
iCloud Storage
Richard Warren

Who Am I?
Software Engineer:

• Background in DoD funded R&D
• Now focused on iOS apps

Technical Writer:
• Creating iOS 5 Apps
• Objective-C Bootcamp
• Many MacTech Articles

Technical Trainer:
• Senior trainer at About Objects
• Also taught classes for Future Media

Concepts and MacAmerica

Word of Warning:
Most of my experience is

iOS specific
I will try to mention any OS X issues that I am aware of.

You have been warned.

Last Year

I Was Wrong

Out of 135 Apps
10 use iCloud Document Storage

5 of those are Apple Apps
3 are Games

Only 2 are apps where I actively use iCloud

Syncing is Hard
...but some parts are harder than others

Why Is iCloud Hard?
• Considerably complex than most Apple

frameworks

• Initially suffered from poor documentation
and a general lack of sample code

• Many of the procedures are opaque

• No obvious debugging tools or techniques

• Often works on a longer time scale

Litany of Problems
• Users may modify, move or

delete a file on one device
while viewing it on another.

• Users may log out of their
iCloud account, log into
another account or delete all
their data.

• Users may not even have an
active iCloud account, or may
not enable it for data storage.

• Users may make conflicting
changes on two different
devices.

• Users might delete and
reinstall the app.

• Users may upgrade the app
on one device, but not on
another.

Life would be so much
easier if we could just
get rid of our users.

How Does iCloud Work?

Two Main APIs

• Key Value Storage

• Document Storage

- Core Data Document storage

Key Value Storage

• Relatively simple API

• Very similar to NSUserDefaults

• Allows storing plist data types

• You can use it, even if the user doesn’t have
an active iCloud account

KVS Performance
• Up to 1024 keys

• Up to 1 MB of storage

- This does not come out of the
user’s iCloud storage.

• Up to 15 request every 90 seconds
before throttling

• Last change wins

Steps to Implement

• Request KVS support in the apps
entitlements

• Listen for change notifications

• Get and set values to the
NSUbiquitousKeyValueStore

Four Types of Notifications

• NSUbiquitousKeyValueStoreServerChange

• NSUbiquitousKeyValueStoreInitialSyncChange

• NSUbiquitousKeyValueStoreQuotaViolationChange

• NSUbiquitousKeyValueStoreAccountChange

Paired With NSUserDefaults

• NSUserDefaults holds the true value

• Whenever we set a value to
NSUserDefaults, set KVS as well

• When we get updates from KVS, examine the
incoming value and determine if we should
update our NSUserDefaults

• If we keep the local value, we should resubmit
it to KVS

Document Storage

• A much richer API (also more complex)

• Designed for syncing large amounts of user-
generated data

• Anything that can be saved to a file or a file
package (plus Core Data).

The Big Picture
• Save data into a special location (ubiquity

container)

• The system monitors this container, when it
sees a change, it uploads the data to the cloud

• Our devices download these changes

• Our app responds to these changes.

Extended Sandbox

iOS File System
Application Sandbox

Documents

Cache

Application Support

Temp

Ubiquity Container

Documents

Syncing Data

Current Device

Ubiquity Container

Document

iOS Device

Metadata

iOS Device

Metadata

OS X Device

Metadata

Metadata

Metadata

Document

Document

Document

Advantages

Work offline

Minimizes bandwidth usage

All devices notified of changes

Devices download data on demand

Common Strategies
• Use iCloud when available, otherwise fall

back to the sandbox

• Ask the user the first time iCloud becomes
available

• Let the user choose for each file

• How do users change this decision, and
what happens to their documents.

Typical Tasks
1. Setup the application's

entitlements

2. Check and monitor the
current iCloud account

3. Initialize the ubiquity
container

4. Search for existing
documents in iCloud using
NSMetadataQuery

5. Create new documents
and move them into iCloud

6. Coordinate all read/write
operations using an
NSFilePresenter and
NSCoordinator

7. Identify and resolve
document conflicts

8. Listen and handle updates
and other document state
changes

Entitlements
• For Document Storage, we can set an array

of ubiquity container identifiers

• We can share a ubiquity container among
multiple apps using the same team id.

• The first identifier is the app’s primary
ubiquity container

• <TEAM_ID>.<BUNDLE_IDENTIFIER>

Monitoring iCloud
Account

• Get the current iCloud token:
id currentToken = [[NSFileManager defaultManager] ubiquityIdentityToken];

• Monitor changes:
NSUbiquityIdentityDidChangeNotification

• For iOS 5:
Aggressively call URLForUbiquityContainerIdentifier: whenever the app comes

into the foreground

Initializing the Ubiquity Container

• Call URLForUbiquityContainerIdentifier:

• Must be called on a background thread

• Returns the URL for the specified Ubiquity
container

• Extends the apps sandbox, letting the app
read and write to the ubiquity container

NSMetadataQuery
• Setup the query, including a predicate

• Listen for notifications

• Search runs in two phases:

- Initial phase gathers the currently-available metadata

- Live-update phase continues to monitor the ubiquity
container for changes

• OS X, automatically manages this through
NSDocument’s Open and Save dialogs

Coordinate All File IO

• Files in the ubiquity container may be read and
modified by two processes:

- Our App

- The iCloud Service

• We coordinate and monitor changes using
NSFileCoordinator and NSFilePresenter

NSFilePresenter
• A protocol we can implement for low-level

monitoring of files or directories

• Receives notifications whenever a coordinated
write modifies or moves the file

• May be asked to save any current changes

• May be asked to accommodate deletions

• May be asked to relinquish control to coordinated
readers/writers

NSFileCoordinator
• Block Based API

• Allows us to coordinate reading and writing

• Allows any number of read actions

• Only one write action at a time

• Write actions block until all the current read
actions end

• Both read and write actions block until the
current write action ends.

• in iOS coordinated reads may initiate file downloads

Uploading and Downloading
• Usually occurs automatically

• We can check the file’s state using NSURL’s
getResourceValue:forKey:error:

• Can manually trigger downloads or remove
downloaded files using NSFileManager methods

- startDownloadingUbiquitousItemAtURL:error:

- evictUbiquitousItemAtURL:error:

UIDocument
• Enables automatic background saving

• Enables undo support

• Implements the NSFilePresenter protocol

• Automatically creates NSFileCoordinators

• Automatically tracks any changes to the file’s
location or name

• Provides a framework for detecting and
resolving conflicts

UIDocument (cont.)
• Abstract Class

• We must implement two methods to read
and write data:

- loadFromContents:ofType:error:

- contentsForType:error

• Must listen for
UIDocumentStateChangedNotification

iCloud and Core Data

• Combines two very complex technologies

• What could possibly go wrong...

SQLite Databases
• Cannot place an SQLite Database into iCloud

• Instead, iCloud’s Core Data support uses
local SQLite databases and syncs the
transaction logs

• We can rebuild any database by simply
reading in the transaction logs

• In many ways, the persistent store is a local
cache of the database

Adding iCloud Support
• We just need to set two properties to start

syncing:

- NSPersistentStoreUbiquitousContentNameKey

- NSPersistentStoreUbiquitousContentURLKey

• Then listen for updates:
- NSPersistentStoreDidImportUbiquitousContentChangesNotification.

• If we delete persistent store, we must delete the
transaction logs

Importing Changes
- (void)iCloudUpdate:(NSNotification *)note {

 [self.moc performBlock:^{
 [self.moc mergeChangesFromContextDidSaveNotification:note];
 }];
}

// updating a fetched results controller
[[self fetchedResultsController] performFetch:&error];

// updating individual objects
NSManagedObjectID *personID = [person objectID];
self.person = (Person *)[self.moc objectWithID:personID];

Store Locations
• In the Application Sandbox

• Let’s the user continue to use the data when
logged out of iCloud

• Easy to get into an inconsistent state

• In the Ubiquity Container

• Use .nosync to prevent syncing

• The data won’t be available when the user logs
out

Other Implications
• Our app uses two different URLs for each

document:

• the location of the persistent store

• the location of the transaction logs

• We cannot place a database with existing data into
iCloud

• If the transaction logs and database get out of
sync, iCloud syncing stops working

UIManagedDocument
• Concrete UIDocument class

• Provides a parent/child hierarchical MOC

• Automatically builds the Core Data stack

• Saves the persistent store in a .nosync directory

• Automatic three-way conflict resolution

• NSPersistentDocument does not support iCloud
syncing

Recommendations
• Use UIDocument, UIManagedDocument or

NSDocument, if possible

• Make sure the document is working in the
sandbox before implementing iCloud

• Override methods to provide better logging:
• writeContents:toURL:forSaveOperation:originalContentsURL:error:

• handleError:userInteractionPermitted:

• Start with a simple iCloud strategy

More Recommendations
• Avoid syncing device specific information

(e.g. scroll location)

• Avoid creating sync storms (last modified
timestamps)

• Use case-sensitive file names

• Watch out for device-specific data types

• Always version your data

• Report bugs

Test iCloud in Steps
1. Make sure your app always autosaves

before going into the background

2. Make sure the data is getting to the cloud

3. Make sure it is syncing

4. Use airplane mode to create conflicts

5. Be sure to test logouts, deleting data and
deleting and reinstalling apps.

Examining iCloud Data

• Settings and System Preferences

• ~/Library/Mobile Documents

• https://developer.icloud.com

• For Core Data, use an NSMetadataQuery
to track incoming transaction logs

https://developer.icloud.com
https://developer.icloud.com

Enable Debug Log
com.apple.coredata.ubiquity.loglevel 1, 2 or 3

iOS Developer Settings
Settings > Developer > Network Link Conditioner

Return To A Clean Slate

• Delete the data from iCloud

• Wait for the delete to propagate to all the devices

• Uninstall the apps

• Reinstall and rerun

• Occasionally you may need to programmatically
delete everything in the ubiquity container

iCloud vs Dropbox

• Dropbox is platform agnostic

• It has a simpler API

• It doesn’t offer all of iCloud’s features

• It requires users to sign up for a 3rd party
service

The Future
• Apple is betting big on iCloud

- Documentation and sample code will
continue to improve

- API will also improve

- Hopefully debugging and troubleshooting
tools will improve as well.

• We are moving towards a future where all
our devices are windows onto a common
set of data

Resources

• Creating iOS 5 Apps

• Adopting iCloud Storage Videos

• WWDC 2012 Videos

• iCloud Design Guide

Questions?

Richard Warren
rich@freelancemadscience.com
http://freelancemadscience.com
@rikiwarren
+Rich Warren

mailto:rich@freelancemadscience.com
mailto:rich@freelancemadscience.com

