
Paul Suh
paul.suh@ps-enable.com

http://ps-enable.com

What is a Certificate?

-----BEGIN CERTIFICATE-----	
MIIDNDCCAp2gAwIBAgIDDG3kMA0GCSqGSIb3DQEBBQUAME4xCzAJBgNVBAYTAlVT	
MRAwDgYDVQQKEwdFcXVpZmF4MS0wKwYDVQQLEyRFcXVpZmF4IFNlY3VyZSBDZXJ0	
aWZpY2F0ZSBBdXRob3JpdHkwHhcNMDkwODE0MTIyODI1WhcNMTAwOTE1MDgzNjU0	
WjCBvjELMAkGA1UEBhMCVVMxGjAYBgNVBAoTEW1haWwuZ29vZGVhc3QuY29tMRMw	
EQYDVQQLEwpHVDE1MjczNTkzMTEwLwYDVQQLEyhTZWUgd3d3LnJhcGlkc3NsLmNv	
bS9yZXNvdXJjZXMvY3BzIChjKTA5MS8wLQYDVQQLEyZEb21haW4gQ29udHJvbCBW	
YWxpZGF0ZWQgLSBSYXBpZFNTTChSKTEaMBgGA1UEAxMRbWFpbC5nb29kZWFzdC5j	
b20wgZ8wDQYJKoZIhvcNAQEBBQADgY0AMIGJAoGBALfkfK1/GXjZ9ElME5FBRAic	
ELomSkAyLSf7lJkoizNx9TjmQxvhKOOOY4BZha7Ppu65gf561MpUPmpnE+NvJCyP	
h0jdZOLniovAAVJAyy6gCb7XnzPYPXR7ei8OVqX+NSxl4Wvl1GD2Cda4Uvg7A949	
3s5Dpo8ufWd9A+Lmz8RdAgMBAAGjga4wgaswDgYDVR0PAQH/BAQDAgTwMB0GA1Ud	
DgQWBBRdSbSgosLIWuz1Yk48krPNNaMa9zA6BgNVHR8EMzAxMC+gLaArhilodHRw	
Oi8vY3JsLmdlb3RydXN0LmNvbS9jcmxzL3NlY3VyZWNhLmNybDAfBgNVHSMEGDAW	
gBRI5mj5K9KylddH2CMgEE8zmJCf1DAdBgNVHSUEFjAUBggrBgEFBQcDAQYIKwYB	
BQUHAwIwDQYJKoZIhvcNAQEFBQADgYEAb83ueDKHAUQ2kKx85OjkZJLm7fI5Ah59	
z+Qe3uO+2bXQmjfTKXZvFspNN03ffBYsroqrKF6PnJOGRSDaqX5E6OINbG23hoiu	
phCk7Clcq6JFMGwXPFJIdJEP3g3/8bJQLMgsODNCEOKyNWlAwEJFw33lJ4+suXHK	

No, really…

Certificate:	
 Data:	
 Version: 3 (0x2)	
 Serial Number: 814564 (0xc6de4)	
 Signature Algorithm: sha1WithRSAEncryption	
 Issuer: C=US, O=Equifax, OU=Equifax Secure Certificate Authority	
 Validity	
 Not Before: Aug 14 12:28:25 2009 GMT	
 Not After : Sep 15 08:36:54 2010 GMT	
 Subject: C=US, O=mail.goodeast.com, OU=GT15273593, OU=See
www.rapidssl.com/resources/cps (c)09, OU=Domain Control Validated -
RapidSSL(R), CN=mail.goodeast.com	
 Subject Public Key Info:	
 Public Key Algorithm: rsaEncryption	
 RSA Public Key: (1024 bit)	
 Modulus (1024 bit):	
 00:b7:e4:7c:ad:7f:19:78:d9:f4:49:4c:13:91:41:	
 44:08:9c:10:ba:26:4a:40:32:2d:27:fb:94:99:28:	

A Little More Basic, Please?

1. Choose two distinct prime numbers p and q.!
Compute n = pq.!
Compute φ(n) = (p − 1)(q − 1), where φ is Euler's totient
function.!
Choose an integer e such that 1 < e < φ(n) and gcd(e,φ(n)) = 1
(i.e., e and φ(n) are coprime).!
Determine d = e − 1(mod φ(n)). (i.e., d is the multiplicative
inverse of e(mod φ(n))).!

An alternative, used by PKCS#1, is to choose d matching with ,
where is the least common multiple. Using λ instead of φ(n)
allows more choices for d. λ can also be defined using the
Carmichael function, λ(n).

OK, You’ve Really Lost Me

1.Allows two sides to communicate securely
without exchanging secret codes
beforehand

2.Assures the identity of the certificate holder

Symmetric Ciphers

Both sides must have the same secret key
Keys can be simple or complex

Scytale

Enigma

JN-25

One-time pad

DES, 3DES, AES

Use of a Symmetric Key

The Trouble with Symmetric
Ciphers

Making sure all of the users of a code have
the same key
A.k.a., the “Key Distribution Problem”
More complex ciphers are more secure but
make the Key Distribution Problem worse

Submarine I-1 and JN-25

Submarine I-1 sunk
with copies of codes
Salvaged by Allied
forces
All Japanese Naval
codes considered
compromised in 1943

VENONA Project

High demand for code
pads caused Soviets
to re-use some one-
time pads
US was able to read
some Soviet message
traffic encrypted with
the re-used pads

Ron Rivest, Adi Shamir,
Leonard Adleman

R S
A

R S A

Originally discovered by James H. Ellis, Clifford Cocks, and Malcolm
Williamson at GCHQ in the UK in 1973

How Does RSA Work?

Public Key Private Key

Public Key Private Key

Public Key Encryption

Public Key
Alice

Public Key
Alice

Private Key
Alice

Digital Signature

Private Key
Alice

Alice Public Key
Alice

Man in the Middle

Public Key
“Alice”

Obtaining a Certificate

Private Key
Public Key

CSR
Private Key

CAOK?

Certificate Chains

Root
Certificate
Authority

Intermediate
Certificate
Authority

Leaf
Certificate

A Certificate is a Public
Key Plus Identification
Info Digitally Signed by
Some Entity That You
Trust

Which Certificate Authority?

Commercial or government CA
Verisign, StartSSL, DoD, ...

Internal CA
Active Directory

Open Directory

MDM

Hash Functions

Advanced checksum
Easy to determine if a message was changed

One-way function
MD-5 – 128 bits
SHA-1 – 160 bits
SHA-2 – 256, 384, 512 bits
SHA-3 – in the works at NIST

Uses of Hash Functions

Hash-based Message Authentication Code
Prevent an attacker from making changes

HMAC-MD5

HMAC-SHA1

Password-Based Key Derivation Function
PBKDF2

bcrypt

scrypt

Certificate Elements

Version

Serial Number

Algorithm ID

Issuer

Not Valid Before

Not Valid After

Subject

Subject Public Key Info

Public Key Algorithm

Subject Public Key

Extensions (Optional)

Certificate Signature
Algorithm

Certificate Signature

Certificate Elements: Subject

Servers: LDAP-style identifier
o=Company,ou=Department,cn=www.example.com!

E-mail: E-mail address extension
o=Company,ou=Department,cn=Alice Doe/
emailAddress=alice.doe@example.com

cn=www.example.com

emailAddress=alice.doe@example.com

Subject Alternative Name
Certificates

Also called Unified Communications
Certificate (UCC)
Common with Microsoft Exchange
Has Subject Alternative Name attribute
DNS Name=www.example.com!

DNS Name=wiki.example.com

Certificate Revocation

Certificate Revocation List (CRL)
Online Certificate Status Protocol (OCSP)

Certificate Types

TLS Server
Key encipherment, key agreement, digital signature

TLS Client
Digital signature, client authentication

S/MIME
Digital signature, e-mail protection

Code signing
Digital signature, code signing

PKCS File Types

PKCS#1: RSA private key (.key)
PCKS#7: S/MIME E-mail (.p7b, .p7c)
PKCS#8: Private key (.p8)
PKCS#10: Certificate signing request (.csr, .req)
PKCS#12: Encrypted private key and
certificates (.p12, .pfx)
DER vs. PEM encoding
http://ps-enable.com/articles/Certificate_file_types.html

Certificate and Key Handling

Do NOT expose private key!
Store key and certificate in PKCS#12 or
encrypted disk image
Mark files with purpose and expiration date
Keep backups

SSL and TLS

Secure Sockets Layer 1.0, 2.0, 3.0
Transport Layer Security 1.0, 1.1, 1.2
Protocol for negotiating certificate and key
exchange
TLS vs. STARTTLS
Server Name Indication

TLS

TLS version
Server Name Indication

Allowed ciphers
Random number

Certificate chain
Allowed ciphers
Random number

Selected cipher
Pre-master key

Both sides generate
master key from Pre-
master + two random

numbers

Both sides generate
master key from Pre-
master + two random

numbers

STARTTLS

Connection request

Capabilites info

STARTTLS command

TLS negotiation
as previous example

TLS negotiation
as previous example

Test Certificate Usage

openssl s_client -connect host:port  
 <-servername name>!

openssl s_client -connect host:port  
 -starttls smtp!

Server Name Indication

Gets around requirement of one IP address
per TLS server
Browsers

Safari 3.0 (10.5.6), Mobile Safari (iOS 4.0),
Firefox 2.0, Chrome 5.0.342.1 (6 on Win XP), IE
7 (Vista or higher)

Servers
Apache 2.2.12, IIS 8, Nginx 0.5.32 (with correct
OpenSSL), Tomcat with Java 7

Simple Certificate Enrollment
Protocol

Allows end users to request certificates
Used by devices to request client
authentication certificates from MDM
Port 1640/tcp

SCEP Exchange

CA certificate request

CA certificate

CSR inside PKCS#7
Authentication data

Polling request Status: pending
Device certificate
inside PKCS#7

Client validates CA
certificate

Client generates key pair

This is why you have
to install the trust
profile before you

can enroll a device!

Sources of Trust

/System/Library/Keychains/
SystemRootCertificates.keychain

SystemCACertificates.keychain (intermediates)

EVRoots.plist

X509Anchors

/Library/Keychains/System.keychain
~/Library/Keychains/login.keychain

Trust Profiles

Browsers and Trust

Safari and Chrome use Keychain
!

!

Firefox does not!

Problems with PKI

How many Certificate Authorities in System
Roots?

Over 200

Google for “Diginotar”

Certificate revocation
OCSP off due to privacy leaks

CRL is too big

Problems with PKI

Proliferation of private roots
Profile Manager / MDM

Active Directory PKI

Deep packet inspection appliances

Domain validation vs. Extended validation

Problems with PKI

Recent attacks on implementations
Null-terminated strings

BEAST / CRIME / BREACH

Weaknesses in underlying crypto
MD5 is dead

SHA-1 is fading

Weak PRNGs

!

!

No Q & A

Paul Suh
paul.suh@ps-enable.com

http://ps-enable.com

