usage of each variable. Here's an example:

for (i=0; i < gArraySize; i++) {
  a[i] = MyFirstRoutine(b[i], c[i]);
  b[i] = MySecondRoutine(a[i], c[i]);
} 

In this loop, the global variable gArraySize is scoped for the whole program. Because we call a subroutine in the loop, the compiler can't tell if gArraySize will change during each iteration. Since the subroutine might modify gArraySize, the compiler has to be conservative. It will reload gArraySize from memory on every iteration, and it won't optimize the loop any further. This is wastefully slow.

On the other hand, if we use a local  variable, we tell the compiler that gArraySize and c[i] won't be modified and that it's all right to just keep them handy in registers. In addition, we can store data as temporary variables scoped only within the loop. This tells the compiler how we intend to use the data, so that the compiler can use free registers and discard them after the loop. Here's what this would look like:

arraySize = gArraySize;
for (i=0; i < arraySize; i++) {
  float localC;
  localC = c[i];
  a[i] = MyFirstRoutine(b[i], localC);
  b[i] = MySecondRoutine(a[i], localC);
} 

These minor changes give the compiler more information about the data, in this instance accelerating the resulting code by 25%.

STYLING YOUR CODE
Be wary of code that looks complicated. If each line of source code contains complicated dereferences and typecasting, chances are the object code has wasteful memory instructions and inefficient register usage. A great compiler might optimize well anyway, but don't count on it. Judicious use of temporary variables (as mentioned above) will help the compiler understand exactly what you're doing -- plus your code will be easier to read.

Excessive memory dereferencing is a problem exacerbated by the heavy use of handles on the Macintosh. Code often contains double memory dereferences, which is important when memory can move. But when you can guarantee that memory won't  move, use a local pointer, so that you only dereference a handle once. This saves load instructions and allows fur ther optimizations. Casting data types is usually a free operation -- you're just telling the compiler that you know you're copying seemingly incompatible data. But it's not  free if the data types have different bit sizes, which adds conversion instructions. Again, avoid this by using local variables for the commonly casted data.

I've heard many times that branches are "free" on the PowerPC processor. It's true that often the pipeline can keep moving even though a branch is encountered, because the branch execution unit will try to resolve branches very early in the pipeline or will predict the direction of the branch. Still, the more subroutines you have, the less your compiler will be able to reorder and intelligently schedule instructions. Keep speed-critical code together, so that more of it can be pipelined and the compiler can schedule your registers better. Use inline routines for short operations, as I did in the improved version of the first example loop in this column.

KNOWING YOUR PROCESSOR
As with all processors, the PowerPC chip has performance tradeoffs you should know about. Some are processor model specific. For example, the PowerPC 601 has 32K of cache, while the 603 has 16K split evenly into an instruction cache and a data cache. But in general you should know about floating-point performance and the virtues of memory alignment.

Floating-point multiplication is wicked fast -- up to nine times  the speed of integer multiplication. Use floating-point multiplication if you can. Floating-point division takes 17 times as long, so when possible multiply by a reciprocal instead of dividing.

Memory accesses go fastest if addressed on 64-bit memory boundaries. Accesses to unaligned data stall while the processor loads different words and then shifts and splices them. For example, be sure to align floating-point data to 64-bit boundaries, or you'll stall for four cycles while the processor loads 32-bit halves with two 64-bit accesses.

MAKING THE DIFFERENCE
Native PowerPC code runs really fast, so in many cases you don't need to worry about tweaking its performance at all. For your speed-critical code, though, these tips I've given you can make the difference between "too slow" and "fast enough."

RECOMMENDED READING

  • High-Performance Computing  by Kevin Dowd (O'Reilly & Associates, Inc., 1993).
  • High-Performance Computer Architecture  by Harold S. Stone (Addison-Wesley, 1993).
  • PowerPC 601 RISC Microprocessor User's Manual (Motorola, 1993).

DAVE EVANS may be able to tune PowerPC code for Apple, but for the last year he's been repeatedly thwarted when tuning his 1978 Harley-Davidson XLCH motorcycle. Fixing engine stalls, poor timing, and rough starts proved difficult, but he was recently rewarded with the guttural purr of a well-tuned Harley. *

Code examples were compiled with the PPCC compiler using the speed optimization option, and then run on a Power Macintosh 6100/66 for profiling. A PowerPC 601 microsecond timing library is provided on this issue's CD. *

 

Community Search:
MacTech Search:

Software Updates via MacUpdate

Cocktail 8.4 - General maintenance and o...
Cocktail is a general purpose utility for OS X that lets you clean, repair and optimize your Mac. It is a powerful digital toolset that helps hundreds of thousands of Mac users around the world get... Read more
PDFKey Pro 4.3 - Edit and print password...
PDFKey Pro can unlock PDF documents protected for printing and copying when you've forgotten your password. It can now also protect your PDF files with a password to prevent unauthorized access and/... Read more
Kodi 15.0.beta1 - Powerful media center...
Kodi (was XBMC) is an award-winning free and open-source (GPL) software media player and entertainment hub that can be installed on Linux, OS X, Windows, iOS, and Android, featuring a 10-foot user... Read more
DiskCatalogMaker 6.4.12 - Catalog your d...
DiskCatalogMaker is a simple disk management tool which catalogs disks. Simple, light-weight, and fast. Finder-like intuitive look and feel. Super-fast search algorithm. Can compress catalog data... Read more
Macs Fan Control 1.3.0.0 - Monitor and c...
Macs Fan Control allows you to monitor and control almost any aspect of your computer's fans, with support for controlling fan speed, temperature sensors pane, menu-bar icon, and autostart with... Read more
Lyn 1.5.11 - Lightweight image browser a...
Lyn is a lightweight and fast image browser and viewer designed for photographers, graphic artists and Web designers. Featuring an extremely versatile and aesthetically pleasing interface, it... Read more
NeoOffice 2014.11 - Mac-tailored, OpenOf...
NeoOffice is a complete office suite for OS X. With NeoOffice, users can view, edit, and save OpenOffice documents, PDF files, and most Microsoft Word, Excel, and PowerPoint documents. NeoOffice 3.x... Read more
LaunchBar 6.4 - Powerful file/URL/email...
LaunchBar is an award-winning productivity utility that offers an amazingly intuitive and efficient way to search and access any kind of information stored on your computer or on the Web. It provides... Read more
Remotix 3.1.4 - Access all your computer...
Remotix is a fast and powerful application to easily access multiple Macs (and PCs) from your own Mac. Features Complete Apple Screen Sharing support - including Mac OS X login, clipboard... Read more
DesktopLyrics 2.6.6 - Displays current i...
DesktopLyrics is an application that displays the lyrics of the song currently playing in "iTunes" right on your desktop. The lyrics for the song have to be set in iTunes; DesktopLyrics does nothing... Read more

What the Apple Watch Gets Right, and Wha...
| Read more »
Celebrate PAC-MAN's 35th Birthday W...
BANDAI NAMCO Entertainment America is celebrating PAC-MAN's 35th anniversary by releasing updates for PAC-MAN and PAC-MAN Lite for iOS. [Read more] | Read more »
Strike Wing Episode 2 has Landed on the...
Strike Wing: Raptor Rising is an exciting space combat simulator by Crescent Moon Games, which was recently updated to continue the story with Episode 2. [Read more] | Read more »
This Week at 148Apps: May 18-22, 2015
May Days at 148Apps How do you know what apps are worth your time and money? Just look to the review team at 148Apps. We sort through the chaos and find the apps you're looking for. The ones we love become Editor’s Choice, standing out above the... | Read more »
Biz Builder Delux (Games)
Biz Builder Delux 1.0.0 Device: iOS Universal Category: Games Price: $4.99, Version: 1.0.0 (iTunes) Description: Ah, there's nothing like the rhythmic bustle of a burgeoning business burg... especially when you're the one building it... | Read more »
Auroch Digital is Bringing Back Games Wo...
| Read more »
Blades of Brim is a New Endless Runner f...
SYBO Games, the minds behind the ever-popular Subway Surfers, have announced their latest project: Blades of Brim. [Read more] | Read more »
Carbo - Handwriting in the Digital Age...
Carbo - Handwriting in the Digital Age 1.0 Device: iOS Universal Category: Productivity Price: $3.99, Version: 1.0 (iTunes) Description: | Read more »
Draggy Dead (Games)
Draggy Dead 1.1 Device: iOS Universal Category: Games Price: $.99, Version: 1.1 (iTunes) Description: Ditch your dead end job and take up a rewarding career in Grave Robbing today!Guide the recently deceased to a fun filled life of... | Read more »
Bad Dinos (Games)
Bad Dinos 1.0.0 Device: iOS Universal Category: Games Price: $2.99, Version: 1.0.0 (iTunes) Description: | Read more »

Price Scanner via MacPrices.net

New 13-inch 2.9GHz Retina MacBook Pro on sale...
B&H Photo has the 13″ 2.9GHz/512GB Retina MacBook Pro on sale for $1699.99 including free shipping plus NY tax only. Their price is $100 off MSRP, and it’s the lowest price for this model from... Read more
12-inch MacBook stock status for Monday, May...
The new 12″ Retina MacBooks are still on backorder at The Apple Store with a 3-5 week waiting period. However, a few models are in stock today at Apple resellers. Stock is limited, so act now if you’... Read more
New 27-inch 3.3GHz 5K iMac in stock with free...
Adorama has the new 27″ 3.3GHz 5K iMac in stock today for $1999 including free shipping plus NY & NJ sales tax only. Adorama will include a free copy of Apple’s 3-year AppleCare Protection Plan. Read more
Memorial Day Weekend Sale: New 27-inch 3.3GHz...
Best Buy has the new 27″ 3.3GHz 5K iMac on sale for $1899.99 this weekend. Choose free shipping or free local store pickup (if available). Sale price for online orders only, in-store prices may vary... Read more
OtterBox Maximizes Portability, Productivity...
From the kitchen recipe book to the boarsroom presentation, the OtterBox Agility Tablet System turns tablets into one of the most versatile pieces of handheld technology available. Available now, the... Read more
Launch of New Car App Gallery and Open Develo...
Automatic, a company on a mission to bring the power of the Internet into every car, has announced the launch of the Automatic App Gallery, an app store for nearly every car or truck on the road... Read more
Memorial Day Weekend Sale: 13-inch 1.6GHz Mac...
Best Buy has the new 13″ 1.6GHz/128GB MacBook Air on sale for $849 on their online store this weekend. Choose free shipping or free local store pickup (if available). Sale price for online orders... Read more
Memorial Day Weekend Sale: 27-inch 3.5GHz 5K...
Best Buy has the 27″ 3.5GHz 5K iMac on sale for $2099.99 this weekend. Choose free shipping or free local store pickup (if available). Sale price for online orders only, in-store prices may vary.... Read more
Sale! 16GB iPad mini 3 for $349, save $50
B&H Photo has the 16GB iPad mini 3 WiFi on sale for $349 including free shipping plus NY sales tax only. Their price is $50 off MSRP, and it’s the lowest price available for this model. Read more
Price drop on 2014 15-inch Retina MacBook Pro...
B&H Photo has dropped prices on 2014 15″ Retina MacBook Pros by $200. Shipping is free, and B&H charges NY sales tax only: - 15″ 2.2GHz Retina MacBook Pro: $1799.99 save $200 - 15″ 2.5GHz... Read more

Jobs Board

Architect / Senior Software Engineer, *Apple...
Changing the world is all in a day039s work at Apple . If you love innovation, here039s your chance to make a career of it. You039ll work hard. But the job comes with Read more
*Apple* Pay Support Readiness Project Manage...
Changing the world is all in a day039s work at Apple . If you love innovation, here039s your chance to make a career of it. You039ll work hard. But the job comes with Read more
Hardware Design Validation Engineer - *Apple...
**Job Summary** The Apple Watch team is looking for a Hardware Design Validation Engineer. This person will be part of the Apple Watch hardware team with Read more
Sr. Payment Program Manager, *Apple* Pay -...
**Job Summary** Apple Pay is an exciting environment and a…devices in a simple, private and secure way. The Apple Pay Team is looking for an experienced Senior Read more
Project Manager / Business Analyst, WW *Appl...
…a senior project manager / business analyst to work within our Worldwide Apple Fulfillment Operations and the Business Process Re-engineering team. This role will work Read more
All contents are Copyright 1984-2011 by Xplain Corporation. All rights reserved. Theme designed by Icreon.