TweetFollow Us on Twitter

Winter 92 - MAKING YOUR MACINTOSH SOUND LIKE AN ECHO BOX

MAKING YOUR MACINTOSH SOUND LIKE AN ECHO BOX

RICH COLLYER

[IMAGE 048-057_Collyer_rev1.GIF]

Happy notes for sound buffs: As you'll see from the sample code provided on the Developer CD Series disc, you can make your Macintosh play and record sounds at the same time, simply by using double buffering to record into one buffer while playing a second buffer, and then flipping between the buffers. If you want to take things a few steps further, pull out elements of this code and tailor them to suit your own acoustic needs.

We all know that the Macintosh is a sound machine, so to speak, but with a little clever programming you can turn it into an echo box as well. The sample 2BufRecordToBufCmd included on theDeveloper CD Series disc is just a small application (sans interface) that demonstrates one way to record sounds at the same time that you're playing them. There are other ways to achieve the same goal, but my purpose is to educate you about the Sound Manager, not to lead you down the definitive road to becoming your own recording studio.

In addition to the main routine, 2BufRecordToBufCmd includes various setup routines and a completion routine. For easy reading, I've left out any unnecessary code out of this article.

CONSTANT COMMENTS

Before I get into the sample code itself, here are a few of the constants you'll run into in the application.

GETTING A HANDLE ON IT
The kMilliSecondsOfSound constant is used to declare how many milliseconds of sound the application should record before it starts to play back. The smaller the number of milliseconds, the more quickly the sound is played back. This constant is used to calculate the size of the 'snd ' buffer handles (just the data). Depending on the sound effect you're after, kMilliSecondsOfSound can range from 50 milliseconds to 400,000 or so. If you set it below 50, you risk problems: there may not be enough time for the completion routine to finish executing before it's called again. On the high end of the range, only the application's available memory limits the size. The smaller the value, of course, the faster the buffers fill up and play back, and the faster an echo effect you'll get. A millisecond value of 1000 provides a one-second delay between record and echo, which I've found is good for general use. You'll want to experiment to find the effect you like. (Beware of feedback, both from your machine and from anyone who's in close enough proximity to "enjoy" the experimentation secondhand.)

YOUR HEAD SIZE, AND OTHER #DEFINES
The next three constants (kBaseHeaderSize, kSynthSize, and kCmdSize) are used to parse the sound header buffers in the routine FindHeaderSize. kBaseHeaderSize is the number of bytes at the top of all 'snd ' headers that aren't needed in the application itself. While the number of bytes isn't really ofinterest here, you need to parse the header in order to find the part of the sound header that you'll pass to the bufferCmd. How much you parse off the top is determined by the format of the header and the type of file; for the purposes of this code, however, all you need to be concerned with are the 'snd ' resources. The second constant, kSynthSize, is the size of one 'snth'. In the calculations of the header, I find out how many 'snth's there are, and multiply that number by kSynthSize. The last constant, kCmdSize, is the size of one command, which is used in the same way as kSynthSize. (These equations are derived fromInside Macintosh Volume VI, page 22-20.)

ERROR CHECKING WITH EXITWITHMESSAGE
2BufRecordToBufCmd includes error checking, but only as a placeholder for future commercialization of the product. If the present code detects an error, it calls the ExitWithMessage routine, which displays a dialog box that tells you more or less where the error occurred and what the error was. Closing this dialog box quits the application, at which point you have to start over again. Note that calling ExitWithMessage at interrupt time could be fatal, since it uses routines that might move memory. For errors that could occur at interrupt time, DebugStr is used instead.

USING THE SOUND INPUT DRIVER

Use of the sound input driver is fairly well documented inInside Macintosh Volume VI, Chapter 22 (pages 22-58 through 22-68 and 22-92 through 22-99), but here's a little overview of what 2BufRecordToBufCmd does at this point in the routine, and why. When you use sound input calls at the low level (not using SndRecord or SndRecordToFile), you need to open the sound input driver. This section of the code just opens the driver, which the user selects via the sound cdev.

gError = SPBOpenDevice (kDefaultDriver, siWritePermission,
            &gSoundRefNum);

To open the driver, you call SPBOpenDevice and pass in a couple of simple parameters. The first parameter is a driver name. It doesn't really matter what the name of the driver is; it simply needs to be the user-selected driver, so the code passes in nil (which is what kDefaultDriver translates into). The constant siWritePermission tells the driver you'd like read/write permission to the sound input driver. This will enable the application to actually use the recording calls. The last parameter is the gSoundRefNum. This parameter is needed later in the sample so that you can ask specific questions about the driver that's open. The error checking is just to make sure that nothing went wrong; if something did go wrong, the code goes to ExitWithMessage, and then the sample quits.

gError = SPBSetDeviceInfo (gSoundRefNum, siContinuous,
           (Ptr) &contOnOff);

Continuous recording is activated here to avoid a "feature" of the new Macintosh Quadra 700 and 900 that gives you a slowly increasing ramp of the sound input levels to their normal levels each time you call SPBRecord. The result in 2BufRecordToBufCmd is a pause and gradual increase in the sound volume between buffers as the buffers are being played. Continuous recording gives you this ramp only on the first buffer, where it's almost unnoticeable.

BUILDING 'SND ' BUFFERS

Now that the sound input driver is open, the code can get the information it needs to build the 'snd ' buffers. As its name implies, 2BufRecordToBufCmd uses two buffers. The reason is sound (no pun intended): The code basically uses a double-buffer method to record and play the buffers. The code doesn't tell the machine to start to play the sound until the recording completion routine has been called, so you don't have to worry about playing a buffer before it has been filled with recorded data. The code also does not restart the recording until the previous buffer has started to play.

INFORMATION, PLEASE
To build the sound headers, you need to get some information from the sound input driver about how the sound data will be recorded and stored. That's the function of the GetSoundDeviceInfo routine, which looks for information about the SampleRate (the number of samples per second at which the sound is recorded), the SampleSize (the sample size of the sound being recorded--8 bits per sample is normal), the CompressionType (see "Putting on the Squeeze"), the NumberChannels(the number of sound input channels, normally 1), and the DeviceBufferInfo (the size of the internal buffers).

This code (minus the error checking) extracts these values from the sound input driver.

gError = SPBGetDeviceInfo (gSoundRefNum, siSampleRate,
        (Ptr) &gSampleRate);

gError = SPBGetDeviceInfo (gSoundRefNum, siSampleSize,
        (Ptr) &gSampleSize);

gError = SPBGetDeviceInfo (gSoundRefNum, siCompressionType,
        (Ptr) &gCompression);

gError = SPBGetDeviceInfo (gSoundRefNum, siNumberChannels,
        (Ptr) &gNumberOfChannels);

gError = SPBGetDeviceInfo (gSoundRefNum, siDeviceBufferInfo,
        (Ptr) &gInternalBuffer);

value = kMilliSecondsOfSound;
gError = SPBMillisecondsToBytes (gSoundRefNum, &value);
gSampleAreaSize = (value / gInternalBuffer) * gInternalBuffer;

Opening the sound input driver gives you the gSoundRefNum. The values siSampleRate, siSampleSize, siCompressionType, siNumberChannels, and siDeviceBufferInfo are constants defined in the SoundInput.h file; these constants tell the SPBGetDeviceInfo call what information you want. The last parameter is a pointer to a global variable. The SPBGetDeviceInfo call uses this parameter to return the requested information.

The last bit of work the code needs to do before it's ready to start building the 'snd ' headers is to convert the constant kMilliSecondsOfSound to the sample size of the buffer. To do this, the routine needs to call SPBMillisecondsToBytes and then round down the resulting value to a multiple of the size of the internal sound buffer. This is to bypass a bug connected with the continuous recording feature of Apple's built-in sound input device, which will collect garbage rather than audio data if the recording buffer is not a multiple of the device's internal buffer. Creating a buffer of the right size not only avoids this problem, but also enables the input device to more efficiently record data into your buffer.

Now the code has the information it needs to build the sound buffers. To save code space, I've made a short routine that builds the buffers and their headers. All the code has to do is call this routine for each of the buffers it needs and pass in the appropriate data.

IT'S A SETUP
The first line of code in the SetupSounds routine is fairly obvious. It simply calls the Memory Manager to allocate the requested handles, based on the known size of the data buffer and an estimated maximum size for the header, and does some error checking (see the code itself). Then, if the handle is good, the routine builds the 'snd ' header. Setting up the sound buffer requires building the header by making a simple call, SetupSndHeader, to the Sound Manager. There's a small problem with calling SetupSndHeader only once, however: When you call it, you don't know how big the sound header is, so you just give the call the buffer, along with a 0 value for the buffer size. When the call returns with the header built, one of the values in the header--the one that's the number of bytes in the sample--will be wrong. (The header size will be correct, but the data in the header will not be.) To correct this, you simply wait until your recording is complete and then put the correct number of bytes directly into the header, at which time you'll know how much data there is to play back. The misinformation in the header won't affect your recording, only the playback. Once the header's built, the code resets the size of the handle, moves the handle high (to avoid fragmentation of the heap), and locks it down. It's important to lock down the handles in this way; otherwise the Sound Manager will move the sound buffers it's working with out from under itself.

*bufferHandle = NewHandle (gSampleAreaSize + kEstimatedHeaderSize);

gError = SetupSndHeader (*bufferHandle, gNumberOfChannels,
    gSampleRate, gSampleSize, gCompression, kMiddleC, 0, headerSize);

SetHandleSize (*bufferHandle, (Size) *headerSize + gSampleAreaSize);
MoveHHi (*bufferHandle);
HLock (*bufferHandle);

TELLING IT WHERE TO GO

The next part of the program allocates and initializes a sound input parameter block, gRecordStruct. This structure tells the sound input call how to do what the code wants it to do.

The first instruction is obvious: it simply creates a new pointer into which the structure can be stored.

gRecordStruct = (SPBPtr) NewPtr (sizeof (SPB));

The recording call will need to know where it can find the open sound input driver, so next it needs the reference number to the driver (gSoundRefNum). The subsequent three lines of code inform the recording call how much buffer space it has to record into. Here, you could either give the call a count value, tell it how many milliseconds are available for recording, or give it the size of the sound buffer. For this code, it's easiest to just make the bufferLength the same as the count and ignore the milliseconds value. The code then tells the recording call where to put the sound data as it's recorded.

gRecordStruct->inRefNum = gSoundRefNum;
gRecordStruct->count = gSampleAreaSize;
gRecordStruct->milliseconds = 0;
gRecordStruct->bufferLength = gSampleAreaSize;
gRecordStruct->bufferPtr = (Ptr) ((*bufferHandle) + gHeaderLength);
gRecordStruct->completionRoutine = (ProcPtr) MyRecComp;
gRecordStruct->interruptRoutine = nil;
gRecordStruct->userLong = SetCurrentA5();
gRecordStruct->error = 0;
gRecordStruct->unused1 = 0;

The recording call also needs to know what to do when it's finished recording. Since the call is done asynchronously, it needs a completion routine. (I'll talk more about this routine later on.) Youcould leave out the completion routine and just poll the driver periodically to see if it's finished recording. To do that, you'd repeatedly call the routine SPBGetRecordStatus, and when the status routine informed you that recording was finished, you'd restart the recording and play the buffer that had just been filled. For this code, however, it's better to know as soon as possible when the recording is done because the more quickly you can restart the recording, the more likely you are to prevent pauses between recordings.

The userLong field is a good place to store 2BufRecordToBufCmd's A5 value, which you'll need in order to have access to the application's global variables from the completion routine. As you can see, the rest of the fields are set to 0. The code doesn't need an interrupt routine. There's also no point in passing an error back or using the unused1 field.

You'd need to use an interrupt routine if you wanted to change the recorded sound before compression, or before the completion routine was called (see "Routine Interruptions").

TIME TO CHANNEL
Just before the code jumps into the main loop, it needs to open a sound channel. This generally is not a big deal, but for 2BufRecordToBufCmd, I initialized the channel to use no interpolation.

gError = SndNewChannel (&gChannel, sampledSynth, initNoInterp, nil);

Interpolation causes clicks between the sound buffers when they're played back to back, which can be a rather annoying addition to your recording (unless, of course, you're going for that samba beat).

JUST FOR THE RECORD
To start recording, all the code needs to do now is call the low-level recording routine, pass in gRecordStruct, and tell it that it wants the recording to occur asynchronously.

gError = SPBRecord (gRecordStruct, true);

LOOP THE LOOP

The main loop of this code is a simple while loop that waits until the mouse button is pressed or an error occurs in the recording, at which time the application quits.

/* main loop of the app */
while (!Button() || (gRecordStruct->error < noErr));

ROUTINE COMPLETION
You don't want a completion routine to do much, generally, since it's run at interrupt time and keeps your system locked up while it's running. There are three parts to this completion routine, one of which has four parts to itself.

The first part of the completion routine sets its A5 value to be the same as the A5 value of the application. This gives you access to the application's global variables from the completion routine.

storeA5 = SetA5 (inParamPtr->userLong);

If the completion routine weren't broken into two parts here, the MPW C compiler optimization scheme would cause a problem at this point: access to global arrays would be pointed to in an address register as an offset of A5 before you had a chance to set A5 to your application's A5 value, and you'd get garbage information. Therefore, it's necessary to restore your A5 value (part 1 of the completion routine) and then call the secondary completion routine to actually do all the work.

Before the routine does any work, it needs to make sure that there have not been any problems with the recording. If there were errors, the code drops out of the completion routine without doing anything.

if (gRecordStruct->error < 0)
    return;

Next the routine prepares the header of the buffer, which has just been filled, by correcting the header's length field. This field needs to be set to the count field of gRecordStruct, which now contains the actual number of bytes recorded.

header = (SoundHeaderPtr)(*(gBufferHandle[gWhichRecordBuffer]) +
    gHeaderSize);
header->length = gRecordStruct->count;

Once the header's been fixed, the code just sends the buffer handle off to the play routine to play the sound. (See "Play Time" for a full explanation of the play routine.)

PlayBuffer (gBufferHandle[gWhichRecordBuffer]);
The last part of the real completion routine prepares gRecordStruct to start the next recording. To do this, the code needs to select the correct buffer to record to and rebuild gRecordStruct to reflect any changes. The macro NextBuffer performs an XOR on the variable gWhichRecordBuffer to make it either 1 or 0. The changes include setting the correct buffer to record to and checking to see that the bufferLength is correct. Once the structure is reset, the code makes the next call to SPBRecord to restart the recording.
#define NextBuffer(x) (x ^= 1)

gWhichRecordBuffer = NextBuffer (gWhichRecordBuffer);
gRecordStruct->bufferPtr = (*(gBufferHandle[gWhichRecordBuffer]) +
    gDataStart);
gRecordStruct->milliseconds = 0;
gRecordStruct->count = gSampleAreaSize;
gRecordStruct->bufferLength = gSampleAreaSize;

err = SPBRecord (gRecordStruct, true);

The last piece of the completion routine resets A5 to what its value was when the routine started.

storeA5 = SetA5 (storeA5);

PLAY TIME
The code in the PlayBuffer routine is very simple Sound Manager code. All it does is set up the command parameters and call SndDoCommand. The routine needs to know what channel to play into and what buffer to play, so the code sets up the local sound structure by telling it which buffer to play, and sends that local structure to SndDoCommand along with the necessary channel information (gChannel). SndDoCommand then plays the sound. The last parameter in the SndDoCommand call, false, basically tells the Sound Manager to always insert the command in the channel's queue: if the queue is full, SndDoCommand will wait until there's space to insert the command before returning.

localSndCmd.cmd = bufferCmd;
localSndCmd.param1 = 0;
localSndCmd.param2 = (long) ((*bufferHandle) + gHeaderSize);
gError = SndDoCommand (gChannel, &localSndCmd, false);

If you wanted to send the sounds to a different machine to be played, you could simply replace the code in the the PlayBuffer routine with IPC or Communications Toolbox calls telling a second machine to play the buffers.

CLEANING UP AFTER THE SHOW

Once the code finds the mouse button down or discovers that an error occurred in the recording and exits the main loop, there's only one last thing to do: clean up. The first part of cleaning up is to close the sound input driver. Before you can close the driver, you need to make sure it's not in use; the routine SPBStopRecording stops the recording.

gError = SPBStopRecording (gSoundRefNum);
SPBCloseDevice (gSoundRefNum);

Next you need to dispose of the handles and pointers you've been using. Before sending them on their way, however, you have to make sure that they have been allocated, so the code checks to see whether or not the handles and pointer are nil.

for (index = 0; index < kNumberOfBuffers; ++index)
    DisposeHandle (gBufferHandle[index]);
DisposePtr ((Ptr) gRecordStruct);
Last but not least, the code disposes of the sound channel for you. Setting the quitNow flag clears the sound queue before the channel is closed.

gError = SndDisposeChannel (gChannel, true);

COMPOSE YOURSELF

So now you know a little bit more about doing basic sound input at a low level. I've fielded many questions about clicks, pauses between buffers, and so on, which I've resolved and built into 2BufRecordToBufCmd. The specific techniques I've outlined here may not apply to what you're interested in doing right now, but if you're using the sound input driver or are interested in continuous recording, parts of this sample may be useful to you in some other application. You've heard the saying "take what you like and leave the rest"? Sound advice (so to speak).

GESTALT YOUR MACHINE

You do need to check two rather critical sound attributes for 2BufRecordToBufCmd. First of all, your machine must have a sound input driver. There's very little point in trying to record sounds if the sample is being run on a machine that doesn't have sound input capabilities. Checking bit 5 of the returned feature variable with the Gestalt Manager will give you this handy bit of information.

Second, your hardware needs to support stereo sound, since you need one channel for sound input and one for sound output. Check for this attribute by checking bit 0 of the returned feature variable.

The following code shows how you can test all of the bits returned in the feature variable. (I didn't use this code in my sample.)

err = Gestalt (gestaltSoundAttr, &feature);
if (!err) {
    if (feature & (1 << gestaltStereoCapability))
        //This Macintosh Supports Stereo (test bit 0)
    if (feature & (1 << gestaltStereoMixing))
        //This Macintosh Supports Stereo Mixing (test bit 1)
    if (feature & (1 << gestaltSoundIOMgrPresent))
        //This Macintosh Has the New Sound Manager (test bit 3)
    if (feature & (1 << gestaltBuiltInSoundInput))
        //This Macintosh Has Built-in Sound Input (test bit 4)
    if (feature & (1 << gestaltHasSoundInputDevice))
        //This Macintosh Supports Sound Input (test bit 5)
    }

PUTTING ON THE SQUEEZE

If you want to use compression for 2BufRecordToBufCmd, keep in mind that the Sound Manager basically supports three types of sound compression: none at all, which is what I'm using, and MAC3 and MAC6, which are Mace compression types for 3:1 and 6:1 compression, respectively.

If you set the compression, the sound data is compressed after the interrupt routine is called (if you have one) and before the Sound Manager internal buffers are moved to the application's sound buffers.

You have a couple of options for playing back a compressed sound. Either the bufferCmd or SndPlay will decompress the sounds on the fly. If you need to decompress a sound yourself, you'll want to call the Sound Manager routine Exp1to3 or Exp1to6 (depending on the compression you were using).

ROUTINE INTERRUPTIONS

The interrupt routine gives you a chance to manipulate the sound data before any sound compression is done. For some of the operations that you may want to carry out inside the interrupt routine, you'll need access to the A5 world of the application, which is why I stored 2BufRecordToBufCmd's A5 value in the userLong field of gRecordStruct.For more information about sound interrupt routines, take a look at Inside Macintosh  Volume VI, page 22-63.

Warning:  Don't try to accomplish too much in an interrupt routine. In general, you'll want interrupts to be minimal, and possibly written in assembly language, to avoid unnecessary compiler-generated code.


RICH COLLYER is just your run-of-the-mill three-year Developer Technical Support veteran: He's often heard screaming at his computer to the soothing accompaniment of Blazy and Bob on KOME radio, he's honed his archery skills to a fine point dodging (and casting) the slings and arrows at Apple, and he actually admits to a degree from Cal Poly with a specialty in computational fluid dynamics. We let you in on his outdoor adventures last time he wrote for us and he claims most of his indoor adventures aren't appropriate develop  material, but we have it on good authority that he lives with carnivorous animals, if that's any clue. He's also a confirmed laserdisc and CD addict; he keeps promising to start a recovery program for those of us with the same affliction just as soon as he finishes writing that next sample . . . *

THANKS TO OUR TECHNICAL REVIEWERS Neil Day, Kip Olson, and Jim Reekes, who burned the midnight oil ripping this code to shreds and putting it back together again.*

 

Community Search:
MacTech Search:

Software Updates via MacUpdate

pwSafe 4.0.1 - Secure password managemen...
pwSafe provides simple and secure password management across devices and computers. pwSafe uses iCloud to keep your password databases backed-up and synced between Macs and iOS devices. It is... Read more
WALTR 1.5.4 - Drag-and-drop any media fi...
WALTR is designed to make it easy to upload and convert any music or video file to an iPad or iPhone format for native playback. It supports a huge variety of media file types, including MP3, MP4,... Read more
Audio Hijack 3.1 - Record and enhance au...
Audio Hijack (was Audio Hijack Pro) drastically changes the way you use audio on your computer, giving you the freedom to listen to audio when you want and how you want. Record and enhance any audio... Read more
PopChar 7.1 - Floating window shows avai...
We're also selling a 5-license family pack for only $25.99! PopChar helps you get the most out of your font collection. With its crystal-clear interface, PopChar X provides a frustration-free way to... Read more
BBEdit 11.1.1 - Powerful text and HTML e...
BBEdit is the leading professional HTML and text editor for the Mac. Specifically crafted in response to the needs of Web authors and software developers, this award-winning product provides a... Read more
Picasa 3.9.139 - Organize, edit, and sha...
Picasa and Picasa Web Albums allows you to organize, edit, and upload your photos to the Web from your computer in quick, simple steps. Arrange your photos into folders and albums and erase their... Read more
Mac DVDRipper Pro 5.0.5 - Copy, backup,...
Mac DVDRipper Pro is the DVD backup solution that lets you protect your DVDs from scratches, save your batteries by reading your movies from your hard disk, manage your collection with just a few... Read more
NetShade 6.2 - Browse privately using an...
This promotion is for NetShade and 1 year of Proxy and VPN services NetShade is an anonymous proxy and VPN app+service for Mac. Unblock your Internet through NetShade's high-speed proxy and VPN... Read more
CrossOver 14.1.3 - Run Windows apps on y...
CrossOver can get your Windows productivity applications and PC games up and running on your Mac quickly and easily. CrossOver runs the Windows software that you need on Mac at home, in the office,... Read more
Little Snitch 3.5.3 - Alerts you about o...
Little Snitch gives you control over your private outgoing data. Track background activity As soon as your computer connects to the Internet, applications often have permission to send any... Read more

Block Fortress has a Big New Update for...
Block Fortress is a survival-style game that's as fun as it is blocky. It's also just gotten a rather sizeable update that adds a lot more cool stuff. [Read more] | Read more »
Simple and Surreal Star Base Sim rymdkap...
I really like rymdkapsel. Not just because I'm a sucker for games that are cleverly simple or highly stylisitc, but because it's fun and challenging. Actually it's extremely challenging, which is why I was excited to learn that it's getting a couple... | Read more »
Check out the anticipated Angel Stone in...
Fincon has finally revealed Angel Stone in action in the first ever official gameplay trailer for the anticipated hack and slasher. Angel Stone is set in a post-apocalyptic world in which humanity is in danger of being wiped out by the demonic... | Read more »
Moleskine Timepage is an All-New Calenda...
Moleskine Timepage is a bit of a departure for the notebook manufacturer (since it has little to do with notebooks), but it certainly carries their simple and elegant style quite well. [Read more] | Read more »
Jog on Over and Check Out the New Runtas...
Runtastic has put out a fair number of apps to help you sleep, track excercise, and train various parts of your body. Now it's time for your legs to have their own time in the spotlight with Runtastic Leg Trainer. [Read more] | Read more »
It's Lights Out in the Upcoming Pla...
Ember’s Journey is a stark puzzle platformer with a twist: the entire game is played in darkness. The only light you can see by is the one emanating from your own character. [Read more] | Read more »
MooVee - Your Movies Guru (Entertainmen...
MooVee - Your Movies Guru 1.0 Device: iOS iPhone Category: Entertainment Price: $1.99, Version: 1.0 (iTunes) Description: MooVee helps you effortlessly manage your movies, on your iPhone. | Read more »
Geometry Wars 3: Dimensions (Games)
Geometry Wars 3: Dimensions 1.0.0 Device: iOS Universal Category: Games Price: $4.99, Version: 1.0.0 (iTunes) Description: Enjoy the next chapter in the award-winning Geometry Wars franchise and enjoy stunning, console-quality... | Read more »
CHAOS RINGS Ⅲ (Games)
CHAOS RINGS Ⅲ 1.0.0 Device: iOS Universal Category: Games Price: $19.99, Version: 1.0.0 (iTunes) Description: The newest addition to the popular smartphone RPG series is finally here! ・CHAOS RINGS Overview | Read more »
The Popular Insight Series of Travel Gui...
Getting around in a country when you can't understand the primary language can be tough. Fortunately there are several options available to help wold travellers with the important stuff like giving directions to a cab driver or asking where the... | Read more »

Price Scanner via MacPrices.net

Apple refurbished 2014 13-inch Retina MacBook...
The Apple Store has Apple Certified Refurbished 2014 13″ Retina MacBook Pros available for up to $400 off original MSRP, starting at $979. An Apple one-year warranty is included with each model, and... Read more
What Would the ideal Apple Productivity Platf...
For the past four years I’ve kept a foot in both the Mac and iPad camps respectively. my daily computing hours divided about 50/50 between the two devices with remarkable consistency. However, there’... Read more
PageMeUp 1.2.1 Ten Dollar Page Layout Applica...
Paris, France-based Softobe, an OS X software development company, has announced that their PageMeUp v. 1.2.1, is available on the Mac App Store for $9.99. The license can be installed on up to 5... Read more
Eight New Products For USB Type-C Application...
Fresco Logic, specialists in advanced connectivity technologies and ICs, has introduced two new product families targeting the Type-C connector recently introduced across a number of consumer... Read more
Scripps National Spelling Bee Launches Buzzwo...
Scripps National Spelling Bee fans can monitor the action at the 2015 Spelling Bee with the new Buzzworthy app for iOS, Android and Windows mobile devices. The free Buzzworthy app provides friendly... Read more
13-inch 2.5GHz MacBook Pro on sale for $120 o...
B&H Photo has the 13″ 2.5GHz MacBook Pro on sale for $979 including free shipping plus NY sales tax only. Their price is $120 off MSRP, and it’s the lowest price for this model (except for Apple’... Read more
27-inch 3.3GHz 5K iMac on sale for $1899, $10...
B&H Photo has the new 27″ 3.3GHz 5K iMac on sale for $1899.99 including free shipping plus NY tax only. Their price is $100 off MSRP. Read more
Save up to $50 on iPad Air 2, NY tax only, fr...
B&H Photo has iPad Air 2s on sale for up to $50 off MSRP including free shipping plus NY sales tax only: - 16GB iPad Air 2 WiFi: $469 $30 off - 64GB iPad Air 2 WiFi: $549.99 $50 off - 128GB iPad... Read more
Updated Mac Price Trackers
We’ve updated our Mac Price Trackers with the latest information on prices, bundles, and availability on systems from Apple’s authorized internet/catalog resellers: - 15″ MacBook Pros - 13″ MacBook... Read more
New 13-inch 2.9GHz Retina MacBook Pro on sale...
B&H Photo has the 13″ 2.9GHz/512GB Retina MacBook Pro on sale for $1699.99 including free shipping plus NY tax only. Their price is $100 off MSRP, and it’s the lowest price for this model from... Read more

Jobs Board

*Apple* Retail - Multiple Positions (US) - A...
Job Description: Sales Specialist - Retail Customer Service and Sales Transform Apple Store visitors into loyal Apple customers. When customers enter the store, Read more
Program Manager, *Apple* Community Support...
**Job Summary** Apple Support Communities ( discussions. apple .com) helps customers get the most from their Apple products and services by providing access to Read more
Senior Data Scientist, *Apple* Retail - Onl...
**Job Summary** Apple Retail - Online sells Apple products to customers around the world. In addition to selling Apple products with unique services such as iPad Read more
*Apple* Solutions Consultant - Retail Sales...
**Job Summary** As an Apple Solutions Consultant (ASC) you are the link between our customers and our products. Your role is to drive the Apple business in a retail Read more
*Apple* Watch SW Application Project Manager...
**Job Summary** The Apple Watch software team is looking for an Application Engineering Project Manager to work on new projects for Apple . The successful candidate Read more
All contents are Copyright 1984-2011 by Xplain Corporation. All rights reserved. Theme designed by Icreon.