TweetFollow Us on Twitter

June 94 - BALANCE OF POWER

BALANCE OF POWER

Enhancing PowerPC Native Speed

DAVE EVANS

[IMAGE 055-057_Balance_of_Power1.GIF]

When you convert your applications to native PowerPC code, they run lightning fast. To get the most out of RISC processors, however, you need to pay close attention to your code structure and execution. Fast code is no longer measured solely by an instruction timing table. The Power PC 601 processor includes pipelining, multi-issue and speculative execution, branch prediction, and a set associative cache. All these things make it hard to know what code will run fastest on a Power Macintosh.

Writing tight code for the PowerPC processor isn't hard, especially with a good optimizing compiler to help you. In this column I'll pass on some of what I've learned about tuning Power PC code. There are gotchas and coding habits to avoid, and there are techniques for squeezing the most from your speed-critical native code. For a good introduction to RISC pipelining and related concepts that appear in this column, see "Making the Leap to PowerPC" in Issue 16.

MEASURING YOUR SPEED
The power of RISC lies in the ability to execute one or more instructions every machine clock cycle, but RISC processors can do this only in the best of circumstances. At their worst they're as slow as CISC processors. The following loop, for example, averages only one calculation every 2.8 cycles:

float a[], b[], c[], d, e;
for (i=0; i < gArraySize; i++) {
  e = b[i] + c[i] / d;
  a[i] = MySubroutine(b[i], e);
}

By restructuring the code and using other techniques from this column, you can make significant improvements. This next loop generates the same result, yet averages one calculation every 1.9 cycles -- about 50% faster.

reciprocalD = 1 / d;
for (i=0; i < gArraySize; i+=2) {
  float result, localB, localC, localE;
  float result2, localB2, localC2, localE2;

  localB = b[i];
  localC = c[i];
  localB2 = b[i+1];
  localC2 = c[i+1];

  localE = localB + (localC * reciprocalD);
  localE2 = localB2 + (localC2 * reciprocalD);
  InlineSubroutine(&result, localB, localE);
  InlineSubroutine(&result2, localB2, localE2);

  a[i] = result;
  a[i+1] = result2;
}

The rest of this column explains the techniques I just used for that speed gain. They include expanding loops, scoping local variables, using inline routines, and using faster math operations.

UNDERSTANDING YOUR COMPILER
Your compiler is your best friend, and you should try your hardest to understand its point of view. You should understand how it looks at your code and what assumptions and optimizations it's allowed to make. The more you empathize with your compiler, the more you'll recognize opportunities for optimization.

An optimizing compiler reorders instructions to improve speed. Executing your code line by line usually isn't optimal, because the processor stalls to wait for dependent instructions. The compiler tries to move instr uctions that are independent into the stall points. For example, consider this code:

first = input * numerator;
second = first / denominator;
output = second + adjustment;

Each line depends on the previous line's result, and the compiler will be hard pressed to keep the pipeline full of useful work. This simple example could cause 46 stalled cycles on the PowerPC 601, so the compiler will look at other nearby code for independent instructions to move into the stall points.

EXPANDING YOUR LOOPS
Loops are often your most speed-critical code, and you can improve their performance in several ways. Loop expanding is one of the simplest methods. The idea is to perform more than one independent operation in a loop, so that the compiler can reorder more work in the pipeline and thus prevent the processor from stalling.

For example, in this loop there's too little work to keep the processor busy:

float a[], b[], c[], d;
for (i=0; i < multipleOfThree; i++) {
  a[i] = b[i] + c[i] * d;
}

If we know the data always occurs in certain sized increments, we can do more steps in each iteration, as in the following:

for (i=0; i < multipleOfThree; i+=3) {
  a[i] = b[i] + c[i] * d;
  a[i+1] = b[i+1] + c[i+1] * d;
  a[i+2] = b[i+2] + c[i+2] * d;
}

On a CISC processor the second loop wouldn't be much faster, but on the Power PC processor the second loop is twice as fast as the first. This is because the compiler can schedule independent instructions to keep the pipeline constantly moving. (If the data doesn't occur in nice increments, you can still expand the loop; just add a small loop at the end to handle the extra iterations.)Be careful not to expand a loop too much, though. Very large loops won't fit in the cache, causing cache misses for each iteration. In addition, the larger a loop gets, the less work can be done entirely in registers. Expand too much and the compiler will have to use memory  to store intermediate results, outweighing your marginal gains. Besides, you get the biggest gains from the first few expansions.

SCOPING YOUR VARIABLES
If you're new to RISC, you'll be impressed by the number of registers available on the PowerPC chip -- 32 general registers and 32 floating-point registers. By having so many, the processor can often avoid slow memory operations. Your compiler will take advantage of this when it can, but you can help it by carefully scoping your variables and using lots of local variables.

The "scope" of a variable is the area of code in which it is valid. Your compiler examines the scope of each variable when it schedules registers, and your code can provide valuable information about the usage of each variable. Here's an example:

for (i=0; i < gArraySize; i++) {
  a[i] = MyFirstRoutine(b[i], c[i]);
  b[i] = MySecondRoutine(a[i], c[i]);
} 

In this loop, the global variable gArraySize is scoped for the whole program. Because we call a subroutine in the loop, the compiler can't tell if gArraySize will change during each iteration. Since the subroutine might modify gArraySize, the compiler has to be conservative. It will reload gArraySize from memory on every iteration, and it won't optimize the loop any further. This is wastefully slow.

On the other hand, if we use a local  variable, we tell the compiler that gArraySize and c[i] won't be modified and that it's all right to just keep them handy in registers. In addition, we can store data as temporary variables scoped only within the loop. This tells the compiler how we intend to use the data, so that the compiler can use free registers and discard them after the loop. Here's what this would look like:

arraySize = gArraySize;
for (i=0; i < arraySize; i++) {
  float localC;
  localC = c[i];
  a[i] = MyFirstRoutine(b[i], localC);
  b[i] = MySecondRoutine(a[i], localC);
} 

These minor changes give the compiler more information about the data, in this instance accelerating the resulting code by 25%.

STYLING YOUR CODE
Be wary of code that looks complicated. If each line of source code contains complicated dereferences and typecasting, chances are the object code has wasteful memory instructions and inefficient register usage. A great compiler might optimize well anyway, but don't count on it. Judicious use of temporary variables (as mentioned above) will help the compiler understand exactly what you're doing -- plus your code will be easier to read.

Excessive memory dereferencing is a problem exacerbated by the heavy use of handles on the Macintosh. Code often contains double memory dereferences, which is important when memory can move. But when you can guarantee that memory won't  move, use a local pointer, so that you only dereference a handle once. This saves load instructions and allows fur ther optimizations. Casting data types is usually a free operation -- you're just telling the compiler that you know you're copying seemingly incompatible data. But it's not  free if the data types have different bit sizes, which adds conversion instructions. Again, avoid this by using local variables for the commonly casted data.

I've heard many times that branches are "free" on the PowerPC processor. It's true that often the pipeline can keep moving even though a branch is encountered, because the branch execution unit will try to resolve branches very early in the pipeline or will predict the direction of the branch. Still, the more subroutines you have, the less your compiler will be able to reorder and intelligently schedule instructions. Keep speed-critical code together, so that more of it can be pipelined and the compiler can schedule your registers better. Use inline routines for short operations, as I did in the improved version of the first example loop in this column.

KNOWING YOUR PROCESSOR
As with all processors, the PowerPC chip has performance tradeoffs you should know about. Some are processor model specific. For example, the PowerPC 601 has 32K of cache, while the 603 has 16K split evenly into an instruction cache and a data cache. But in general you should know about floating-point performance and the virtues of memory alignment.

Floating-point multiplication is wicked fast -- up to nine times  the speed of integer multiplication. Use floating-point multiplication if you can. Floating-point division takes 17 times as long, so when possible multiply by a reciprocal instead of dividing.

Memory accesses go fastest if addressed on 64-bit memory boundaries. Accesses to unaligned data stall while the processor loads different words and then shifts and splices them. For example, be sure to align floating-point data to 64-bit boundaries, or you'll stall for four cycles while the processor loads 32-bit halves with two 64-bit accesses.

MAKING THE DIFFERENCE
Native PowerPC code runs really fast, so in many cases you don't need to worry about tweaking its performance at all. For your speed-critical code, though, these tips I've given you can make the difference between "too slow" and "fast enough."

RECOMMENDED READING

  • High-Performance Computing  by Kevin Dowd (O'Reilly & Associates, Inc., 1993).
  • High-Performance Computer Architecture  by Harold S. Stone (Addison-Wesley, 1993).
  • PowerPC 601 RISC Microprocessor User's Manual (Motorola, 1993).

DAVE EVANS may be able to tune PowerPC code for Apple, but for the last year he's been repeatedly thwarted when tuning his 1978 Harley-Davidson XLCH motorcycle. Fixing engine stalls, poor timing, and rough starts proved difficult, but he was recently rewarded with the guttural purr of a well-tuned Harley. *

Code examples were compiled with the PPCC compiler using the speed optimization option, and then run on a Power Macintosh 6100/66 for profiling. A PowerPC 601 microsecond timing library is provided on this issue's CD. *

 
AAPL
$501.11
Apple Inc.
+2.43
MSFT
$34.64
Microsoft Corpora
+0.15
GOOG
$898.03
Google Inc.
+16.02

MacTech Search:
Community Search:

Software Updates via MacUpdate

CrossOver 12.5.1 - Run Windows apps on y...
CrossOver can get your Windows productivity applications and PC games up and running on your Mac quickly and easily. CrossOver runs the Windows software that you need on Mac at home, in the office,... Read more
Paperless 2.3.1 - Digital documents mana...
Paperless is a digital documents manager. Remember when everyone talked about how we would soon be a paperless society? Now it seems like we use paper more than ever. Let's face it - we need and we... Read more
Apple HP Printer Drivers 2.16.1 - For OS...
Apple HP Printer Drivers includes the latest HP printing and scanning software for Mac OS X 10.6, 10.7 and 10.8. For information about supported printer models, see this page.Version 2.16.1: This... Read more
Yep 3.5.1 - Organize and manage all your...
Yep is a document organization and management tool. Like iTunes for music or iPhoto for photos, Yep lets you search and view your documents in a comfortable interface, while offering the ability to... Read more
Apple Canon Laser Printer Drivers 2.11 -...
Apple Canon Laser Printer Drivers is the latest Canon Laser printing and scanning software for Mac OS X 10.6, 10.7 and 10.8. For information about supported printer models, see this page.Version 2.11... Read more
Apple Java for Mac OS X 10.6 Update 17 -...
Apple Java for Mac OS X 10.6 delivers improved security, reliability, and compatibility by updating Java SE 6.Version Update 17: Java for Mac OS X 10.6 Update 17 delivers improved security,... Read more
Arq 3.3 - Online backup (requires Amazon...
Arq is online backup for the Mac using Amazon S3 and Amazon Glacier. It backs-up and faithfully restores all the special metadata of Mac files that other products don't, including resource forks,... Read more
Apple Java 2013-005 - For OS X 10.7 and...
Apple Java for OS X 2013-005 delivers improved security, reliability, and compatibility by updating Java SE 6 to 1.6.0_65. On systems that have not already installed Java for OS X 2012-006, this... Read more
DEVONthink Pro 2.7 - Knowledge base, inf...
Save 10% with our exclusive coupon code: MACUPDATE10 DEVONthink Pro is your essential assistant for today's world, where almost everything is digital. From shopping receipts to important research... Read more
VirtualBox 4.3.0 - x86 virtualization so...
VirtualBox is a family of powerful x86 virtualization products for enterprise as well as home use. Not only is VirtualBox an extremely feature rich, high performance product for enterprise customers... Read more

Briquid Gets Updated with New Undo Butto...
Briquid Gets Updated with New Undo Button, Achievements, and Leaderboards, on Sale for $0.99 Posted by Andrew Stevens on October 16th, 2013 [ | Read more »
Halloween – iLovecraft Brings Frightenin...
Halloween – iLovecraft Brings Frightening Stories From Author H.P. | Read more »
The Blockheads Creator David Frampton Gi...
The Blockheads Creator David Frampton Gives a Postmortem on the Creation Process of the Game Posted by Andrew Stevens on October 16th, 2013 [ permalink ] Hey, a | Read more »
Sorcery! Enhances the Gameplay in Latest...
Sorcery! | Read more »
It Came From Australia: Tiny Death Star
NimbleBit and Disney have teamed up to make Star Wars: Tiny Death Star, a Star Wars take on Tiny Tower. Right now, the game is in testing in Australia (you will never find a more wretched hive of scum and villainy) but we were able to sneak past... | Read more »
FIST OF AWESOME Review
FIST OF AWESOME Review By Rob Rich on October 16th, 2013 Our Rating: :: TALK TO THE FISTUniversal App - Designed for iPhone and iPad A totalitarian society of bears is only the tip of the iceberg in this throwback brawler.   | Read more »
PROVERBidioms Paints English Sayings in...
PROVERBidioms Paints English Sayings in a Picture for Users to Find Posted by Andrew Stevens on October 16th, 2013 [ permalink ] | Read more »
OmniFocus 2 for iPhone Review
OmniFocus 2 for iPhone Review By Carter Dotson on October 16th, 2013 Our Rating: :: OMNIPOTENTiPhone App - Designed for the iPhone, compatible with the iPad OmniFocus 2 for iPhone is a task management app for people who absolutely... | Read more »
Ingress – Google’s Augmented-Reality Gam...
Ingress – Google’s Augmented-Reality Game to Make its Way to iOS Next Year Posted by Andrew Stevens on October 16th, 2013 [ permalink ] | Read more »
CSR Classics is Full of Ridiculously Pre...
CSR Classics is Full of Ridiculously Pretty Classic Automobiles Posted by Rob Rich on October 16th, 2013 [ permalink ] | Read more »

Price Scanner via MacPrices.net

Apple Store Canada offers refurbished 11-inch...
 The Apple Store Canada has Apple Certified Refurbished 2013 11″ MacBook Airs available starting at CDN$ 849. Save up to $180 off the cost of new models. An Apple one-year warranty is included with... Read more
Updated MacBook Price Trackers
We’ve updated our MacBook Price Trackers with the latest information on prices, bundles, and availability on MacBook Airs, MacBook Pros, and the MacBook Pros with Retina Displays from Apple’s... Read more
13-inch Retina MacBook Pros on sale for up to...
B&H Photo has the 13″ 2.5GHz Retina MacBook Pro on sale for $1399 including free shipping. Their price is $100 off MSRP. They have the 13″ 2.6GHz Retina MacBook Pro on sale for $1580 which is $... Read more
AppleCare Protection Plans on sale for up to...
B&H Photo has 3-Year AppleCare Warranties on sale for up to $105 off MSRP including free shipping plus NY sales tax only: - Mac Laptops 15″ and Above: $244 $105 off MSRP - Mac Laptops 13″ and... Read more
Apple’s 64-bit A7 Processor: One Step Closer...
PC Pro’s Darien Graham-Smith reported that Canonical founder and Ubuntu Linux creator Mark Shuttleworth believes Apple intends to follow Ubuntu’s lead and merge its desktop and mobile operating... Read more
MacBook Pro First, Followed By iPad At The En...
French site Info MacG’s Florian Innocente says he has received availability dates and order of arrival for the next MacBook Pro and the iPad from the same contact who had warned hom of the arrival of... Read more
Chart: iPad Value Decline From NextWorth
With every announcement of a new Apple device, serial upgraders begin selling off their previous models – driving down the resale value. So, with the Oct. 22 Apple announcement date approaching,... Read more
SOASTA Survey: What App Do You Check First in...
SOASTA Inc., the leader in cloud and mobile testing announced the results of its recent survey showing which mobile apps are popular with smartphone owners in major American markets. SOASTA’s survey... Read more
Apple, Samsung Reportedly Both Developing 12-...
Digitimes’ Aaron Lee and Joseph Tsai report that Apple and Samsung Electronics are said to both be planning to release 12-inch tablets, and that Apple is currently cooperating with Quanta Computer on... Read more
Apple’s 2011 MacBook Pro Lineup Suffering Fro...
Appleinsider’s Shane Cole says that owners of early-2011 15-inch and 17-inch MacBook Pros are reporting issues with those models’ discrete AMD graphics processors, which in some cases results in the... Read more

Jobs Board

*Apple* Retail - Manager - Apple (United Sta...
Job SummaryKeeping an Apple Store thriving requires a diverse set of leadership skills, and as a Manager, youre a master of them all. In the stores fast-paced, dynamic Read more
*Apple* Support / *Apple* Technician / Mac...
Apple Support / Apple Technician / Mac Support / Mac Set up / Mac TechnicianMac Set up and Apple Support technicianThe person we are looking for will have worked Read more
Senior Mac / *Apple* Systems Engineer - 318...
318 Inc, a top provider of Apple solutions is seeking a new Senior Apple Systems Engineer to be based out of our Santa Monica, California location. We are a Read more
*Apple* Retail - Manager - Apple Inc. (Unite...
Job Summary Keeping an Apple Store thriving requires a diverse set of leadership skills, and as a Manager, you’re a master of them all. In the store’s fast-paced, Read more
*Apple* Solutions Consultant - Apple (United...
**Job Summary** Apple Solutions Consultant (ASC) - Retail Representatives Apple Solutions Consultants are trained by Apple on selling Apple -branded products Read more
All contents are Copyright 1984-2011 by Xplain Corporation. All rights reserved. Theme designed by Icreon.