Formatted Text in iOS

Richard Warren

About Myself

* Writing freelance articles for
MacTech since 2006, many
covering iOS Development

e Worked as a scientist for a
small R&D Company

- Java Development
- Research and Data Analysis

* Now focusing on full-time iOS
contract work

The Problem:

® Need to get information in front of your
users.

® (Good support for most media:
- UllmageView for images

- Core Graphics for graphs and illustrations

= Multi-media support for video and audio

® But, what if you want to display formatted
text!

Why | like this problem

® Seems to be a wide-spread problem,

especially for developers moving from Mac
ONI¢

® |t doesn’t feel like it has a good solution

Formatting Needs

Formatting that defines function
Title, Section Headers, Captions, Bullets, etc.

Formatting that draws
Bold, Italic, Underline, Font Color, etc.

Basic Layouts
Columns, Sidebars, Pull Quotes, etc.

Incorporating other media in the text
Images,Videos, Sound Effects, Interactivity, etc.

Copy/Paste and Text Editing

Mac OS X Provides
Excellent Support

The Macintosh has always been famous for its
sophisticated text-handling capabilities

OS X Provides three main layers of support:

® Cocoa Text Systems:
NSTextView, NSTextField and NSAttributedString

® WebKit

® Core Text

Less Support in iOS

UlTextView and Ul TextField only support
one format at a time.

Core Text unavailable until iOS 3.2

NSAttributedString unavailable until iOS 3.2

It still does not include the extension for building an
attributed string from HTML or RTF.

What Are Our Options!

® UlWebView

® Static text layouts using labels and text views.
® UlStringDrawing Extension

® Core Animation’s CATextLayer™

® Core Text*

® Core Graphics / Quartz 2D
*Not available until iOS 3.2

For Most Cases

® Use UlWebView when you can

® Use Core Text (Core Graphics) when you can’t

® Reserve other drawing techniques for
specialized edge cases:

Only use UlStringDrawing to draw small amounts of text
in the current graphics context.

Only use CATextLayer to draw small amounts of text in
Core Animation

UlIVWebView

The Old Standby

UlWebView Advantages

® Provides a complete text ® CSS can duplicate many
presentation system of iOS’s native controls.

® Supports (non-Flash) web ® Easy communication
technologies between the web page

. and Objective-C code
® Separating the content

(HTML) from the - Intercept calls to load
presentation (CSS) bages and call Objective-

- C Methods instead.
® Allows reuse of existing

web design expertise - Objective-C code can call

e Full Copy/Paste support Javascript methods.

UIVWebView Problems

® Very course-grain
controls:

® Performance

- Initial launch is noticeably slow

- Can become a memory hog

® Do we really need full
web support!

- Sometimes its better to use
a scalpel than a
jackhammer

- Do we really need JavaScript

Cannot easily change the
default white background

Cannot intercept AJAX calls

UIWebViewDelegate is only
notified when a page is
completely loaded.

Auto-unloading of views may
accidentally delete your
content.

A~ no:alidld e

Run 10 of 10 >

Launch App

Delete Web View
Open Web View
Delete VWeb View

How Bad is the Performance, Really?

Initial App Launch Create 19 more

Jen 4au

. \ =071 rg [O i1
WebTester - ® &) A Uil iiy e [] (1 (I
| un 14 2) :
Target Inspection Range Run 14 off14 View Library Search
|"|StrJ'T]ef't5 I LI I I B B | T rrrr o rr ey rrrrrrrrerrrryprrrrrrrr ey rrrrerrrreorrypnri rrrrrr P rrrrrrrrrrrypyrrrrrrrrreprrrerrrrrrrer gy rrrrrorronrid rrrrrrr o rrorrrrrornrgpa

’

& Allocations

P\

=~ Memory Monitor

e

E CPU Monitor
8

\t'. & Time Profiler

Opening Many Veb Views

For Those YWho Like
Numbers

® Creating the Initial VWeb View:
® Releasing the Initial Web View: -0.02 MB

® Creating additional VWeb Views:

Note: Creating and deleting 20 Web Views resulted in an
extra 0.18 MB not being released—-probably residual
memory in caches.

cnn.com simple web page

—

Cache Memory Released

Performance Based on Content

UIVWebView Conclusions

® QOverall the UlWebView is a reasonable
approach for most use cases

® Pre-load the initial web view to improve
performance

® Don’t be afraid to create multiple web views

® Sometimes, you need clever tricks to work
around its idiosyncrasies

® Jest on realistic content

Core Text

High-Octane Text Rendering

Core Text Advantages

® Designed for High Performance and Ease of Use

® Provides higher-quality typographical control
- Kerning

- Ligatures
® Great for paging apps
® Tight integration with Core Graphics (Quartz)

® Even though Core Text is a C AP, it supports many
Objective-C Objects through toll-free bridging

Core Text
Disadvantages

Very Low Level
No support for other media

No support for separating content and
presentation

No support for copy and paste

Carrier = 1:09 PM

=) A=)

77 .
lhis (s the (os

4

This is a very long line. I go on and
on. I go on and on and on. I go on and on
and on and on. This is a very long line. I
go on and on. I go on and on and on. I go

on and on and on and on.

This is a very long line. I go on and
on. I go on and on and on. I go on and on
and on and on. This is a very long line. I
go on and on. I go on and on and on. I go
on and on and on and on.

// This will be the main text-drawing view.
- (void)drawRect: (CGRect) rect {
// setup

tCContextReT context = UIGraphicsGetCurrentContext();

// This alters the tion for font drawling.
CGContextTranslateCTM(context, @, self.bounds.size.height);
CGContextScaleCTM(context, 1.0, -1.0);

// Create the Frame
UIBezierPath* path =
[UIBezierPath bezierPathWithRect: [self contentBounds]];

CTFramesetterRef framesetter =
CTFramesetterCreateWithAttributedString((CFAttributedStringRef)self.text);

CTFrameRet fTrame =
CTFramesetterCreateFrame(framesetter, CFRangeMake(®, 0), path.CGPath, nil);

// Draw the text
CTFrameDraw(frame, context);

// Release the frame
CFRelease(framesetter):
CFRelease(frame);

Drawing lext

// Cr the string with .
NSMutableAttributedString* string =
[[NSMutableAttributedString alloc]
initWithString:@"This is the top\n"];

// Set the tit

thontReT titleFont = CTFontCreateWithName(CFSTR("Zapfino"), 24, nil);

[string addAttribute:(1id)kCTFontAttributeName
value:(id)titleFont
range:NSMakeRange(0, 15)];

CFRelease(titleFont);
'/ Center the title

CTTextAlignment theAlignment = kCTCenterTextAlignment;
CTParagraphStyleSetting alignment;

alignment.spec = kCTParagraphStyleSpecifierAlignment;
alignment.valueSize = sizeof(CTTextAlignment);
alignment.value = &theAlignment;

CTParagraphStyleRef centered = CTParagraphStyleCreate(&alignment, 1);
[string addAttribute:(1id)kCTParagraphStyleAttributeName
value:(id)centered

range:NSMakeRange(®, 15)];

CFRelease(centered):

Building The Title

-

// Now add the body text
for (int 1 = 0; 1 < 2; 1++) {

NSAttributedString *addition =
[[NSAttributedString alloc] initWithString:@"\tThis is a very lon

[string appendAttributedString:addition];
[addition release];

f Cat

// Set the body text's font
CTFontRet bodyFont =
CTFontCreateWithName(CFSTR("Times New Roman"), 18, nil);

-

CTFontRef bodyItalicFont =
CTFontCreateCopyWithSymbolicTraits(bodyFont,
0.0,
nl !-,
kKCTFontItalicTrait,
kCTFontItalicTrait);

[string addAttribute:(id)kCTFontAttributeName
value:(ic)bodyItalicFont
range:NSMakeRange(16, [string length] - 17)1];

CFRelease(bodyFont);
CFRelease(bodyItalicFont);

Building the Body lext

Core Text Conclusions

® Use Core Text when you need more
performance or control than the
UlWebView can provide

® Be prepared to do a lot of the work
yourself

Questions!

Contact Info:

Rich Warren

email: rikiwarren@me.com

blog: http://freelancemadscience.blogspot.com

twitter:@rikiwarren

