
STARWATCH
Natalie Podrazik, 29th Street Publishing

Wh ?

29th Street Publishing
@bdeskin

@lettertojane
@djacobs

@nataliepo

@29pco

Why ?

blake eskin, http://subwaysubway.tumblr.com/

Goals

• iOS-targeted

• Transparency in collection methods and easy to
extend

• User-data collected anonymously and results in near-
nil UX overhead

• Real-time access to quality reports

Concept
• iOS app ensures small sqlite db is in place and we have an

installation id generated

• Standard app actions trigger log statements, which are
written to the sqlite db

• If the user is connected to the internet, the sequential log
statements are posted to a cloud-based database.

• A remove service parses the log data to find summaries and
critical app info

Starwatch logs, sends, and parses
anonymous usage data.

from http://blog.aliceeuphemia.com/?p=3584

http://blog.aliceeuphemia.com/?p=3584
http://blog.aliceeuphemia.com/?p=3584

DEMO
V as in Victor App

 "actions": [
 {
 "timestamp": "20121014 16:05:38",
 "global_id": "5050b34cc873d95b1966be6a",
 "view": "Cover"
 },
 {
 "timestamp": "20121014 16:05:38",
 "global_id": "5050b34cc873d95b1966be6a",
 "view": "Cover"
 },
 {
 "timestamp": "20121014 16:05:41",
 "global_id": "5050b34cc873d95b1966be6a",
 "view": "TitlePage"
 },
 {
 "timestamp": "20121014 16:05:43",
 "global_id": "5050a4cdc873d95b1966be5d",
 "view": "Article"
 },
 {
 "timestamp": "20121014 16:05:48",
 "global_id": "5050b634c873d929cee543a2",
 "view": "Gallery"
 },
 {
 "timestamp": "20121014 16:05:55",
 "global_id": "5050a5e5c873d95b1966be62",
 "view": "Article"
 },
 {
 "timestamp": "20121014 16:05:58",
 "global_id": "5050a674c873d95b1966be63",
 "view": "Article"
 },

 {
 "timestamp": "20121014 16:06:28",
 "global_id": "5050b34cc873d95b1966be6a",
 "view": "Flap"
 },
 {
 "timestamp": "20121014 16:06:29",
 "global_id": "5050b34cc873d95b1966be6a",
 "view": "Flap"
 },
 {
 "timestamp": "20121014 16:06:29",
 "global_id": "",
 "view": "Library"
 },
 {
 "timestamp": "20121014 16:06:35",
 "global_id": "5009b5ec362fe2046c000005",
 "view": "Cover"
 },
 {
 "timestamp": "20121014 16:06:35",
 "global_id": "5009b5ec362fe2046c000005",
 "view": "Cover"
 },
 {
 "timestamp": "20121014 16:06:37",
 "global_id": "5009b5ec362fe2046c000005",
 "view": "TitlePage"
 },
 {
 "timestamp": "20121014 16:06:38",
 "global_id": "5009b74f362fe2046c000006",
 "view": "Article"
 }
],
 "device": "GX9LMY2K2958KRYLZO0KNMB9",
 "start_time": "20121014 16:05:37",
 "end_time": "20121014 16:06:42",
 "usage_time": 65,

How
do I use this?

1. Set up a DB

2. Add iOS hooks into your app

3.Verify data collection into DB

4. Parse collected logs via script

0. https://github.com/29thStPublishing/Starwatch

https://github.com/29thStPublishing/StarWatch
https://github.com/29thStPublishing/StarWatch

App Hooks: Basic
#import "SWCUtility.h"

// add to application:didFinishLaunchingWithOptions

 // This will make sure our DB's are in the correct place,
 // we've begun tracking actions against this unique device id,
 // and increments the number of times this user has opened the app.
 [SWCUtility begin];

 // This method takes in a dictionary of your custom key-value pairs
 // and, along with general information about this device and user,
 // prepares to send it to the remote db.
 [SWCUtility logInfo:
 [NSDictionary dictionaryWithObjects:[NSArray arrayWithObjects:
 [NSString stringWithFormat:@"%d",
 [SWCUtility getNumOpens]], nil]
 forKeys:[NSArray
arrayWithObjects:@"num_opens",nil]]];

Step One: Set up and log info only

Step Two: Send data on app exit

// in applicationDidEnterBackground to send data on exit:

 [SWCUtility send_data];

App Hooks: Advanced

#import "SWCUtility.h"

// in application: didFinishLaunchingWithOptions:

 // This will make sure our DB's are in the correct place,
 // we've begun tracking actions against this unique device id,
 // and increments the number of times this user has opened the app.

 [SWCUtility begin];
 // then triggers the “start app “action.

 [SWCUtility logAppStart];

// in applicationDidEnterBackground:application

 // mark that the user’s session is over, and send the data.
 [SWCUtility logAppEnd];
 [SWCUtility send_data];

Step One: Set up and send on exit

Step Two: Add any hooks you’d like.

Sample App Hooks
// ---- SWCUtility.h ----
// appStart and appEnd demarcates the
user's "session" for parsing
+(void)logAppStart;
+(void)logAppEnd;

/* general logAction method:
 'name': the name of the view you're
logging the action from
 'action': the verb to describe what
triggered this log (view_begin, tap,
swipe, error, etc.) Check out the many
SW_ACTION_* defined in SWCUtility.h.
 'global_id': a unique identifier of
the contents of your container view
 'metadata': a placeholder for more
information to log */
+(void)logAction:(NSString*)name
 action:(NSString*)action
 global_id:(NSString*)global_id
 metadata:(NSString*)metadata;

// ---- SWCViewController.h -----
/* parameters: view's name, view's
global_id (empty string OK),
respond_to_callbacks flag. Turn it on
to inherit the viewDidAppear/disappear
log statements. Turn it off to
manually log when your view appears.
*/
- (id)init:(NSString*)new_name
 new_global_id:(NSString*)
new_global_id
 new_respond_to_callbacks:(BOOL)
new_respond_to_callbacks;

// ---- SWCUIButton.h -----
/* parameters: the button's name.
Call this
method to "activate" a SWCUIButton
which will automatically add a target
to log every time it's pressed. */
-(void)activate:(NSString*)newName;

Verify & Parse

• # Looks for the “info” actions and fills in a device summary
table
python parse_logs.py info

Looks for “feedback” actions and puts them in one collection
python parse_logs.py feedback

Parses through (start_app|became_active) and entered_background
action and notes everything in between oiinto concise Sessions.

python parse_logs.py session

What
is next?

• Making better reading experiences to reinforce
the relationship between an artist and their
audience

• Learning from our subscribers to improve our
design

• Integrating answers to reader’s specific questions
directly in our authoring & packaging system

• Open sourcing Starwatch to share our work and
so others may use it and improve it

What's the total number of minutes spent in this issue?
What's the average number of minutes spent per issue for
this device? For iPads only? How many people read this
issue? What counts as a "read"? How many people open
the app and never come back? How many people go to the
library and never come back? What's the medium minutes
per reader? What's the issue open rate? How does it
differ for subscribers? How often do subscribers come
back compared to people who buy in-app purchases only?
How many times have people ever opened the app? How
many times do people who downloaded the app typically
open it? What time of day do they open the app? What
day of the week do they typically open the app? How
many articles are read to the bottom in every issue?
How many articles are opened in every issue? What's the
average read time for one article? What's the breakout
of the story opened in one issue? Which article results
in the most close-apps? Where are users most likely to
send Feedback? Are users using Feedback as notes to the
author or for bug reports? How many subscribers read on
the iPhone and iPad? When do users share -- after weeks
of reading or after a friend refers them? SO MANY ?s.

https://github.com/
29thStPublishing/Starwatch

hello@29.io

https://github.com/29thStPublishing/Starwatch
https://github.com/29thStPublishing/Starwatch
https://github.com/29thStPublishing/Starwatch
https://github.com/29thStPublishing/Starwatch
mailto:hello@29.io
mailto:hello@29.io

