
Managing Data 
with 
Version Control
Zack Williams
zdw@artisancomputer.com
http://artisancomputer.com

mailto:zdw@artisancomputer.com
mailto:zdw@artisancomputer.com
http://artisancomputer.com
http://artisancomputer.com


This is not 
a tutorial



Defining the problem



WTB: Business Tools

•Documenting work performed

•Accounting

•Organization

•Multiple users

•Backup, data integrity, etc. 



What are my options?
Hosted Solutions File Sync Version Control

Data Types Limited Any Any

History Maybe None, or Limited Full

Offline Access None, or Limited Yes Yes

Sync Method May exist Automatic User initiated

Conflict 
Resolution

Last change wins
Duplicates or

Last change wins
Manual



What is a Version 
Control System (VCS)? 

•A way to keep changes made to multiple 
copies of a set of files consistent 

•Files are kept in Repositories (repos)

•Changes are logged, older versions 
retained

•Manual reconciliation of conflicts



Basic Concepts

•Get a copy of a repository



Basic Concepts

•Get a copy of a repository

•Make changes to files, add and remove



Basic Concepts

•Get a copy of a repository

•Make changes to files, add and remove

•Describe and commit changes

Commit: P
ainted Two 

Eggs



Basic Concepts

•Get a copy of a repository

•Make changes to files, add and remove

•Describe and commit changes

•Put the changes back 
into the repo

Commit: P
ainted Two 

Eggs



Distributed VCS

•Creates a local copy of the remote repo

•Local changes can be pushed to the 
remote repo

•Changes in the remote repo can be 
retrieved

•Communication is SSH wrapped



Problems VCS solves

•Data is always available, no network 
required

•Changes eventually make it to everyone

•Data loss is unlikely

•Everyone has entire repo history

•Bad changes can be rolled back

•Data is checksummed on disk



What should I use?

•One of the big two:

•Git (git)

•Mercurial (hg)

•For the most part, they’re functionally 
identical



GUI or CLI?

•Both can do the basics

•CLI is more flexible, scriptable, more 
docs available

•GUI is better for browsing history

•Repos are just files on disk - use the tools 
you like



GUIs

•git - GitX, GitBox, Tower, SourceTree, 
GitHub for Mac, and more.

•hg - SourceTree, MacHG

•File status in Xcode, Vim, Textmate

•GUI diff tools 

•Filemerge, Kaleidoscope, etc.



Hosting

•Commercial Providers

•GitHub, Bitbucket, etc. 

•Self hosting

•Nearly any server with SSH

•Access Controls via gitolite, 
mercurial-server



Limitations

•Designed to work with code

•Plain text works great

•Other formats can be opaque to diff 
tools

•Large binary files are problematic



What should I keep in a 
repo?

•Things created by people

•Tools inside of tools!

•Unique or hard to reproduce data

•Not for ephemera, as a 
messaging system, etc.



Applying the tools to 
the problem... 



Documentation

•You will make notes

•They will be important

•They will change over time

•Use text for everything

•Including accounting data



Documentation

•You will make notes

•They will be important

•They will change over time

•Use text for everything

•Including accounting data



Demo



What else?

•Documentation driven design

•Automation

•Local software likes local files



Learn your 
environment

•Most people use a very small fraction of 
the tools available

•Build on the shoulders of giants



Repo for this Preso:

https://github.com/zdw/


