
Formatted Text in iOS
Richard Warren



About Myself
• Writing freelance articles for 

MacTech since 2006, many 
covering iOS Development

• Worked as a scientist for a 
small R&D Company

- Java Development

- Research and Data Analysis

• Now focusing on full-time iOS 
contract work



The Problem:
• Need to get information in front of your 

users.

• Good support for most media:

- UIImageView for images

- Core Graphics for graphs and illustrations

- Multi-media support for video and audio

• But, what if you want to display formatted 
text?



Why I like this problem

• Seems to be a wide-spread problem, 
especially for developers moving from Mac 
OS X

• It doesn’t feel like it has a good solution



Formatting Needs
• Formatting that defines function

Title, Section Headers, Captions, Bullets, etc.

• Formatting that draws attention
Bold, Italic, Underline, Font Color, etc.

• Basic Layouts
Columns, Sidebars, Pull Quotes, etc.

• Incorporating other media in the text
Images, Videos, Sound Effects, Interactivity, etc.

• Copy/Paste and Text Editing



Mac OS X Provides 
Excellent Support

The Macintosh has always been famous for its 
sophisticated text-handling capabilities

OS X Provides three main layers of support:

• Cocoa Text Systems:  
NSTextView, NSTextField and NSAttributedString

• WebKit

• Core Text



Less Support in iOS

• UITextView and UITextField only support 
one format at a time.

• Core Text unavailable until iOS 3.2

• NSAttributedString unavailable until iOS 3.2
It still does not include the extension for building an 
attributed string from HTML or RTF.



What Are Our Options?

• UIWebView

• Static text layouts using labels and text views.

• UIStringDrawing Extension

• Core Animation’s CATextLayer*

• Core Text*

• Core Graphics / Quartz 2D

*Not available until iOS 3.2



For Most Cases

• Use UIWebView when you can

• Use Core Text (Core Graphics) when you can’t

• Reserve other drawing techniques for 
specialized edge cases:

- Only use UIStringDrawing to draw small amounts of text 
in the current graphics context.

- Only use CATextLayer to draw small amounts of text in 
Core Animation



UIWebView
The Old Standby



UIWebView Advantages
• Provides a complete text 

presentation system

• Supports (non-Flash) web 
technologies

• Separating the content 
(HTML) from the 
presentation (CSS)

• Allows reuse of existing 
web design expertise

• Full Copy/Paste support

• CSS can duplicate many 
of iOS’s native controls.

• Easy communication 
between the web page 
and Objective-C code

- Intercept calls to load 
pages and call Objective-
C Methods instead.

- Objective-C code can call 
Javascript methods.



UIWebView Problems
• Performance

- Initial launch is noticeably slow

- Can become a memory hog

• Do we really need full 
web support?

- Sometimes its better to use 
a scalpel than a 
jackhammer

- Do we really need JavaScript

• Very course-grain 
controls:

- Cannot easily change the 
default white background

- Cannot intercept AJAX calls

- UIWebViewDelegate is only 
notified when a page is 
completely loaded.

- Auto-unloading of views may 
accidentally delete your 
content.



How Bad is the Performance, Really?

Launch App

Open Web View

Delete Web View

Open Web View

Delete Web View



Opening Many Web Views

Create 19 moreInitial App Launch

Create First Web View



For Those Who Like 
Numbers

• Creating the Initial Web View: 0.28 MB

• Releasing the Initial Web View: -0.02 MB 

• Creating additional Web Views: 0.03 MB

Note: Creating and deleting 20 Web Views resulted in an 
extra 0.18 MB not being released--probably residual 
memory in caches.



Performance Based on Content

cnn.com simple web page random web pages

Cache Memory Released



UIWebView Conclusions

• Overall the UIWebView is a reasonable 
approach for most use cases

• Pre-load the initial web view to improve 
performance

• Don’t be afraid to create multiple web views

• Sometimes, you need clever tricks to work 
around its idiosyncrasies

• Test on realistic content



Core Text
High-Octane Text Rendering



Core Text Advantages
• Designed for High Performance and Ease of Use

• Provides higher-quality typographical control

- Kerning

- Ligatures

• Great for paging apps

• Tight integration with Core Graphics (Quartz)

• Even though Core Text is a C API, it supports many 
Objective-C Objects through toll-free bridging



Core Text 
Disadvantages

• Very Low Level

• No support for other media

• No support for separating content and 
presentation

• No support for copy and paste





Drawing Text



Building The Title



Building the Body Text



Core Text Conclusions

• Use Core Text when you need more 
performance or control than the 
UIWebView can provide

• Be prepared to do a lot of the work 
yourself



Questions?

Contact Info:

Rich Warren

email: rikiwarren@me.com

blog: http://freelancemadscience.blogspot.com

twitter:@rikiwarren


