
130918-MTBCII-Atlanta-07-CommandLine-Will-ONeal-sm.pdf

Will	 O’Neal

Will has been around small
business IT for his 23 years in
the "real world" career. He's
been dealing with Macs for
more than 20 years, and he
worked for a couple of other
small Mac shops before starting
Mid-Atlantic Computer Solutions
in late 2002. Many of his
customers date back to the late
90's as they have followed him
from place to place.

Thanks to Take Control
Books!

• This presentation would not have been possible
without Take Control of the Mac Command Line
with Terminal, published by TidBITS Publishing,
inc.

http://www.takecontrolbooks.com

http://www.takecontrolbooks.com

Introduction

• Before there was a GIU, there was a computer
with no mouse. A display and keyboard only.
• This keyboard was the way you interacted with
the computer. There was no other way
• All input was keyed in, all results were
presented on the screen, or printed out
• All this changed with the Mac, which
popularized the GUI back in 1984

Basic Concepts

• What is Unix
• What’s a Command Line?
• What’s a Shell?
• What’s Terminal?
• What Are Commands, Arguments, and Flags?

What is Unix

• The OS that powers your Mac
• Has many “branches” - versions
• Each is distinct in it’s own way
• If you strip away the gui & programming
interfaces (Cocoa, Carbon, & Java) you would be
running Darwin, a highly customized version of
Unix, available to anyone (including non-mac
users) as Open Source

What’s a Command Line?

• A way of giving a computer a command and
getting a result
• Most of the time, all input and output remains
on the screen
• Only one line - the one with the blinking
cursor - is the Command Prompt - the one
where commands appear as you type them

What’s a Shell?

• A program that enables you to interact with a
computer
• The Finder is a type of shell, but it’s a GUI
shell; today we will talk aobut Terminal.app, or
any program that will create a command-line
interface

• The default shell is called Bash, but there are
others; Bash is where we’ll spend time today.

What’s Terminal?

• It’s the program that simulates a terminal,
which what you used to interact with a computer
• A terminal consisted of a display, a keyboard,
and a connection to the mainframe
• Modern Terminal applications provide a terminal
like connection to a shell running either on the
same computer or over a network

What Are Commands,
Arguments, and Flags?

• Things you type into a terminal

• That’s pretty much all you can do in a shell.
There are no icons to double click on, no files to
drag, no pictures to preview.

Commands

• Verbs
• When you enter a command, you tell the
computer to do something
• Very often, a single word is enough to get
something done
• Example: WALK

Arguments

• nouns
• The object of the command
• What you want the command to act on
• Can have multiple arguments
• Order can be critical
• Example: Walk to the LEFT

Flags

• adverbs
• describes how to do something
• walk to the left QUICKLY and QUIETLY
• sometimes flags are required

Get to Know Terminal

• Learn the Basics
• Modify the Window
• Open Multiple Sessions
• Change the Window’s Attributes
• Set a Default Shell

Learn the Basics

• When you launch Terminal you’ll see an
(almost)empty window that shows a command line
interface generated by a shell
• Everything here is done with the keyboard
• It shows the date and time of your last login,
as well has how you last logged in. You will also
see the host name of the machine. The $ signifies
you are an ordinary user, as opposed to root,
which is signified by #.

Modify the Window

• This window resizes just like any other window
on your computer.
• It is a good idea to resize the window because
some commands generate a lot of output
• Don’t full screen the window, leave enough
room so you can see windows from other Apps
• Note that changes made here aren’t saved
between Terminal sessions unless you select Shell
> Use Settings as Default.

Open Multiple Sessions

• You can have as many windows (sessions) open
as you want; you can also have multiple tabs
• The multiple sessions do not interact with each
other - they are completely separate - even if
you are viewing the same set of files or same
program
• This is helpful because you can view the man
page in one window and the program in the
other

Change the Window’s
Attributes

• In addition to window size, you can change
window color, text color, cursor color, cursor
styles, etc.
• See Terminal > Preferences > Settings
• Once you find one you like, set it as your
default by going to Shell > Use Settings as
Default

Set a Default Shell

• The default shell in versions of OS X starting
with 10.3 is bash
• If you started with OS X 10.0, and upgraded,
your shell may be set to something different
• Check the shell you are running by entering
echo $0
• Change your default shell in System
Preferences > Users & Groups > control-click
your username > Advanced Options

Look Around

• Discover Where You Are
• See What’s Here
• Repeat a Command
• Cancel a Command
• Move into Another Directory
• Jump Home
• Understand How Paths Work
• Understand Mac OS X’s File System
• Use Tab Completion
• Find a File
• View a Text File
• Get Help
• Clear the Screen
• End a Shell Session

Discover Where You Are

• pwd

• stands for “print working directory,”

• returns the complete path to the directory
you’re currently using.

See What’s Here

• ls

• stands for “list”
• gives you the list of files in the current folder

• optional flag
• -l = long format
• -a = list all, including hidden
• -h = human readable (converts bytes to mbytes)

Repeat a Command

• up arrow, or !!
• using !!, you can add flags to the previous
command
• example:
 ls -l
 !! -h (net result would have been ls -l -h)
• not very handy for short commands, but great
for long commands
• very hand when you forget to add sudo - sudo !!

Cancel a Command

• Control-c

or

• Command - . (period)

• command history doesn’t show cancelled
commands

Move into Another
Directory

• cd
• stands for Change Directory
• must use full path unless new location is a
subdirectory (you can’t cd to Library when you are in
Desktop without doing indicating where Library is
• example: cd /Users/bob/Library if you are in /
Users/bob/Desktop
• cd .. = up one level
• cd ../.. = up two levels
• cd - = return to the previous directory

Jump Home

• cd ~ (tilde) = current users home directory

or

• just cd

• cd ~/Library = current users Library folder

Understand How Paths
Work

• how do you get to “My Folder” (note the space in
the directory name)?

• cd “My Folder” - enclose the path in quotes
• cd My\ Folder - place a backslash before the space
• multi character wildcard - use an * if there is only
one path, as in cd /App* - the * replaces zero or
more characters
• single character wildcards - use a ? to replace a
single character, as in ls -al 00??.jpeg

Understand Mac OS X’s
File System

• there are numerous files in the file system with
the same name, or very similar names
• example - every user on the machine has a ~/
Desktop folder, and the computer, and the users
have /Library folders
• ., /, \, ~, and <space> have great significance

Use Tab Completion

• tab completion allows you to start typing a file
or directory name, and press tab
• if there is more than one possibility, the
computer will beep; press tab again and it will
show you all the possible files or directories that
match
• tab completion is case sensitive!

Find a File

• find: give it a name (or partial name) and where to
start looking
• example: find ~ -name “*microsoft*” will look for
files in the home directory with microsoft in the
name
• this method is very slow because there is no
index; to search quicker, narrow the location
• find . -name “*microsoft*” - the . says to search
the current and all sub-directories; / says to search
the entire disk

Locate a File

• locate relies on a database of file and path
names
• the database is only updated once a week, but
once updated, is very fast
• on first use, you may have to build the
database with /usr/libexec/locate.updatedb
• only searches files you own
• to search the entire system, update the db
with sudo; bypasses user & system permissions

View a Text File

• less (or more) <filename> to read a text file,
shows page by page
• cat <filename> does the same thing, but shows
the entire file
• tail <filename> displays the end of a file. Very
useful for log files
• example: tail -n 50 <filename> shows the last
50 lines of the file
• adding -f forces the tail to not stop

Get Help

• man is the quickest way to get information about
commands and how to use them. Sometimes the
information isn’t clear, but it’s the best place to
start
• run man in a new window, so you can reference
the documentation and the active window side-by-
side
• google is a great resource, because when the man
pages aren’t clear, someone has written about it

Clear the Screen

• as you fill your window with commands, the
window may become cluttered
• clear
• moves the command line to the top of the
screen with empty space below it; you can still
scroll up, though

End a Shell Session

• exit will properly end a shell session
• by default, the Terminal window remains open
after exiting; you can change this behavior in
Terminal > Preferences

Work with Files and
Directories

• Create a File
• Create a Directory
• Copy a File or Directory
• Move or Rename a File or Directory
• Delete a File
• Delete a Directory

Create a File

• touch <new filename> is a very fast way to
create an empty file of no type
• some programs behave differently based on the
existence of a file; it will also let you create files
for testing so you don’t destroy your computer
• touch <existing filename> updates an existing
file’s modification date

Create a Directory

• mkdir = make directory
• you can use the full path to make a new
directory in a different location

Copy a File or Directory

• cp = copy
• requires two arguments, a source and a destination
• the first is the source file - what you want to copy
• second is the destination file - what you want to call the copy, and
possibly, where to put it
• is NOT SMART - you can copy a file over a folder, or another
document with no warning!
• fix this problem with the -i flag
• example: cp -i ~/Desktop/file1 ~/Documents/file1
• copy directories with the -r (recursive) flag
• avoid using a / on the end of the source directory; that copies
the contents, not the directory; tab completion adds the /
automatically!

Move or Rename a File
or Directory

• to move a directory, use mv
• to rename a directory, use mv!
• two arguments - file you want to move, and the destination
directory and possibly, if you want to rename it, the destination
file name.
• avoid overwriting existing files with the -i flag
• move multiple files at once; the final argument is the
destination
• example: mv file1 file2 file3 ~/Documents or mv *.jpg ~/
Pictures
• you cannot use mv to rename a batch of files as in mv *.jpg
*.JPG *.jpeg

Delete a File

• rm = remove
• rm <filename>
• remove multiple files with rm file1 file2 file3
• use wildcards with rm *.docx or Microsoft*

Delete a Directory

• rmdir = remove directory
• can use multple targets, as in rmdir directory1
directory2 directory3
• can use wildards - rmdir ~/D*
• only works on empty directories
• to override this use rm -r directory

Work with Programs

• Learn Command-Line Program Basics
• Run a Program or Script
• Run a Program in the Background
• See What Programs Are Running
• Stop a Program
• Edit a Text File
• Create Your Own Shell Script

Learn Command-Line
Program Basics

• most programs do one thing and then stop
working; example ls. It lists the content of a
directory, then stops running
• some programs provide no output unless there is an
error - as in cp, mv and rm
• some programs are interactive, like passwd. You
start the application, it asks for information, after
you respond, it asks for more information, then
confirmation, then it quits
• other programs like ssh and ftp work this way

Run a Program

• running a program involves typing it’s name and
pressing return
• some programs live in unusual places and you need
to run them using the full path; if the path of the
application is not included in your PATH (capitalized),
then you have to include the full path. You can
modify your PATH (covered later)
• you can always run a program by typing it’s full
path, or by changing to it’s directory and using ./ in
front of the command

Run a Script

• scripts are used to automate or simplify
repetitive activities
• similar to Applescript
• usually called a shell script, it is a series of
instructions run by the shell itself
• when you run the script, the shell executes the
programs in the script one after another
• usually have an extension of .sh and are human
readable

Run a Program in the
Background

• most of the time when you run a program, it takes over
the shell, and whether it takes a second or an hour, it
doesn’t release the window until it has completed
• background programs let you do other tasks in the same
Terminal window, and they can keep going after you quit
Terminal.
• to run a program in the background, simply put a space
and an & after the program name and flags or arguments
• next time you run the program, it will result in a process
number and tell you that it’s done along with the job name

See What Programs Are
Running

• top - similar to Activity Monitor; results update dynamically
• lets you see how many and what programs are running right this minute
• includes all programs, not just the ones controlled by the user
• flag -n with a number will limit the list to a n number of items to show
• flag -o (order) and cpu to show processes in order of CPU usage, or rsize
to list processes in order of RAM they use
• example: top -n 20 -o cpu to list only the top 20 processes by CPU usage
• ps is a static listing of processes running at the moment. Only shows
processes running in terminals, not all applications, unless you add flags
• you can get processes running from the Applications folder using ps -ax |
grep /Applications
• that long | character is called a pipe, and it directs the output from one
program to another. the pipe command is way to complex for this
presentation, but you can google it!

Stop a Program

• you can stop a program that doesn’t terminate automatically a few ways
• control-c is the polite way of asking for the program to stop
• kill along with the process ID will ask the program to terminate
politely, just as if you sent it a control-c
• example kill 1234
• where does the process ID come from? Were you listing in the previous
slide? Hint: ps
• can also use the name of the process using a variant of kill called
killall, as in killall Dock
• you can still kill a program that won’t respond to control-c or kill by
adding the flag -9, as in kill -9 1234; the -9 flag says to use brute force
to stop the program
• if that doesn’t work, reboot! (and sometimes you will have to!)

Edit a Text File

• vi - vee-eye for Unix geeks
• it is way to difficult to cover here, because the
user interface was written by a geeks geeks geek
• I use pico or nano, which are actually the same,
but they are the closest thing to a gui you’ll get in
the terminal
• nano “my file” will create “my file” if it doesn’t exist,
or open “my file” for editing if it exists, in an editor
window that is complete with “menus” on the screen

Create Your Own Shell
Script

• start with an empty text file
• insert the Shebang (which tells the computer what shell to
execute the script in)
#! /bin/bash
• add one or more commands
echo “Hello! The current date and time is:”
date
echo “And the current directory is:”
pwd
• close and save the file: script.sh
• to run a script, it has to have permission to run, so enter
chmod u+x script.sh
• run the script by typing ./script.sh

Customize Your Profile

• How Profiles Work
• Edit .bash_profile
• Create Aliases
• Modify Your PATH
• Change Your Prompt

How Profiles Work

• a profile is a file your shell reads every time
you start a new session
• contains a variety of preferences for how you
want the shell to work
• can be way more complicated than this topic
allows time for, but we’ll cover some basics

Edit .bash_profile

• now that you’ve googled bash profiles, how to
you get one on your Mac?
• nano ~/.bash_profile
• if the file exists, nano will open it for editing; if
not, nano creates it for editing
• to load the profile after editing it use

source .bash_profile

Create Aliases

• do you ever switch back and forth between Unix
and DOS, but can’t remember how to get a directory
listing on the system you are using right now? An
alias would let you enter dir and have it run ls!
• you can also set up a shortcut for longer
commands, such as alias mvpics=”mv *.jpg ~/
Pictures/”
• good examples: alias ls=”ls -alh”; alias copy=”cp -
i”; alias move=”mv -i”

Modify Your PATH

• when you run a program, the shell looks for it in
predetermined places
• when you start scripting, you may want to specify
additional locations where programs or scripts are
located
• if you store your own scripts in ~/Documents/
scripts, you should add that directory to your PATH
by putting this in your profile
• example: export PATH=$PATH:~/Documents/scripts

Change Your Prompt

• ever wonder how or why your computer tells you
what the name of the machine is before every
command?
• example: Wills-MacBook-Air: ~wo$
• change that by adding PS1=”I love bash! ” to your
profile. Include the space!
• prompts can include variables: \u: to include your
shortname; \h: for your computers name; \w: for the
current directory; \d: for the date; \@: for the time
• example: PS1="\u \@ \w [$PWD] * "

Real World Uses

• Get the Path of a File or Folder
• Open the Current Directory in the Finder
• Open a Hidden Directory Without Using
Terminal
• Open the Current Folder in Terminal
• Open a Mac OS X Application
• Open a File in Mac OS X

Get the Path of a File or
Folder

• If you don’t know the path of the target file,
or don’t want to type it in, you can, in the
Terminal window, type the command, followed by
a space, and the drag the file or folder to the
window
• when you release the mouse button, Terminal
copies the path of the file or folder you dragged
onto the command line

Open the Current
Directory in the Finder

• you may wish to see, graphically, wherever you
are in the Finder

• try this: open .

Open a Hidden Directory
Without Using Terminal

• If all you want to do is open a window to some
normally hidden location, you can use the Finder
command Go > Go to Folder
• enter the whole path (tab completion works!)
and hit enter!

Open the Current Folder
in Terminal

• what if you are looking in a folder and want to
open a terminal window to that location?
• download this http://code.google.com/p/cdto/
• drag the downloaded file to any Finder windows
toolbar, and you’ll have quick access to the
directory in Terminal from the Finder

http://code.google.com/p/cdto/

http://code.google.com/p/cdto/

Open a Mac OS X
Application

• open -a Safari
• no need to tell it a location; it’s smart and will
search for the application anywhere on the disk

Open a File in Mac OS X

• open picture1.jpg
• will open that file with the default application
• open -a /Adobe\ Photoshop picture1.jpg
• will open that file using Adobe Photoshop

Log In to Another
Computer

• Start an SSH Session
• Run Commands on Another Computer
• End an SSH Session

Start an SSH Session

• ssh user-name@remote-address
• if this is the first time you’ve connected to a
particular remote machine, you will see something like:

• assuming you are comfortable proceeding, type yes
and press return, and you will see:

• following that is a password prompt. You know what
to do!

The authenticity of host 'macbook-pro.local (fe80::20c: 74ee:edb2:61ae%en0)' can't be
established.
RSA key fingerprint is d0:15:73:75:04:9a:c3:2d: 5b:b1:f8:c0:7d:83:52:ef.
Are you sure you want to continue connecting (yes/no)?

Warning: Permanently added ‘macbook-pro.local., fe80::20c:74ee:edb2:61ae%en0’ (RSA)
to the list of known hosts.

Run Commands on
Another Computer

• once you are logged in, you can run commands
exactly as you do on your local computer

• note: your default shell might not be the same
• note: your .bash_profile doesn’t apply to the remote
computer

• any files you interact with will only happen on the
remote computer. If you “open” a file, it will open on
the remote machine, not your local machine!

End an SSH Session

• simply type exit
• it’s a good idea to do this every time, because
it will shut down any processes you started in
that session. It might not matter locally, but if
you leave something running on someone else’s
computer, it might have unintended consequenses

Digging Deeper

• Understand Permission Basics
• Change an Item’s Permissions
• Change an Item’s Owner or Group
• Perform Actions as the Root User

Understand Permission
Basics

• permissions will control what you can do and what
you can see in the terminal. If you’ve seen the locks on
folders in the Finder, they are the same in the Terminal
• the read permission will allow the user to open and
see what is in a file (signified by r)
• the write permission means one can modify or delete
an item (signified by w)
• the execute permission means that it can be run if it’s
a program or a script; if it’s a directory, it means
someone can list it’s contents (signified by x)

Users, Groups, and
Everyone Else

• User: In terms of file permissions, the term user
means the owner of a file or directory. (signified by
u)
• Group: Each file and directory also has an
associated group—one or more users for whom a set
of permissions can be specified (signified by g)
• Others: Every user who is neither the owner nor
in the file’s group is lumped into the “others”
category (signified by o)

Change an Item’s
Permissions

• to grant group write access to file1, enter
chmod g+w file1
• to remove other’s execute permission to file1,
chmod o-x file1
• you can affect multiple users at once: to add
read access for user, group, and other, enter
chmod ugo+r file1
• if you aren’t the owner of the file, you must
sudo

Change an Item’s Owner
or Group

• to change an items owner, group, or both, use chown
(change owner)
• if you are changing both the owner and the group,
separate them with a :
• example: chown bob file1 to change the owner of
file1 to user bob
• example: chown bob:accounting to change the owner
and the group to user bob and group accounting
• to change only the group, chown :accounting file1
• all of these will fail without the next section!

Perform Actions as the
Root User

• Mac OS X, and all Unix and Unix like operating systems prevent
users from viewing or altering files that don’t belong to them
• This is why you can’t see or access anything in the System folder!
• There is a hidden account, called root, and that user has virtually
unlimited power to screw up anything on the computer
• An admin user can temporarily assume the capabilities and
authority of the root user with sudo - which stands for “superuser
do”
• type in sudo command and you will be prompted to enter your
password prior to the command executing
• if you are a security conscious user and your primary account is
not an admin account, you’ll need to switch users prior to using sodo
by running su user-name first

Command-Line Recipes

• Change Defaults
• Perform Administrative Actions
• Modify Files
• Work with Information on the Web
• Manage Network Activities
• Work with Remote Macs
• Troubleshoot and Repair Problems
• Get Help in Style
• Do Other Random Tricks

Change Defaults

• Show Hidden Files in the Finder
defaults write com.apple.finder AppleShowAllFiles TRUE;
killall Finder
• Prevent Dock Icons from Bouncing
defaults write com.apple.dock no-bouncing -bool TRUE;
killall Dock
• Deactivate Dashboard
defaults write com.apple.dashboard mcx-disabled -boolean
YES; killall Dock
• Expand Save Dialogs by Default
defaults write -g NSNavPanelExpandedStateForSaveMode -bool
TRUE

Perform Administrative
Actions

• Use Software Update from the Command Line
sudo softwareupdate -i -a

• Find Interesting Stuff in Log Files
grep error /var/log/system.log

• look for all entries involving Time Machine
grep backupd /var/log/system.log

Modify Files

• Change the Extension on All Files in a Folder
• This requires you writing a shell script!
#!/bin/bash
for f in $3/*.$1; do
 base=`basename $f .$1`
 mv $f $3/$base.$2
done
• put the file in your PATH and that it is executable
• to run it, enter the script name followed by the old
extension, the new extension, and the directory in
which you wish to make the change
• example: rename.sh JPG jpeg ~/Documents

Modify Files part 2

• Decompress Files
tar -xf archive.tar
tar -xzf archive.tar.gz
tar -xjf archive.tar.bz2

• Convert Documents to Other Formats
textutil -convert doc file1.rtf -output file2.doc (this acutally
converts and saves the file with a different name!)

• Convert a File from Word (.doc) to HTML
textutil -convert html file1.doc

Work with Information
on the Web

• Download a File
curl -s -S -O URL

• Save a Local Copy of a Web Page
curl URL > filename.html

• Put the Source of a Web Page on the Clipboard
curl URL | pbcopy

Manage Network
Activities

• Get Your Mac’s Public IP Address
curl -s http://www.showmyip.com/simple/; echo

• Get a List of Nearby Wi-Fi Networks
/System/Library/PrivateFrameworks/Apple80211.framework/
Versions/A/Resources/airport -s

• To see a list of all processes accessing the
Internet, enter:
sudo lsof -i

http://www.showmyip.com/simple/

http://www.showmyip.com/simple/

Work with Remote Macs

• Use Secure Screen Sharing via SSH
put the following in your .bash_profile file and
then start a new shell session:
alias stss="(sleep 15; open vnc://127.0.0.1:5901) & ssh
-C -4 -L 5901:127.0.0.1:5900"
• to start a session
stss user-name@domain.com
• enter your password for the remote computer,
then authenticate a second time

mailto:user-name@domain.com

mailto:user-name@domain.com

Troubleshoot and Repair
Problems

• Delete Stubborn Items from the Trash
sudo rm -ri ~/.Trash/*

• If that doesn’t work, try each of these until
the Trash is empty:
sudo rm -ri /.Trashes/*
sudo rm -ri /Volumes/*/.Trashes/*

• Figure Out Why You Can’t Unmount a Volume
lsof | grep /Volumes/VolumeName

Get Help in Style

• Read all man Pages in Preview
put the following lines in your .bash_profile:
psman()
{
man -t "${1}" | open -f -a /Applications/Preview.app/
}
• to view a man page in Preview
psman command

Do Other Random Tricks

• Take a Screenshot
screencapture ~/myscreen.png
• Use Text-to-Speech from the Command Line
say "Hello there"
sleep 60; say "One minute has elapsed"
• Find a File by Content
grep -R "your text" .
 This searches from the current directory down. If you
want to time consumingly search the entire disk, replace
the . with a /, or whatever directory you want to search.
This search finds partial matches without using wildcards.

Contact

Will O’Neal
Mid-Atlantic Computer Solutions

woneal@4macsolutions.com
703.236.5800 x 101

mailto:woneal@4macsolutions.com

mailto:woneal@4macsolutions.com

__MACOSX/._130918-MTBCII-Atlanta-07-CommandLine-Will-ONeal-sm.pdf

