Variables and Constants



What are variables?

The nouns of programming

Named containers that hold data

Data can be numbers, text, or more complex values

Example: a user's score in a game



Anatomy of a variable

var keyword
Variable name
Variable data type

Set value using =



Example of variable

var score:Int = 100



Example of constant

// 1f the var 1sn’t going to change, use let 1instead
let score:Int = 100

// after setting a value for a constant, you cannot change 1t



Rules for naming variables

Start with a lowercase letter

Use only letters, numbers, and underscores

Use camelCase

Don't use reserved words (watch for color changes)



Optionals!

Optionals *must* be used in Swift when a variable’s

value can possibly be null

When an optional is read, the initial reading just checks

if the var is nil or non-nil

Must unwrap variables before the actual value can be

accessed



Wrapping and Unwrapping Optionals

When declaring an optional, use a question mark or

exclamation point

Question marks denote vars that you will unwrap on

your own, again using a question mark

Exclamation point optionals are called Implicitly

Unwrapped Optionals



Example of optional

// creation

var myName:String?

// assignment

myName = “Todd”

// access

print("\(myName? .uppercaseString)")

// 1f myName 1s null on the above line, code execution after ?
will be 1ignored



Example of implicitly unwrapped optional

// creation

var myName:String!

// assignment

myName = "Todd"

// access
print("\(myName.uppercaseString)")

// 1f my name 1s null on above line, app will crash



Functions/Methods



What are functions?

The verbs or actions of programming
Named sections of code that are logically groupea
Reduce verbosity and redundancy in code

Like any real world action, definition is not execution



Anatomy of a function definition

func keyword
Function name
Body of function, usually multiple lines of code

Function body is wrapped in curly braces { }



Anatomy of a function execution

Name of object executing the function (normally self)
Function name

Parentheses, optionally containing parameters



Example of a function

self.tieShoes()

func tieShoes|)

{

// code that runs when tieShoes is called



Rules for naming functions

Start with a lowercase letter
Use only letters, numbers, and underscores
Use camelCase

Don't use reserved words. (Watch tor color changes)



Parameter Functions



What are parameter functions?

Way for functions to have more versatility
Can provide difterent input for same function
Perform the same process on different input

Input is called a parameter, much like a variable



Anatomy of a parameter function

Parameters are added in parentheses
Parameter name, colon, data type
Multiple parameters are separated by commas

Executed function only names parameters after the first



Example of a parameter function

self.exercise(30)
self.exercise(60)
func exercise(numberOfMinutes:Int)
{
// numberOfMinutes can be used like a variable

// but only within this function



Rules for naming functions

Start with a lowercase letter
Use only letters, numbers, and underscores
Use camelCase

Don't use reserved words. (Watch tor color changes)



Returning Data From Functions



Returning data

Can use function to run a task that gives a certain output

Declare the data type using the => operator

Void return data type is used if none is declared



Example of returning data

func exerciseFor(numberOfMinutes:Int,daysPerWeek:Int) -> Int

{

return numberOfMinutes * daysPerWeek

let total:Int = self.exerciseFor(30,daysPerWeek:5)
print("you exercised for \(total) minutes this week")

// will print you exercised for 150 minutes this week



Conditional Statements



What are conditional statements?

If/then statements
A condition is evaluated as true or false

A line or section of code is executed based on the result



Anatomy of a conditional statement

it (condition)
Section of code to execute if true is in curly braces
Can optionally be followed by else statement

else statement runs only if condition is evaluated as false



Example of a conditional statement

if(1 > 3)
{

// code that runs if condition is evaluated as true

}

else {

// code that runs if condition is evaluated as false



Conditional operators

Operator Meaning Example
== is equal to it (1 ==1)
> greater than if(2>1)
< less than if (1 <2)
&& and if(1==1&&2>1)

or

NOT equal to




Arrays



What are arrays?

lists of items
organized by numbers starting at O (not 1)

effective way to keep content in a particular order



Example workflow of an Array

declare the array variable, including data type
create the array, shorthand or longhana
optionally add/change elements in the array

access array elements shorthand or longhanao



Example of an Array

// shorthand creation

var names:[String] = ["Todd","Ted","Tad"]

// access array elements (result would be Ted)

print("\(names|1])")






What are loops?

run a section of code multiple times

useful to check multiple items in an array for a given

condition

run instantly, between frame updates, not over time



Example workflow of a loop

create the loop using the for or repeat keyword
specify the condition that needs to be met for the loop to stop

add the code that is executed with each iteration of the loop



Example of a for loop

var names:[String] = ["Todd","Ted","Tad"]

for (var i:Int = O; | < names.count; i++) {
print("\(namesli])")

}

// will print:

// Todd

/l Ted

/l Tad



Example of a repeat while loop

var names:[String] = ["Todd","Ted","Tad"]
vari:int=0

repeat {
print("\(namesJi])")
i++

} while (i < names.count)

I/l will print:
// Todd

// Ted

// Tad



Classes



What are classes?

Similar to a blueprint, explains the functionality and

attributes of a user-created code object

Think of a dog as a class. Dogs have certain attributes
(hair, legs, tail, etc.) and pertorm certain actions (barking,

tail wagging, chewing on your stuff)



Example of creating a class

class Dog {

var weight:Int!

func bark() {
if self.weight < 10 {

print("yap yap")
}

else {

print("bark bark")

}

}
}



Example of using a class
let myDog:Dog = Dog()

myDog.weight = 11

myDog.bark()



Command Line Utilities



What are command line utilities?

Can be made from Xcode templates (OS X > Command
Line Utility)

Usetul tor writing scripts, because you get code hinting/

coloring, but can still run from a command prompt



Classes vs. main.swift

main.swift acts as the entry point for your app

Only place you can run top level code

For more info, see https://developer.apple.com/switt/blog/?id=7

(Swift Blog - Files and Initialization)


https://developer.apple.com/swift/blog/?id=7

Running Swift from the Command Line



Understanding Command Line Swift

Three ways to use Swift in the command line
Directly (type Swift code into Terminal)

As a script

As program

As a binary



Running Swift Directly

Simply type swift in Terminal
Type Swift code into Terminal, one line at a time
See commands by calling :help

Can exit out of this mode using :exit



Running Swift as a script

Navigate to appropriate directory
swift filename.swift

Can pass in arguments from the command line here (ex. swift filename.swift

"argument example")

Cannot use multiple files natively, so you have to create your own workarounds



Run as a program

Add shebang to switt file (#!/usr/bin/env swift)

Make sure to change permissions on the file (chmod +x

filename.swift)

Execute the file (./filename.swift)



Compiling and running

Compile swiftc (swiftc filename.swift -o binaryname)

Run as usual (./binaryname)



Working with NSTask



What is NSTask

Run command line code from a GUI

Effective for simplitying a process



Using NSTask

Create the NSTask object

Set the command you want to use via the launchPath property
Set arguments property as a [String]

Launch the task

Optionally call waitUntilExit() to make sure task is done before next one starts



Example of using NSTask

let task:NSTask = NSTask()

task.launchPath = "/usr/bin/say"

task.arguments = ["-v","Whisper",textField.stringValue]
task.launch()

task.waitUntilExit()



