
acmeFoo

Scott M. Neal
smn.mg@acmefoo.org

MacTech Seattle 6 April 2016
Copyright 2016 MindsetGarden

Automation
Getting the Mindset for

IT

mailto:smn.mg@acmefoo.org

ssid: MacTech Automation password: keylimeg4cube

Goals for this Session

Present a step-by-step method by which you can
create your own automations
Present some pre-existing automations as
“inspiration”

2

Goals
Empower non-programmers to utilize developer tools
to solve problems
• Obtain the correct mindset for developing automations

while learning the the basics of tools that enable you to
automate
• Automator
• AppleScript
• Web automation (time permitting)

• Provide a foundation for learning automating
techniques
• future courses
• on your own

Non-programmers may be
• programmers-of-the-future
• managers

3

The Automating Mindset
Have you ever noticed that programmers seem to
know MANY languages?
• This is (almost) unheard of in Human linguistics

Programming is a mindset
• Some have it naturally

• It is learnable
• ...provided you can be organized!

Many programmers/scripters/automaters started out
NOT with Computer Science but as
• Linguists

• Musicians
A programmer is worth his/her weight in gold
• ...and some charge that!

• But wouldn’t you rather know what they know?

4

Goals
This session is designed to:
• Briefly present some basic concepts:
• Show some beyond-basic examples that you can take

home with you
The focus will be on making sure you can automate
independently
• Learn mindset
• Automate in multiple environments

• Read and understand documentation
• because no programmer knows how to do EVERYTHING

off the top of his/her head
• Many “introductory” books aren’t as introductory as they

need to be (they don’t teach mindset)
• but are a GOLDMINE of info once you have the mindset

This is NOT a “dump demos and facts” presentation

5

Automating Mindset:
Agenda

Goal:
• To remove (as many as possible) impediments that

prevent you from creating your own automations
Materials derived from
• 3-5 day acmeFoo Auto101/201 courses and 2 day

CLI101 course
• 1-day MacTech Conference seminar (Fall)

• To have you start working on your own automations
• Organizing your plan
• Converting that plan into an actual automation

• You will NOT have this stuff stick in your brain until you
actually write an automation to solve one of your own
problems!

6

Goals

You will NOT become automating experts here... But:
• You will have the basics you will need to do so

• including knowing how and where to ask questions

• You will have access to an Automating expert to ask
questions

Don’t all of you want to be empowered to automate?
• It’s within your reach

• ...unlike creating matter with your bare hands or levitating
above traffic

• “Real programmers” (whatever that means) do NOT
have everything memorized
• “Be inspired”

7

Why learn about
Automating?

People don't automate because they are lazy, but
because they are EFFICIENT!

Manually managing hundreds/thousands of devices is
tedious and prone to error

You may not write your own complicated automations
from scratch, but it is CRITICAL that you understand
them so you can tweak to your specific needs

8

Real Goal
More spare time for you!

9

Automation Goal
and a Plan:

The Automating Mindset

A Car Mechanic:
• doesn’t learn how to fix one car--learns how to fix “cars”

• applies that mindset to specific makes & models
A Musician
• doesn’t memorize every song in a vacuum

• Keys
• Tunings

You can be a successful musician or car mechanic (or
whatever) without memorizing EVERYTHING about
cars or music
• Car mechanic doesn’t need to know the physics of tires
• Musician doesn’t need to know the physics of sound

11

“Wax-On Wax-Off”

12

Please be patient MacTech-san... You WILL get
Automating time!

Computers don’t actually “think”, they “process”
• Step-by-step sequential execution of statements

• Same order as English reading: start at the top left, work
your way to the right of a statement one character/word
at a time, and then when one statement is done, execute
the next statement

• Flow Control constructs modify linear execution of
statements

• Predictable decisions
• Bad: “Do we have enough room in the car?”
• Good: “If I need room for 7 passengers, and I can find out

how many seats are available, is the number of seats
available greater than or equal to 7?”

• Can’t be vague

Think like a Computer

13

Railroads are a great analogy for how computers work
• You aren’t riding the train, you are laying the track

• Based on the “building blocks” that the IDE gives you

• You may prefer to think of it as
• “following a recipe” vs. “making a recipe”
• The musician or musical device vs. MIDI or sheet music

If you can organize your thoughts, create plans, and
execute them, you can automate!

Think like a Computer

14

Decisions

15

Events

These come at you whether you want them to or not
• Keyboard/Mouse click

• Volume gets mounted
• Drive gets unplugged

Many “crashes” in software are from incomplete
handling of all events

16

Automating is “railed”

17

Decisions, still “railed”

18

Repetition with Loops

19

IDE: Workflows, Scripts,
Programs

Depending on the tools you use, you will be developing
Workflows, Scripts, or Programs (or a combination) to
turn your project plan into reality
• We will use the umbrella term Automation(s) with a

capital A
We will develop Automations using Automating-specific
tools
• Work together in an Integrated Development

Environment (IDE)

20

Typical Mac OS X IDEs

Automator
• Built-in:

• GUI editor and organizer
• Documentation

• Automation Languages:
• Automator itself
• AppleScript (behind-the-scenes)

• Interpreted

21

Typical Mac OS X IDEs

AppleScript’s Script Editor
• Built-in:

• Text editor
• Documentation

• Automation Languages:
• AppleScript

• Interpreted or Compiled

22

Typical Mac OS X IDEs
Xcode
• Built-in:

• Text editor
• Source code organizer
• Object code compiling/linking
• Documentation

• Automation Languages:
• AppleScript, Python, Ruby,
• Objective-C, C, C++, Java
• Interface Builder (pre-Xcode 4)
• ...

• Compiled Projects
• AppleScript
• Cocoa
• Carbon
• Frameworks/Libraries, Kernel Extensions, Plug-ins
• ...

23

Typical Mac OS X IDEs

Safari/FireFox/Chrome
• Built-in:

• Debugger

• NOT built-in
• Text editor
• Source code organizer
• Documentation

• Automation Languages:
• JavaScript
• HTML
• CSS (Cascading Style Sheets)

• Interpreted

24

Typical Mac OS X IDEs
UNIX CLI
• Built-in:

• Text editor (vi, nano/pico)
• Documentation (man pages)

• NOT built-in
• Source code organizer
• Object code/linking organizer

• Automation Languages:
• Perl
• Shells: bash, csh, ksh, etc.
• Objective-C, C++, Java
• Python, Ruby
• ...

• Interpreted or Compiled

25

A Goal, and a Plan

In order to want to automate a workflow, you probably
already have a Goal in mind. Examples:
• Create an email by selecting an email address using

Services
• Name your screenshots as they are created using

Automator Folder Actions
• Create your own Service using Automator
• (you tell me!)

The Goal you have in automating will drive a Plan to
perform the automation
• Let’s make a list of three goals you want to accomplish

26

Creating a Plan

Once we have a Goal, how do we go about creating an
Automation-friendly plan?
“Write” out your plan before getting ANYWHERE NEAR
an IDE
• You can use a piece of paper, a napkin, or best of all, a

computer itself
• Use an automating mindset while creating your plan

Do NOT think too deeply about how you’re going to
automate it
• Create your plan first, then tune it into the most

appropriate specific IDE

27

PseudoCode

A useful (and popular) way to “write down” a plan is
with pseudocode
Pseudocode is Automation language and IDE-agnostic
• “perfect” syntax
• analogous to human language Esperanto

There is no standardized definition of pseudocode
We will develop a pseudocode language for us to use
• start off very informally (high-level)

• migrate to a formal pseudocode
“Focus on brainstorming, not syntax”

28

High-level
PseudoCode: Breakfast

Goal: to eat breakfast
Here is some high-level pseudo code showing the
steps involved for breakfast (the most important meal
of the day!):

Am I hungry enough for breakfast?
NO: forget about breakfast, this plan is done
YES: Do I have time for breakfast?

NO: forget about breakfast, this plan is done
YES: Do I want to eat out?

YES: eat out
NO: make breakfast

The entry point into a plan is often called the Main part
of the plan
• Top-level starting point for your plan

29

Planning

We now have a high-level description of the main part
of our plan
• we have not addressed the actual meal yet, or whether

we are making it or if we are eating out
PseudoCode is intuitive to some people, but others like
graphics better

30

Flowcharts

Flowcharts are a formal way of graphically showing
the flow of our plan
• Remember, this is a plan, and plans not only have steps

to execute, but also an order and flow in which to
execute them and of the data between steps

Flowcharts use specific symbols to delineate what is
happening at that stage in the flow of execution
• Directional arrows specify Automation flow

• Symbols represent what happens at steps in the flow
Many tools exist to create Flowcharts
• OmniGraffle
• See Wikipedia page on Flowchart for other tools

31

Flowchart

32

Flowchart

33

Flowchart

34

Flowchart

35

Flowchart

36

Flowchart Example

37

Flowcharts & Pseudocode

Flowcharts and pseudocode help make your plan
Automation-friendly
• Flow is predictable, the steps are clear, decisions are not

ambiguous
Flowcharts are good for conceptualizing the flow at a
high-level before heading straight to an IDE for
implementation
PseudoCode should be written for everything but the
most trivial Automations
The clearer the goal, and the better the plan, the easier
it is to implement an Automation in an IDE!

38

“Be Inspired”: Pro Edition

In my classes, I let the students create their own
automations and I mentor them.
We don’t have time in this short session, so I’m going
to “be inspired” by

www.macosxautomation.com
(and some other things)

39

http://www.macosxautomation.com

Goal 1:
Rename Screenshot

“Inspired by”
http://apple.blogoverflow.com/2012/06/folder-actions-tutorial-
automation-meet-the-filesystem/

Takes advantage of OS X
Command-Shift-3: Take a screenshot of the screen, and save it as a file on the
desktop

Utilizes Automator Folder Actions

For those that wish to follow along:
$ defaults write com.apple.screencapture location \ ↵
/tmp/screenshots ↵
$ killall SystemUIServer ↵

40

Goal 1:
Rename Screenshot

Plan:
1. Save a reference to the new file so we can

access it later
2. Ask the user to type a name for the new

screenshot
3. Save that name in a variable so we can access it

later
4. Rename the added file (we’ll retrieve the saved

reference to it) to the name the user entered
(which we’ll also retrieve)

5. Move the renamed file to the Desktop

41

Goal 2:
Services

“Inspired by”
http://www.macosxautomation.com/services/

specifically
http://www.macosxautomation.com/services/learn/tut01/index.html

We will
• Launch an application using Services
•Assign a keyboard shortcut to it

42

Goal 2:
Application Launch Service

Plan:
1. Create an Automator Service workflow
2. Keep It Simple: have one action, and not accept

input
3. Launch a specific application in that one action
4. Assign a keyboard shortcut within System

Preferences

43

Goal 3:
Download & Run an AppleScript

“Inspired by”:
You choose!

For those that wish to follow along:
1. Open ScriptEditor

In Applications->Utilities
2. Go to menu

File->Open Dictionary
3. Explore macosxautomation.com

44

Goal 4:
Web Automation

“Inspired by”:
Zapier

For those that wish to follow along:
1. Watch the Zapier video at 

https://m.youtube.com/watch?v=nk_zw9paux8 

2. (that’s all we have time for…)

45

https://m.youtube.com/watch?v=nk_zw9paux8

The Process/Methodology
Synopsis

1. Have a goal
2. Make a plan

• Document what you would do if you served your
goal manually
• pseudo code, OmniGraffle, napkin, …

• Make sure The Plan contains
• events and decisions

3. “Be Inspired”
1. See if it’s been done already, and if so, if you have

permission to use that code
2. If not, know how to look in documentation to see if

you have the tools you need

46

The Process/Methodology
Synopsis

1. Adjust your plan based on the reality of automation
environments

2. Get help from others
• “programmer” forums are MUCH less the newbie-

hazing entities they were in the past

• Give credit where it is due
• “Be inspired” does NOT mean “plagiarize”

Remember, you’re not starting your automation quest
by written a long novel

• Think of it more as a newsletter, or blog post, or
haiku

47

acmeFoo

Scott M. Neal
smn.mg@acmefoo.org

MacTech Seattle 6 April 2016
Copyright 2016 MindsetGarden

Automation
Getting the Mindset for

IT

mailto:smn.mg@acmefoo.org

