
acmeFoo

Scott M. Neal
smn.mg@acmefoo.org

MacTech Chicago July 2013
Copyright 2013 MindsetGarden

Introduction to the
Command-Line

Mindset
(distilled version...)

mailto:smn.mg@acmefoo.org
mailto:smn.mg@acmefoo.org

Command Line Mindset:
Agenda

Goal:
• To see the mindset of the Command Line Interface

• (and never worry about memorizing commands again...)

Materials derived from 2-day acmeFoo CLI101 course

2

Why use Command Line?
Command Grammar and
Syntax
Substituting User
Shortcuts and Special
Characters

File Viewing Commands
Documentation, Searching,
& Editing
Commands, Commands,
Commands...
Installing Open Source SW

Why use Command
Line?

Why learn about the Unix
Command Line?

“If the Command-Line is
so great, then why was the
GUI invented?”
Sometimes it’s better to do things “old school”

4

Why learn about the Unix
Command Line?

Remote administration
• Slow connection, or

GUI not available
remotely

Single-user mode
Recovery HD
Security and monitoring
Many actions only
available at command
line
Running a command as
a different user

Combine commands
with a pipe |
Automation and
Scripting
Troubleshooting
Several “Apple Only”
command line tools
Open Source tools which
are only on CLI
Deployment Scripting
Media Management

5

The Command-Line
Mindset

The Command-line does not utilize the same mindset
as most GUI programs
• much more “picky”

There are “rules” that once learned, make it easier to
understand what is going on w/o memorization
• Many introductions to the command-line focus on

memorizing commands
• You don’t need to memorize much, surprisingly

• Note that the name of this presentation is “The
Command Line Mindset”, not “Here’s a bunch of
things to memorize”

Musicians: would you play music without
understanding basic music theory?

6

Brief History of the
Command Line Interface

Remember that the original interface to modern digital
computers was toggle switches, patch cables, and
lights

7

SEAC computer, courtesy of Russell Kirsch
http://museum.nist.gov/panels/seac/SEACOVER.HTM

http://www.megomuseum.com/startrek/images/
SpockFront.jpg

http://www.megomuseum.com/startrek/images/SpockFront.jpg
http://www.megomuseum.com/startrek/images/SpockFront.jpg
http://www.megomuseum.com/startrek/images/SpockFront.jpg
http://www.megomuseum.com/startrek/images/SpockFront.jpg

Brief History of the
Command Line Interface

When the Command Line Interface (CLI) was
developed, it was a major breakthrough

8

http://www.columbia.edu/acis/history/teletype.html

http://vt100.net/vt_history

http://applemuseum.bott.org/sections/computers/IIc.html

http://www.columbia.edu/acis/history/tty33.gif
http://www.columbia.edu/acis/history/tty33.gif
http://www.columbia.edu/acis/history/tty33.gif
http://www.columbia.edu/acis/history/tty33.gif
http://www.columbia.edu/acis/history/tty33.gif
http://www.columbia.edu/acis/history/tty33.gif

The Unix Command Line:
a Modern Perspective

Since the Unix Command-Line was originally
developed in the 70s, is it still useful?

9

The Unix Shell
Provides the primary interactive and scripting interface
on Unix systems
• What most people call “Unix” is really a Unix shell, or

often a Command-Line Interface (CLI)
A Unix Shell is an application program
• Can be used interactively

• Will have a prompt

• Can be used as a Shell script interpreter
• Unix shells are not the only scripting environments...

Shells are independent of the underlying operating
system
• Different flavors of Unix
• Non-Unix OSes

• Unix shells have been ported to Windows and other
operating systems

10

Unix shells (cont.)
Typical Unix shells:
• bash

• Default shell on Mac OS X > 10.2
• Most popular on Linux

• tcsh

• Default shell on Mac OS X <= 10.2

• sh

• First common Unix shell, still used for system scripts

• zsh
• ksh

• ... (there are MANY more)
An entry in Directory Services provides default shell (or
none) for each user
Scripting languages like Perl, Python, Ruby, etc. are
NOT Unix shells

11

When used interactively a Unix shell provides a prompt
to let you know that it is awaiting your input:
 AlBook17:~ scott$

AlBook17:~ scott$

Last login: Sat Jul 14 01:28:43 on ttyp2
Welcome to Darwin!

Interactive Shell Prompt

12

AlBook17:~ scott$

Last login: Sat Jul 14 01:28:43 on ttyp2
Welcome to Darwin!

By default, a prompt
consists of:
• computer’s hostname
• a colon ‘:’
• the current directory (folder

in OS X parlance) that the
user is in for that shell

• the user’s short name
• a dollar sign ‘$’

• unless user is Root, and then it
will be an octothorpe ‘#’

Interactive Shell Prompt

To save space in this guide, we will often use ‘$’ to
represent the entire Shell prompt, so
AlBook17:~ scott$

will be abbreviated as
$

13

A Mac OS X GUI application which provides one (or
many) Unix shell(s) on the local machine
• Terminal itself is NOT a Unix shell

Terminal.app is Available:
• While logged into the GUI

• When booted from installer CD/DVD or Recovery HD
• Mac OS X 10.3 and later

Highly configurable and customizable
• Color of shell window, text, font

• Should use only monospace fonts like Monaco or Courier

• Transparency of shell window
• etc.

Terminal

14

Terminal Preferences

Investigate the
Terminal settings
and preferences to
customize your
command-line
experience

15

Command Line
Grammar and Syntax

Unix Commands
A Unix command is any script or program that is
executable by Unix
• Each file (and folders too, but for another reason) have

an executable bit called ‘x’ indicating executability
The name of a command is often case-sensitive
• If the command is ls, you shouldn’t use Ls or LS etc.
• If the command is SetFile you shouldn’t use setfile

or SETFILE or any other variant
A Well-formed command (or commands) form(s) a
Command-Line
• Hence the name Command-Line Interface (CLI)

Commands return error messages when unsuccesful
• Some messages are more useful than others

• Look at the feedback from the command!

17

Unix Commands
There are FAR too many Unix commands to memorize
all of them
• built-in

• downloadable
It’s much more useful to learn the “grammar” of the
Unix command-line, and then look up the
“words” (commands) as you need them
We will start with some basic commands

... but will focus on grammar (and syntax)
18

• ls
• cd
• cat
• grep
• echo
• mkdir

• rmdir
• cp
• rm
• mv
• ssh

The ls command tells the Unix shell to display a
listing of files and folders (directories)
Here are some examples of ls:
• ls
• ls -lA /
• ls -lA ~/Documents
• ls -lA ~/Documents > /tmp/doc_ls_list.txt
• ls -lA ~/Documents >> /tmp/doc_ls_list.txt
• ls -lA ~/Documents | grep -iR pdf

“Learn by Doing”--walk through each of these with me
(next pages)

The ls Command

19

We start with just the command itself:
ls

We then add some options and arguments to the
command to create a long listing and show hidden
files on the root of the filesystem:
$ ls -lA /

Grammar:
• Commands Verbs
• Arguments Nouns
• Options Adjectives/Adverbs

• “spaces” serve the same purpose as in English

The ls Command:
Options & Arguments

ls -lA /
command option(s) argument(s)

$
prompt

sp
ac

e

sp
ac

e
20

We then change the arguments to the command to
create a long listing in our own Documents folder (still
showing hidden files, we didn’t change the options):

$ ls -lA ~/Documents

The ls Command:
Options & Arguments

ls -lA ~/Documents
command option(s) argument(s)

$
prompt

sp
ac

e

sp
ac

e

21

The ls Command:
Output Redirect to a File

22

Not only can Unix output each command’s results
directly to the Unix shell (where you can see it
immediately) but Unix can also redirect output to any
file path using the > character:

ls -lA ~/Documents > /tmp/doc_ls_list.txt

• If the file already exists, it will be erased with no
warning!

Instead of creating a new file for the output, append to
a pre-existing file using >>:

ls -lA ~/Documents >> /tmp/doc_ls_list.txt

• This will create a brand-new file if one doesn’t already
exist

The ls Command:
Output Redirect to a File

23

redirect output to a file:
$ ls -lA ~/Documents > /tmp/doc_ls_list.txt

append to a pre-existing file:
$ ls -lA ~/Documents >> /tmp/doc_ls_list.txt

Notice that in both cases the direction of the
chevron(s) points in the direction of the flow of
information

The ls Command:
Output Redirect (review)

24

Finally, instead of sending the output of ls to a file, we
instead send it to another command called grep:

ls -lA ~/Documents | grep -iR pdf

• This is called piping, since we are connecting the
output of ls to the input of grep

• the | signifies the pipe connection
• Notice there are no chevrons here--that is for file

redirecting

• The grep command parses its input and acts upon it
• grep is used to search for Regular Expressions and show

matches

The ls Command:
Command Piping |

25

The cp command copies files or folders (directories)
Here are some examples of cp:

$ cp ~/Documents/MyNovel /Volumes/ExternalFW/MyNovel
$ cp /Users /Volumes/ExternalFW/Backup20070629

The scp command is a combination of ssh and cp:
$ scp /Users remotemachine:/Storage/Backups/Backup20070629
$ scp remotemachine:/etc/openldap/ldap.conf ~/Desktop

Grammar and Functionality:
• Some commands, like cp (and unlike ls), do not output

anything upon success
• Only get negative feedback

The cp Command

26

The rm command removes files or folders (directories)
There is no “trash” in the command line--if you rm a
file, it is GONE
Here are some examples of rm:

$ rm ~/Documents/MyNovel
$ rm -Rf ~/Library/Preferences

• This is probably NOT something you would want to do...
EXTREME “trash the preferences”

Grammar and Functionality:
• -R is a common option amongst CLI commands

• There are often exceptions--some commands do not
follow guidelines

The rm Command

27

The mv command moves files or folders (directories)
• Renaming a file is basically “moving it” from one name

to another, so mv is also used for renaming
Here are some examples of mv:

$ mv ~/Documents/MyNovel /Volumes/ExternalFW/MyNovel
$ mv ~/Documents/MyNovel2 ~/Documents/MyNovel_FirstDraft

Instead or rm’ing a file, consider mv’ing it instead
• In many cases, you may wish to access the file again

• Preferences
• Configuration files

Grammar and Functionality:
• Like most CLI commands, there is no undo!

• But you can always mv the name back...

The mv Command

28

The echo command outputs text
Here are some examples of echo:

$ echo “Hello there”
Hello there
$ echo “How are you?”
How are you?
$ echo “Hello There, How are you?” > /tmp/aTextFile
$

The echo Command

29

The ssh program provides a Secure SHell to a remote
computer shell account
• replaces older, insecure protocols like telnet, rlogin

and rsh
Both authentication and communication are
encrypted
• Many protocols only encrypt the authentication, or

don’t encrypt either
Tests authenticity of remote “server” (provider), and
logs information in local file
• Ensures that “man-in-the-middle” attacks difficult to do

ssh

30

Remote Login must be enabled on “server” (provider)
• Mac OS X: Sharing pane of System Preferences

Authentication occurs on remote “server” (provider)
using its Directory Service configuration
• If you want to log onto a remote machine, you must

have an account there--local machine authentication
doesn’t count!

Authentication methods:
• Username/Password
• Public/Private key

• Convenient--no need to enter a password when logging in
• Necessary for scripting using ssh--secure by design

Using ssh

31

ssh in Action: Password
To log in remotely to a computer www.acmefoo.org with login
name scott:

$ ssh scott@www.acmefoo.org

• or
$ ssh www.acmefoo.org -l scott

The first time you log into a host, you will see a message like
this:

The authenticity of host 'www.acmefoo.org (86.75.30.9)' can't be
established.
RSA key fingerprint is 2d:c5:3c:f4:17:20:9a:16:9d:d8:fd:
92:96:06:cb:5d.
Are you sure you want to continue connecting (yes/no)?

When you say “yes” (fully typed out), the remote server
(provider) will be added to your ~/.ssh/known_hosts file
• When you reconnect to that host, ssh checks validity

• If a remote host becomes invalid, you will get a more severe
WARNING

32

http://www.acmefoo.com
http://www.acmefoo.com
http://www.acmefoo.com
http://www.acmefoo.com
http://www.pretendco.com
http://www.pretendco.com

A command is like a verb:
• ls a folder or file...
• mv or cp a folder or file...
• grep a folder or file for particular information...

Arguments are like nouns:
• the files/folders to ls...
• the files/folders to mv or cp...
• the files/folders to look inside of, and the information to
grep for...

Options are like adverbs
• How should the CLI ls the folder or file?
• How should the CLI mv or cp the file?
• How should the CLI grep for information inside of files/

folders?

Arguments & Options: Review

33

Quick Synopsis
Unix Commands
• may (or may not) have Arguments
• may (or may not) have Options

• Options may be combin-able, or not
• may use one - or two --

• Spaces separate commands, arguments and options
Output can be redirected (and as will shall soon see,
so can input) to files with chevron characters
• one > to create a new file

• two >> to append to a pre-existing file

The output of one command can be piped into
another command
• no files are involved--the connection is direct

ALWAYS look for errors in command output!
• “nothing” usually means things went ok

34

Substituting User

Substituting User

Sometimes it’s useful to spawn a Unix shell or run a
command as though you are a different user than the
user you are currently logged in as
Unix provides a way to spawn a shell as a substitute
user (as long as you have the correct password)

$ su username

• If you don’t specify username, defaults to the root user
• Which is not enabled for login by default on Mac OS X

(although it is on Mac OS X Server)

36

Substituting User

If you only want to run a single command as someone
else (usually as root), you can sudo (substitute user
do)
• On a default Mac OS X system, you must be logged in

as an administrator and have the correct administrator
password to run sudo

$ sudo -u username command
• If you don’t specify -u username, defaults to the root

user

The first time you sudo, you will get a warning
By default, you cannot sudo as a non-admin user
• but you can su to an admin user first, and then sudo

37

Who Am I?
When you start substituting users, you may forget
which user you currently are...
There is a command to help you

$ whoami

38

ladmin
localmachine:/Users/scott ladmin$

localmachine:~ scott$ whoami
scott
localmachine:~ scott$
Password:
localmachine:/Users/scott ladmin$ whoami

su ladmin

Shortcuts and Special
Characters

Unix: All That Typing! So
Picky! Unfriendly!

The Unix shell is not known for its friendliness
• Very rarely do you get positive feedback, only negative...

“The most annoying thing about the CLI is all the
typing, and how picky the CLI is about case-sensitivity
and spelling”
• Even Unix gurus HATE to type...

“I’m a Mac user, I’m creative, I shouldn’t need to be
worried about such trivialities as correct syntax”
• Let the Shell help you--it tries to help you succeed!

40

Don’t forget your modifier keys and their Mac OS
abbreviations

 ^ Control

 ⌥ Option (sometimes alt)

 ⌘ Command (sometimes Apple)

 ⇧

Some important CLI keys are not modifier keys

 ⎋ Escape

 ⇥ Tab (forward)

Modifier Keys

 option

control

 shift

 	

 ⌘

 esc

tab

41

Shell Shortcuts

42

Tab
completion

Shell will automatically complete the
file path for you
• If you haven’t given it a typo!

• If there is more than one choice,
use double-Tab to show the multiple
choices

• Case-sensitive (even though file
system itself usually isn’t)

Left & Right
Arrow keys

Move cursor without deleting any
characters

Up & Down
Arrow keys

Show previous lines entered into the
shell

Shell Shortcuts

43

Delete key or
^H

Delete character to left of cursor, move
remaining characters to the left

^A Move to beginning of line

^E Move to End of line

^L cLear entire Shell screen by blanking
out lines

^U Untype from cursor to beginning of line

^K Klear from cursor to end of line

Shell Shortcuts

44

^T
Take character to left of cursor,
Transpose it with the character to the
right, move other characters left

^F Same as right arrow key: “Forward”
one character at a time

^B Same as left arrow key: “Backward”
one character at a time

Esc F Move “Forward” one word at a time

Esc B Move “Backward” one word at a time

Shell Shortcuts

45

Return or
Enter or ̂ M
(often loosely
known as End
of Line or
EOL)

Send your command line to the Shell
so it can (attempt to) execute it
• You do NOT need to be at the end of

the line to press Return/Enter/etc.

Terminal Application
Shortcuts

⌘-K
• “Klear” scrollback buffer (menu shortcut)

• Note that it’s ⌘-K (a Mac OS X application menu
shortcut), not ̂ K (which is for the shell, and does
something different!)

• Also note that it’s not the same as ̂ L, which clears the
Unix shell screen, but not the entire scrollback buffer

Drag-and-Drop path from Finder
• This will knock the socks off your LINUX buddies...

46

Terminal Application
Shortcuts (cont.)

⌥-click (option-click) to move cursor
• Does NOT work if command-line is longer than one line

in the shell
These shortcuts are specific to Terminal, and will not
work in
• Single-User
• X11
• Serial Port

• >console
• ssh

47

Shell Special characters
Include $ # [] ! = < > . , & ; | “ ‘ ̀ () \ / ~ <space>
and the globbing/wildcard characters
• The Shell wants to “act” upon them when it sees them,

even if Unix (including filenames) allows them
Cannot represent themselves unless quoted or
escaped with the backslash ‘\’ character.

48

 -bash: unexpected EOF while looking for matching `"'
-bash: syntax error: unexpected end of file

localmachine:~ scott$ echo Use the # character.
Use the
localmachine:~ scott$ echo Use the “ character.
>

localmachine:~ scott$ echo Use the > character.
localmachine:~ scott$ echo Let's try escaping these characters...
 -bash: unexpected EOF while looking for matching `''
-bash: syntax error: unexpected end of file
>

localmachine:~ scott$ echo "Use the # character."
Use the # character.
localmachine:~ scott$ echo Use the \# character.
Use the # character.
localmachine:~ scott$ echo Use the \"\#\" character.
Use the "#" character.
localmachine:~ scott$ echo Use the \> character.
Use the > character.
localmachine:~ scott$ echo "Let's celebrate the end of this slide!"
Let's celebrate the end of this slide!
localmachine:~ scott$

Special characters:
Space

A space is special because it is a delimiter
• It’s the main way a shell knows how to separate

commands, options, and arguments

• Spaces in file paths must be quoted or escaped with
the backslash character ‘\’ so the file path is
considered to be a single entity, not multiple file paths
• Examples:

$ ls "My List"
$ ls My" "List
$ ls My\ List

• Unix Shell tab completion will use ‘\’
• Speaking of tab completion... Trailing ‘/’ sometimes needs to

be deleted for certain commands

49

Line Continuation
Characters

The shell parses what you type in as a single
“Command Line”
• A single Command Line may be multiple “screen” lines

If you want to treat multiple lines as a single
Command Line, you must use the shell’s Line
Continuation character ‘\’
• You are really just “escaping” your EOL

Example:
$ echo “wow I sure have a lot to say but I’m \⏎

> running out of room...”

50

Line Continuation
Characters

Typically seen in scripts and documentation
• easier for the editor to format and for you to follow

Which is clearer about what you are supposed to do,
• this:

echo “wow I sure have a lot to say but I’m running out of
room here because I talk a lot...”
ls /Applications

• or this:
echo “wow I sure have a lot to say but I’m running \
out of room here because I talk a lot...”
ls /Applications

51

Documentation,
Searching, & Editing

Searching for Info

man
apropos
whatis
locate
find
mdfind

“Don’t Memorize Commands, Learn to use the Library”
53

man page
The Unix manual is organized into manual pages
Organized formally to help ensure understanding
(MOST of the time...), and usually includes:

54

NAME The name of the command

SYNOPSIS

A detailed description of options and
arguments
• if they are optional
• if options must be specified

separately, or if they can be
combined (and if so, how they can
be combined)

DESCRIPTION Human-readable explanation of what
the command does

man page
Organized formally to help ensure understanding
(MOST of the time...), and usually includes:

55

OPTIONS (or
COMMAND
SUMMARY)

Detailed description of what each of
the options do (sometimes folded into
the DESCRIPTION)

EXAMPLES
Useful (hopefully!) examples of how to
use the command with different
options and arguments

DIAGNOSTICS The return code(s) of the command
upon success/failure

ENVIRONMENT Environment variable usage (we will
talk about this...)

man page
Organized formally to help ensure understanding
(MOST of the time...), and usually includes:

56

COMPATIBILITY
(or
STANDARDS)

How this command meets specific
Unix compatibility

SEE ALSO
A list of related commands
• “if you like THIS command, you’ll

LOVE these other commands...”

FILES

Files used by the command for:
• input
• config

• data

• output

man page
Organized formally to help ensure understanding
(MOST of the time...), and usually includes:

57

HISTORY Lineage of the command

AUTHORS
Who wrote it
• who to blame or who to give

thanks!

CAVEATS Things that may not work as you
might expect

BUGS A synopsis of known bugs in usage,
so you don’t trip over the command

The man page for ls

58

man uses a pager
(review from Chapter 3)
• <space bar>

• b
• up & down arrows

• q
• /
• g & G

man page: there’s more!
There are nine different sections in the man pages
(section 1 is the default):
• See p. 64 of UfMOSXT

• Can specify section with argument to man
• Example:

$ man ls
...
SEE ALSO
 chflags(1), chmod(1), sort(1), xterm(1), termcap(5),
symlink(7), sticky(8)
$ man 8 sticky
...

Shell built-in commands are all lumped together on a
single man page
$ man builtin

59

No man page...

If no man page exists for a command, try executing command
with no arguments, or with -h or -help argument
$ man BootCacheControl
No manual entry for BootCacheControl
$ BootCacheControl
BootCacheControl: missing command
Usage: BootCacheControl [-vvv] [-b blocksize] [-f <playlistfile>] start|
stop
 Start/stop the cache using <playlistfile>.
 BootCacheControl statistics
 Print statistics for the currently-active cache.
 ...

• usage: should use the same syntax as a man page would
• if not, curse the programmer...

60

The Unix
“Card Catalog”

What if you don’t know what the name of the
command is that you want to use?
• chicken-and-egg: can’t look at man page if you don’t

know the name of the command!
How do you look things up in the man page library?

61

http://recycledproducts.org/detail.aspx?ID=525

http://www.megomuseum.com/startrek/images/SpockFront.jpg
http://www.megomuseum.com/startrek/images/SpockFront.jpg

man -K

When you give the option -K to man, it looks for
keywords you specify in ALL man pages
Example
$ man -K copy
...

This is equivalent to not using a “card catalog” at all,
but going to the library and starting at the first book,
looking in every book in order until you find what you
want
• can be VERY slow

Surely there has to be a better way...

62

apropos

There is a command that searches through an indexed
database of all of the man pages for keywords that
you give it called apropos
• “Spotlight for the Unix manual” (kind of...)

Example
$ apropos copy
...

Equivalent (notice it’s a lower case k, not K)
$ man -k copy
...

63

locate

It is also possible to search for pathnames (not
through man pages) to find a match using a command
called locate
• Another aspect of our pseudo-Spotlight capabilities in

Unix
• Searches through another indexed database

• not the same one that apropos and whatis (and their
man equivalents) use

Example
$ locate copy
...

64

find

The command find actually DOES do an active
search on the system and does not consult any
indexed database
• Even by Unix standards, find has arcane syntax--but is

VERY powerful
• man find

Example
$ find / -name "*jpg"
...
$ find /Applications -perm 0755
...
$ find /Applications -newer myTimedFile.txt
...
$ find / -name “*.app” | less

65

mdfind and OS X Spotlight
Searches through the indexed Mac OS X Spotlight
metadata database
• Can search not only by name, but by different criteria

• Database created automatically in the background
using mdimport

• Database comprised of multiple files:
• /.Spotlight-V100
• ~/Library/Mail/Envelope Index
• /Volumes/local_volume/.Spotlight-V100

• Available only on Mac OS X (locate and apropos are
available on other Unices)

For more information, see:
$ man mdfind
$ man mdimport

66

Mac OS X CLI tools:
“who’s to thank/blame”

CLI tools originate from different working groups for
Mac OS X
• BSD

• AT&T
• Darwin

• Mac OS
• Shell built-in (specific to shell)
• ?

Questions about generic BSD or shell built-in
commands can be directed to BSD or shell
information sources
• Mac OS X is a first-class BSD and shell citizen (and as

of Leopard, fully UNIX compatible)
67

Mac OS X CLI tools:
“who’s to thank/blame”

Darwin or Mac OS specific commands should be
directed to Mac OS X-based information sources
• Apple Knowledge Base (formerly known as KBase)

• Apple mailing lists

68

Commands, Commands,
Commands...

Apple Custom Commands

Directory Services
• dscl
• dseditgroup

• dsconfigad
• dsconfigldap

• dscacheutil
• dsenableroot

• nidump (obsolete)

• niload (obsolete)

• nicl (obsolete)

• lookupd (obsolete)

Networking
• ipconfig
• atlookup

Configuration
• defaults

• PlistBuddy
• profiles
• systemsetup

• networksetup
• pmset

• scutil

70

Apple Custom Commands

Filesystem
• diskutil

• hdiutil
• SetFile

• GetFileInfo

Spotlight (metadata)
• mdinfo

• mdls
• mdfind

• mdimport

Server
• serversetup

Security
• security
• certtool

Deployment/Config
• asr

Packages
• pkgutil
• pkgbuild

• pkginfo
• productbuild

Launchd
• launchctl
• man launchctl.plist

71

Apple Custom Commands

Misc.
• open

• osascript
• screencapture

• lsbom
• installer
• softwareupdate

• sw_vers
• system_profiler

• say

This list is NOT anywhere near to being complete...

72

Third Party
Custom Commands

Installed with GUI tools
Purely CLI
• Vendor

• Open Source
Pretty much every computing category you can think
of:
• Deployment
• Graphic

• Media
• ...

• (this would be a VERY long list)

73

Installing Open Source
Software

Utilizing Open Source
Software on Mac OS X

There is a LOT of open source software out there that
has been ported to Mac OS X
• Unless you are already a programmer, you don’t want

to have to do the porting yourself, because porting can
be a royal PITA...

75

MacPorts & Fink &
HomeBrew

The Mac OS X community supports different
repositories for open source software that has been
ported to Mac OS X:
• MacPorts (formerly known as DarwinPorts)

• http://www.macports.org/

• Fink
• http://fink.sourceforge.net/

• HomeBrew
• http://mxcl.github.com/homebrew/

$ ruby -e "$(curl -fsSL https://raw.github.com/mxcl/homebrew/go)"

All require Xcode tools (specifically Xcode command line
tools) to be installed--need developer account (free)

76

http://www.macports.org
http://www.macports.org
http://fink.sourceforge.net
http://fink.sourceforge.net
http://mxcl.github.com/homebrew/
http://mxcl.github.com/homebrew/

Summary

Learning the command line interface is time well spent
It’s not a matter of memorizing seemingly arcane,
unrelated commands
• there is (mostly) a pattern

It’s the gateway drug to Automation...

77

Resources
MacTech magazine
Apple
• http://manuals.info.apple.com/en_US/

IntroCommandLine_v10.6.pdf
Amazon
• Peachpit
• O’Reilly
• ...

acmeFoo CLI Courses
• Offered locally (Chicagoland), and all over the country/

world
• For info email info@acmefoo.org

Google

78

http://manuals.info.apple.com/en_US/IntroCommandLine_v10.6.pdf
http://manuals.info.apple.com/en_US/IntroCommandLine_v10.6.pdf
http://manuals.info.apple.com/en_US/IntroCommandLine_v10.6.pdf
http://manuals.info.apple.com/en_US/IntroCommandLine_v10.6.pdf
mailto:info@acmefoo.org
mailto:info@acmefoo.org

acmeFoo

A co-op of developers, trainers, & consultants
• “We beat our heads against the wall so you don’t have

to!”
Goal is to empower you, not merely “can” solutions
Current focuses include:

79

• Command Line
• Sysadmin Automation
• Local & Remote (ARD)

• Cocoa (Mac OS X & iOS)
• Mac OS X and iOS

Deployment & MDM
• Package Creation
• Publishing Automation

• Life Automation

• Work Automation
• Pro Photo Automation
• Pro Video Automation

• Pro Audio Automation
• Home/Business

Automation
• Multimedia Automation
• ... (programming,

automation, etc.)

acmeFoo

Please send email to info@acmefoo.org for:
• Ideas on Automations you’d like to see created
• Courseware you are interested in

• attending
• delivering
• developing

• The Automation Mindset book
• Designed specifically for non-programmers

• Be able to read and use every page of MacTech (and others)

• Coming soon!

• Training sessions offered in Chicagoland
• and across the country (and the world!)

80

mailto:info@acmefoo.org
mailto:info@acmefoo.org

acmeFoo

Scott M. Neal
smn.mg@acmefoo.org

MacTech Chicago July 2013
Copyright 2013 MindsetGarden

Introduction to the
Command-Line

Mindset
(distilled version...)

mailto:smn.mg@acmefoo.org
mailto:smn.mg@acmefoo.org

