
Daniel Jalkut
Red Sweater Software

Unit Testing on the Mac

Who Cares?

• People are passionate about unit testing
•Decide for yourself by understanding:
-What unit testing is...
-What are the costs and benefits...
-How much work for your Mac project...

•A critical examination, observation, or
evaluation
• Code that confirms an expected behavior of
some other code:

if ((GetPI() < 3.14) || (GetPI() > 3.14))
{
 printf("Oh crap, we’re screwed.\n");
}

What are Tests?

Example: Does my addition function produce the
expected answer “7” for the question “3 + 4” ?

What are Unit Tests?

• “Just Code”
• Run systematically
• Ideal properties
- Fast execution
- Small scope
- Limited external dependencies

Example: “Does my addition function produce
similar results to Google’s calculator, for a
collection of fixed and randomized inputs?”

Integration Tests

• Larger scope
•May use variable inputs (fuzzing!)
•May use external dependencies
•May take longer to run

MANTRA: “Trust, but verify!”

Why Test?

• Lock-in correct behavior
•Document your code base
• Inspire a cleaner architecture
• Confidence!

Why Skip it?

• It takes time
• Some code bases are particularly hard
•May provide false confidence
• Because Wil Shipley says so

Testing with Xcode

•OCUnit is bundled with Xcode
• Create a unit testing bundle target
•Write concrete subclasses of SenTestCase
• Link to your product directly or to a subset of
your app’s source files

SenTestCase Subclasses

• The magic of test case classes
• For every method starting with “test”...
- A setup method is run.
- The test method itself is run.
- A tearDown method is run.

STAssertTrue(NO, @"Sabotaged this test!");

STFail(@"This one, too!");

STAssertEqualsWithAccuracy(0.95, 1.05, 0.1, @"Close enough!");

Be More Assertive!

•Any failed assertion triggers a build error
•A variety of assertion macros are available:

@implementation MyTestCase

- (void) testStringReversal
{
! NSString* helloString = @"Hello.";
! NSString* expectedString = @".olleH";
! NSString* actualString = nil;

! // Reverse the string
! actualString = [helloString stringByReversing];

! // Confirm expectation
! STAssertEqualObjects(expectedString, actualString,
! ! ! ! @"Oh crap, we're screwed.");
}

@end

A Simple Test

When Things Go Wrong...

What should you test?

From the start...

• Test-driven development
•Writing complex or hard to reason code
• Lock-in contractual expectations

After-the-fact...

• Bug cases as you fix them
• Exploring and confirming code behavior
• Code coverage

Un-Perfecting Unit Tests

• Some testing better than no testing
• Common issues I have run into:
- Faking dependencies
- Packaging input materials
- Testing asynchronous code
- Simulating network behavior

Fakes, Mocks and Hacks

• Fakes mimic the interface of a real object
•Mocks confirm interactions with a fake object
•OCMock is one solution, but not bundled
•Hacks get the job done
-Methods designed for tests only
- Pre-processor macros to alter behavior
- Etc., Etc.

Packaging Inputs

• Some tests require cumbersome data
•Difficult to encode directly into source files
• Solution: Copy them into the test bundle

testData = [self dataFromTestInputFilename:@"Test1"];

[self performTestWithData:testData];

RSTestCase

• Subclass of SenTestCase
• Standardizes loading of bundled data
• Loads strings or data by simple filename
•Name of input folder can be overriden

Get RSTestingKit! http://bit.ly/RSTestingKit

http://bit.ly/RSTestingKit
http://bit.ly/RSTestingKit

Asynchronous Code

• Some code paths involve a run loop callback
• Test cases expect to be run serially
• Solution: Codify a start/wait mechanism

Get RSTestingKit! http://bit.ly/RSTestingKit

http://bit.ly/RSTestingKit
http://bit.ly/RSTestingKit

[self setTimeoutFailureString: @"Waiting for Godot"];

[self startWaitingForGodot];

[self waitForRunLoopTestCompletion];

STAssertTrue(mGodotIsHere, @"Godot should be here.");

RSRunLoopWaitingTestCase

• Subclass of RSTestCase
• Spins RunLoop until completion criteria are
met

Get RSTestingKit! http://bit.ly/RSTestingKit

http://bit.ly/RSTestingKit
http://bit.ly/RSTestingKit

HTTP Client Code

• Code relies on web-based services
• Behavior determined by web responses
• Solution: Simulate an HTTP network service

Get RSTestingKit! http://bit.ly/RSTestingKit

http://bit.ly/RSTestingKit
http://bit.ly/RSTestingKit

RSHTTPClientTestCase

• Subclass of RSRunLoopWaitingTestCase
• Sends a request and waits for synthetic reply
•Allows you to colocate the code for both the
request and response code.

Get RSTestingKit! http://bit.ly/RSTestingKit

http://bit.ly/RSTestingKit
http://bit.ly/RSTestingKit

Request Kick-off

! - (void) testSomeHTTPThing
! {
! ! NSURL* simpleHTTPRequestURL =
! ! ! [self serverURLForHTTPTestNamed:@"SimpleHTTPRequest"];

! ! // Kick-off some network request with simpleHTTPRequestURL
! ! ...

! ! // Wait for completion
! ! [self waitForRunLoopTestCompletion];

! ! // Define STAssertions that validate result
! ! ...
! }

Get RSTestingKit! http://bit.ly/RSTestingKit

http://bit.ly/RSTestingKit
http://bit.ly/RSTestingKit

Response Synthesis

- (GTMHTTPResponseMessage *)
! responseForTestRequest_SimpleHTTPRequest:
! (GTMHTTPRequestMessage *)request
{
! // Do anything to fabricate an HTTP response for the test
! return [GTMHTTPResponseMessage
! ! responseWithHTMLString:@"<hello>"];
}

Get RSTestingKit! http://bit.ly/RSTestingKit

http://bit.ly/RSTestingKit
http://bit.ly/RSTestingKit

In Summary

• Consider testing!
• For increased confidence in your code
•Don’t settle for limitations of Apple’s tools
• Break the “rules” as much as necessary to get
the job done.

One
More
Thing.

Find Me on Twitter: @danielpunkass
Get RSTestingKit! http://bit.ly/RSTestingKit

http://bit.ly/RSTestingKit
http://bit.ly/RSTestingKit

