
Variables and Constants

What are variables?
• The nouns of programming

• Named containers that hold data

• Data can be numbers, text, or more complex values

• Example: a user’s score in a game

Anatomy of a variable
• var keyword

• Variable name

• Variable data type

• Set value using =

Example of variable
var score:Int = 100

Example of constant
// if the var isn’t going to change, use let instead

let score:Int = 100

// after setting a value for a constant, you cannot change it

Rules for naming variables
• Start with a lowercase letter

• Use only letters, numbers, and underscores

• Use camelCase

• Don’t use reserved words (watch for color changes)

Optionals!
• Optionals *must* be used in Swift when a variable’s

value can possibly be null

• When an optional is read, the initial reading just checks
if the var is nil or non-nil

• Must unwrap variables before the actual value can be
accessed

Wrapping and Unwrapping Optionals
• When declaring an optional, use a question mark or

exclamation point

• Question marks denote vars that you will unwrap on
your own, again using a question mark

• Exclamation point optionals are called Implicitly
Unwrapped Optionals

Example of optional
// creation

var myName:String?

// assignment

myName = “Todd”

// access

print("\(myName?.uppercaseString)")

// if myName is null on the above line, code execution after ?
will be ignored

Example of implicitly unwrapped optional
// creation

var myName:String!

// assignment

myName = "Todd"

// access

print("\(myName.uppercaseString)")

// if my name is null on above line, app will crash

Functions/Methods

What are functions?
• The verbs or actions of programming

• Named sections of code that are logically grouped

• Reduce verbosity and redundancy in code

• Like any real world action, definition is not execution

Anatomy of a function definition
• func keyword

• Function name

• Body of function, usually multiple lines of code

• Function body is wrapped in curly braces { }

Anatomy of a function execution
• Name of object executing the function (normally self)

• Function name

• Parentheses, optionally containing parameters

Example of a function
self.tieShoes()

func tieShoes()

{

 // code that runs when tieShoes is called

}

Rules for naming functions
• Start with a lowercase letter

• Use only letters, numbers, and underscores

• Use camelCase

• Don’t use reserved words. (Watch for color changes)

Parameter Functions

What are parameter functions?
• Way for functions to have more versatility

• Can provide different input for same function

• Perform the same process on different input

• Input is called a parameter, much like a variable

Anatomy of a parameter function
• Parameters are added in parentheses

• Parameter name, colon, data type

• Multiple parameters are separated by commas

• Executed function only names parameters after the first

Example of a parameter function
self.exercise(30)

self.exercise(60)

func exercise(numberOfMinutes:Int)

{

 // numberOfMinutes can be used like a variable

 // but only within this function

}

Rules for naming functions
• Start with a lowercase letter

• Use only letters, numbers, and underscores

• Use camelCase

• Don’t use reserved words. (Watch for color changes)

Returning Data From Functions

Returning data
• Can use function to run a task that gives a certain output

• Declare the data type using the -> operator

• Void return data type is used if none is declared

Example of returning data
func exerciseFor(numberOfMinutes:Int,daysPerWeek:Int) -> Int

{

 return numberOfMinutes * daysPerWeek

}

let total:Int = self.exerciseFor(30,daysPerWeek:5)

print("you exercised for \(total) minutes this week")

// will print you exercised for 150 minutes this week

Conditional Statements

What are conditional statements?
• If/then statements

• A condition is evaluated as true or false

• A line or section of code is executed based on the result

Anatomy of a conditional statement
• if (condition)

• Section of code to execute if true is in curly braces

• Can optionally be followed by else statement

• else statement runs only if condition is evaluated as false

Example of a conditional statement
if(1 > 3)

{

 // code that runs if condition is evaluated as true

}

else {

 // code that runs if condition is evaluated as false

}

Operator Meaning Example

 == is equal to if (1 == 1)

> greater than if (2 > 1)

< less than if (1 < 2)

&& and if (1 == 1 && 2 > 1)

|| or if (1 == 0 || 1 == 1)

!= NOT equal to if (1 != 0)

Conditional operators

Arrays

What are arrays?
• lists of items

• organized by numbers starting at 0 (not 1)

• effective way to keep content in a particular order

Example workflow of an Array
• declare the array variable, including data type

• create the array, shorthand or longhand

• optionally add/change elements in the array

• access array elements shorthand or longhand

Example of an Array
// shorthand creation

var names:[String] = ["Todd","Ted","Tad"]

// access array elements (result would be Ted)

print("\(names[1])")

Loops

What are loops?
• run a section of code multiple times

• useful to check multiple items in an array for a given

condition

• run instantly, between frame updates, not over time

Example workflow of a loop
• create the loop using the for or repeat keyword

• specify the condition that needs to be met for the loop to stop

• add the code that is executed with each iteration of the loop

Example of a for loop
var names:[String] = ["Todd","Ted","Tad"]

for (var i:Int = 0; i < names.count; i++) {

 print("\(names[i])")

}

// will print:

// Todd

// Ted

// Tad

Example of a repeat while loop
var names:[String] = ["Todd","Ted","Tad"]

var i:Int = 0

repeat {

 print("\(names[i])")

 i++

} while (i < names.count)

// will print:

// Todd

// Ted

// Tad

Classes

What are classes?
• Similar to a blueprint, explains the functionality and

attributes of a user-created code object

• Think of a dog as a class. Dogs have certain attributes

(hair, legs, tail, etc.) and perform certain actions (barking,

tail wagging, chewing on your stuff)

Example of creating a class
class Dog {

 var weight:Int!

 func bark() {

 if self.weight < 10 {

 print("yap yap")

 }

 else {

 print("bark bark")

 }

 }

}

Example of using a class
let myDog:Dog = Dog()

myDog.weight = 11

myDog.bark()

Command Line Utilities

What are command line utilities?
• Can be made from Xcode templates (OS X > Command

Line Utility)

• Useful for writing scripts, because you get code hinting/

coloring, but can still run from a command prompt

Classes vs. main.swift
• main.swift acts as the entry point for your app

• Only place you can run top level code

• For more info, see https://developer.apple.com/swift/blog/?id=7

(Swift Blog - Files and Initialization)

https://developer.apple.com/swift/blog/?id=7

Running Swift from the Command Line

Understanding Command Line Swift
• Three ways to use Swift in the command line

• Directly (type Swift code into Terminal)

• As a script

• As program

• As a binary

Running Swift Directly
• Simply type swift in Terminal

• Type Swift code into Terminal, one line at a time

• See commands by calling :help

• Can exit out of this mode using :exit

Running Swift as a script
• Navigate to appropriate directory

• swift filename.swift

• Can pass in arguments from the command line here (ex. swift filename.swift

"argument example")

• Cannot use multiple files natively, so you have to create your own workarounds

Run as a program
• Add shebang to swift file (#!/usr/bin/env swift)

• Make sure to change permissions on the file (chmod +x

filename.swift)

• Execute the file (./filename.swift)

Compiling and running
• Compile swiftc (swiftc filename.swift -o binaryname)

• Run as usual (./binaryname)

Working with NSTask

What is NSTask
• Run command line code from a GUI

• Effective for simplifying a process

Using NSTask
• Create the NSTask object

• Set the command you want to use via the launchPath property

• Set arguments property as a [String]

• Launch the task

• Optionally call waitUntilExit() to make sure task is done before next one starts

Example of using NSTask
let task:NSTask = NSTask()

task.launchPath = "/usr/bin/say"

task.arguments = ["-v","Whisper",textField.stringValue]

task.launch()

task.waitUntilExit()

