
Thoughts on Object 
Graph Storage

Louis Gerbarg
GLsoft.mobi



I've never got it when it comes to SQL 
databases. It's like, why? Just give me a 
hash table and a shitload of RAM and I'm 
happy. And then you do something to deal 
with failures. 

James Gosling



What is an Object 
Graph?

• A series of objects that point to each other

• Almost everything you deal with in Cocoa is 
part of a graph

• We usually only really care about graphs that 
need to be saved (part of the model)



What is an Object 
Graph?

• In the beginning there was plist

• It worked okay, but required atomic 
serialization/deserialization

• Then came CoreData

• Partial graph writes improved responsiveness

• Lost some of the "graphiness"



Missing "Graphiness"

• Object graphs should not require queries

• Object graphs should not require users to 
worry about things like fetch limits

• Object graphs should use native containers 
and allow idiomatic language constructs for 
things like iteration 



Missing "Graphiness"
• Missing graph features in CoreData are 

replaced with ORM features by leaking the 
underlying architecture up through the API

• Encourages people to try to use CoreData 
like an ORM

• Causes performance issues because 
CoreData is not an ORM



CoreData Architecture
• Applications interface to a 

store via a context

• Context translates property 
and relationship accesses 
into expressions

• Store converts expressions 
into SQL

• SQLite gets data from the 
disk



CoreData Architecture

• In order to get vended 
objects queries need to be 
generated in order to fault in 
various bits

• Objects dynamically create 
accessors that tie those 
generated queries to 
standard properties or 
NSSets



CoreData Architecture

• SQL store takes those built 
expressions and recompiles 
them into SQL commands.

• SQLite does not support all 
of Cocoa's types, so there 
are built in converters as well 
as loadable ones to marshall 
data



CoreData Architecture

• SQLite 3 compiles SQL into 
internal byte codes

• Has an internal VM to run 
those byte codes

• Implements B-Trees atop a 
replaceable atomic storage 
layer



Telescope it!
• Let's rearrange the internal 

pieces without worrying 
about the layer boundaries

• First off look how much effort 
is spent handling SQL

• Only exposed to 
compensate for missing 
Graphiness

• Let's get rid of it



Telescope it!
• Foundation glue and object 

marshaling will need to 
expand

• Requires new object 
marshaling code that talks 
to B-trees and implements 
collections

• Direct pager access for 
non-collection objects



Telescope it
• New atomic storage layer

• Based on SHA224 hashes

• Similar to git, hg, bzr

• Supports centralized, p2p 
synch with minimal client 
code

• Supports in ram commits

• Supports transient commits



GraphObjects
• Features

• Self describing types

• Immutable storage

• Graph synchronization

• Fast saves

• Transient saves when low 
on RAM

• Types

• NSString 

• NSNumber

• NSDate

• NSURL

• NSData

• Scalar integers

• Collections

• NSMutableSet

• NSMutableArray

• NSMutableDictionary



GraphObjects
• Tech preview available today

• Very raw

• Expect a final version early next year

• Opensource

• MIT license

• Does not include sync code



GraphObjects
//Basic usage

LGGOGraph *graph = [[LGGOGraph alloc] initWithURL:URL];

LGGOGraphContext *context = [graph newContext];

graph.rootObject = someObject; // plist types and LGGOObjects

NSError *error = nil;

[graph save:&error];



GraphObjects
• Available today

• NSString

• NSNumber (59 bit integers)

• Memory store

• "Hack" arrays

• Next week

• Custom Objects

• Embedded scalars

• December

• B+Trees

• NSMutableArray

• NSMutableSet

• NSMutableDictionary

• Disk saves (mostly complete in 
preview)

• NSDate

• NSURL

• NSData



This presentation was 
made with 100% natural 

iPad products
May contain materials processed with Keynote and 

OmniGraffle.


