
Creating 2D Games
with Sprite Kit

Rich Warren

Rich Warren
• iOS Consultant, Writer and

Trainer

• Writing articles for MacTech
Magazine since 2006

• Wrote Creating iOS 5 Apps:
Develop and Design and
Objective-C Bootcamp for
Peachpit Press.

• Senior instructor for About
Objects

rich@freelancemadscience.com
www.freelancemadscience.com

google.com/+RichWarren
@rikiwarren on Twitter

Creating iOS Apps:  
Develop And Design

Second Edition
• Fully updated for iOS 7

• Focuses on modern, best
practices

- Storyboards
- ARC
- Auto Layout

• Designed with the new UI
Paradigm in mind

- Clean, content-focused
interface

- Emphasizes animation over
ornamentation

Available December 5!

What is Sprite Kit?
• High-performance rendering and animation

framework

• Designed for 2D game development

• Objective-C wrapper around OpenGL

• Built-in Physics Engine

• Runs on iOS and OS X

Major Classes

• SKView

• SKScene

• SKNode

• SKTexture

• SKTextureAtlas 

• SKAction

• SKPhysicsWorld

• SKPhysicsBody

• SKPhysicsJoint

• SKPhysicsContact

Each Frame
New Frame

-update:

Actions Evaluated

-didEvaluateActionPhysics Simulated

-didSimulatePhysics

Renders Scene

Node Tree
SKView

SKScene SKSceneSKScene

SKNode SKNode

SKNode SKNodeSKNode

Integration
• SKView can be added to the view hierarchy

- SKView is opaque!
- We can layer other views and controls over it,

but cannot display anything behind it.

• SKNode subclasses UIResponder/
NSResponder
- SKView automatically extends the responder

chain to include the nodes in the active scene.

Node Types

• SKNode

• SKSpriteNode

• SKLabelNode

• SKShapeNode

• SKVideoNode 

• SKEmitterNode

• SKCropNode

• SKEffectNode

- SKScene is a
subclass of
SKEffectNode.

Coordinate System

X

Y

Anchor Point
• Sets the origin for the node’s coordinate system
• Reference point for the node’s position in its

parent’s coordinate system
• Node rotates around the anchor point
• SKSpriteNode and SKVideoNode defaults to
{0.5, 0.5}

• SKScene defaults to {0.0, 0.0}
• SKShapeNode has an implicit anchor point

Textures
• Memory automatically managed by Sprite Kit

- Automatically loads texture data when necessary
- When no longer on the scene or visible, Sprit Kit

can deallocate the texture to free up memory

• May need to preload textures to prevent rendering
issues

• Group similar images in a Texture Atlas so they can
be drawn in a single pass

SKAction
• Uses a number of private subclasses

• We create particular SKAction instances using
class methods

• Compose complex actions using sequence,
group or repeating actions

• Create once, reuse many times

Types of Actions
• Animate changes to a SKNode’s position,

rotation, size, visibility or tint color

• Animate SKSpriteNode by changing its texture

• Play simple sounds

• Remove the node from the node tree

• Call a block or selector.

Demo 1

Radar

• 15420351: Always loads images from the @2x
texture atlas

• 15420479: Race condition when preloading a
large number of textures using  
+[SKTexture preloadTextures: 
withCompletionHandler:]

Physics Engine

What is a Physics Engine?
• Define the physical properties of your objects

- Size, Shape, mass, velocity, friction, elasticity
and more

• Define the physical aspects of your world

• Calculates the motion of objects over time

• Respond to collisions

How Does it Work?

• Add an SKPhysicsBody to a node
- Sets the physical properties for the object
- Physics calculations performed for all nodes

with physics bodies in the scene

• Modify the scene’s SKPhysicsWorld
- Sets global properties

SKPhysicsBody
• Dynamic vs. Static

• Volume vs. Edge

• Affected by gravity

• Allows rotation

• Other physical characteristics:  
mass, density, area, friction, restitution,
linearDamping, angularDamping

Contacts and Collisions
• Contacts provide notifications

• Collisions provide impulses

• We can define node categories, and define how
they interact
- categoryBitMask
- collisionBitMask
- contactBitMask

Demo 2

Best Practices

• Organize the game into scenes

• Limit the contents of the node tree

• Create subclasses to provide custom behavior

• Nodes adopt NSCopying and NSCoding

- Our subclass must properly handle their properties

• Avoid adding content nodes to the scene
- Create layers using SKNode, and add object

nodes to them instead.

• Clipping and effect nodes are expensive
- Use sparingly!

• Nodes that are drawn together should use the
same blend mode and texture atlas
- This lets Sprite Kit draw them in a single

drawing pass

• Limit the number of particles on the screen
- Use low birthrates or short lifetimes

• If a sprite's content is opaque (e.g., background
images) use SKBlendModeReplace.

• Use game logic and assets that match Sprite
Kit's coordinate system
- Orient artwork to the right

• Test on a wide range of hardware

Creating Tools
• Archive individual nodes to make them easily

accessible
• Create game levels by archiving scenes
• Save the game by archiving the current scene
• Unsaved Data

- Shape of a physics body
- Actions that execute a block

Sprite Kit vs Cocos2D

Sprite Kit Advantages
• Part of the iOS platform

• Integrated physics engine

• Full ARC support

• Xcode Tools

• Automatic Texture Atlases

• Particle Editor

Cocos2D Advantages
• Supported by older versions of iOS

• Adds features like tile maps, cameras and
shaders
- Tools like Kobold Kit can add some of these

• Has extensive third-party library support
- Many of these have been or are being

rewritten to work with Sprite Kit

Questions?

Rich Warren!
rich@freelancemadscience.com
www.freelancemadscience.com

google.com/+RichWarren
@rikiwarren on Twitter

