TweetFollow Us on Twitter

Developer to Developer: Thanks for the Memory-Part 2

Volume Number: 26
Issue Number: 11
Column Tag: Developer to Developer

Developer to Developer: Thanks for the Memory-Part 2

A look at how memory is managed in Objective-C

by Boisy G. Pitre


If you followed last month's Developer to Developer column, you'll recall that we went through an introduction to memory management in Objective-C and Cocoa applications. That article was well suited to those who were new to Mac and iOS development, and touched on a number of concepts that are unique to Apple's development environment. For comparison, we also looked at how memory management is done in C and C++. Also, we touched on how Java programmers are greatly insulated from any memory considerations due to garbage collection.

This month we'll build upon the previous article and wade a little deeper into the waters of Objective-C memory management. We will start out by looking at a special subclass of NSObject that we can use to see just how our objects behave when they are created, retained, released and deallocated. We'll also take a look at the NSAutoreleasePool class, which gives us a convenient way to defer the release of an object and the return of its memory to the system. Finally, we will take Instruments, Apple's robust developer tool, for a spin.

Seeing Is believing

As we discussed last month, memory management in Objective-C consists of requesting an ownership interest in an object by retaining it, and relinquishing that ownership interest by releasing it. These operations can occur numerous times within an application for the same object. Balancing them is key to insuring that the memory that an object occupies is not left to leak while the application runs. Conversely, we must guard against the memory being returned to the system too soon, which could result in a crash, depending upon how that object is accessed later.

How convenient would it be to actually visualize this process happening in real-time? Well, it can be done, and quite readily, by subclassing NSObject and creating a new base class which overrides the retain and release methods, among others. And that's exactly what we will do. I highly recommend that you follow along by downloading the code for this month's article from the MacTech FTP source archive at and launching the project file in Xcode. The application is made up of simple, contrived examples that are useful in illustrating the mechanics of object allocation and deallocation.

When determining what methods to override, we can consult two resources: the NSObject Class Reference (available in the Xcode's Developer Documentation, accessible from the Xcode Help menu) or the NSObject.h header file itself. Let's take the header file route and take a peek at NSObject.h directly. To do this easily from within Xcode, go to the File > Open Quicky... menu option, then type NSObject.h. It should appear in the drop down box; select it and it will be displayed in an Xcode text editor window.

Figure 1 - Opening the NSObject.h header file

The header file is composed of several sections: basic protocols, the base class, discardable content and object allocation/deallocation. For this article, we're going to focus on methods in the basic protocols and base class sections of the header file (starting at lines 11 and 63 respectively of the header file in the 10.6 SDK). Of the methods declared in the basic protocols section, let's override the following:

- (id)retain;
- (oneway void)release;
- (id)autorelease;

Similarly, let's override the following methods declared in the base class section:

- (id)init;
- (void)dealloc;

Lastly, for informational purposes, we'll override this method:

+ (id)allocWithZone:(NSZone *)zone;

There may be some questions as to the choice of methods to override. Remember, we are trying to capture the memory management operations in a way that allows us to visually confirm them as they happen. Most of the above methods are vectors for the retain count changing. By overriding these methods with methods in a subclass that (a) calls the same method in NSObject, and (b) logs the call itself and the retain count, we can see Objective-C memory management in action.

As mentioned earlier, overriding the methods requires subclassing NSObject. We'll create a new class just for the Developer to Developer column, DDObject, as a direct descendant of NSObject, so any class who inherits from DDObject will automatically benefit from the methods that we will embellish. Let's start out by looking at the code for the retain and release methods:

- (id)retain;
   id result = [super retain];
   NSLog(@"[%@ retain] (retainCount = %d)", [self className], [self retainCount]);
   return result;
- (oneway void)release;
   NSLog(@"[%@ release] (retainCount = %d)", [self className], [self retainCount] - 1) withLevel:TBLogLevelInfo];
   [super release];

Both methods mimic the return values of their original definitions in NSObject.h and use the NSLog() function to show the name of the class and the retain count. The retain method returns the retain count after the superclass' retain method is called, while the release method shows the retain count first. This ordering insures that we see the true retain count value at the appropriate place and time.

The init and dealloc methods are also points where observing the retain count can be instructive, so we'll extend these as well:

- (id)init;
   if (self = [super init])
      NSLog(@"[%@ init] (retainCount = %d)", [self className], [self retainCount]);
   return self;
- (void)dealloc;
   NSLog(@"[%@ dealloc]", [self className]);
   [super dealloc];

Even though we explicitly call retainCount in the init method, it will always print a retain count of 1. The dealloc method is called only when the retain count goes to 0; since a release call precedes this, we'll forego logging the retain count, and simply log that we are deallocating the object's memory here.

Finally, we'll override the allocWithZone: method, which will clue us in when an allocation is taking place (as we'll see shortly, the alloc method actually calls allocWithZone: with a zone of 0):

+ (id)allocWithZone:(NSZone *)zone;
   NSLog(@"[%@ allocWithZone:%d]", [self className], zone);
   return [super allocWithZone:zone];

Now that the pieces are in place, let's take a look at memexplore.m. This file contains the main() function, several test functions, and the interface and implementation for the MemObject class. This class extends the DDObject class which we just reviewed, so we would expect to see some interesting output when we run the test. Let's go ahead and do that now. First, build the memexplore target (Build > Build). Next, ensure that the Debugger Console is in focus so that the logging results can be seen (Run > Console). Finally, run the application (Run > Run). A menu appears where you can type the number of the test to perform. Let's run the allocRunRelease test by typing 1 then the return key.

Figure 2 – Output of the allocRunRelease test

The output of this test clearly shows the steps in which our MemObject comes to life, runs, then is finally released. As expected, the init method shows that the retain count is 1. The run method is then called, and finally the release method. Recall that this method decrements the retain count by 1; this is confirmed by the retain count falling to 0, and the dealloc method being implicitly called after that. Just to be convincing that the retain count can go higher, the allocRunReleaseMultiple test performs a retain after allocating and initializing the MemObject object, as well as an extra release. The net effect is the same: the object's dealloc method is called when the retain count falls to 0. Go ahead and run this test as well.

Figure 3 - Output of the allocRunReleaseMultiple test

One might conclude that the "hands-on" memory management aspect of Objective-C is a bit laborious. After all, we not only explicitly allocate and initialize an object, we must also take care to properly release it. Not releasing an object after we are done with it denies the use of that memory elsewhere; if an application doesn't release an object properly, it will stay around until the application quits, which could be a short time or a long time. Even though current systems contain gigabytes of memory and can accommodate a bit of sloppy memory management, it is considered bad programming practice to tolerate memory leaks. On mobile devices such as the iPhone and iPad where resources are limited, it is even more critical to wipe out these types of memory leaks.

Swimming In The NSAutoreleasePool

As we discussed, balancing retains with releases insures that we avoid memory leaks or crashes. It is a disciplined approach, and forces us to think about the lifetimes of our objects. However, Cocoa gives us a bit of a reprieve from the tedium of retain count management. We can make things a little easier for ourselves by conveniently deferring the return of an object's memory to the system using a special type of class provided by the Cocoa framework: NSAutoreleasePool.

An autorelease pool acts as a sort of dumping site for objects; upon receiving an object, the pool dutifully records a reference to the memory location of objects for later releasing. Any object can be relegated to the autorelease pool by having the autorelease message sent to it:

   SomeObject *s = [[[SomeObject alloc] init] autorelease];

The autorelease message allows us to pass complete responsibility of releasing the object to the NSAutoreleasePool. By doing this, we essentially wash our hands of further worry about the lifetime of the object and the memory that it is taking up. In the above code fragment, the object s receives the autorelease message after the alloc and init messages; subsequent to that, we can use the object as needed but should not send the release message to the object. That will be performed by the autorelease pool at a later time.

Exactly where autorelease pools are created depends upon the context in which you are writing your program. In Cocoa applications, an autorelease pool is created for you automatically, so you don't have to concern yourself with its creation. However, if you are using threads, you will need to create and manage your own autorelease pool for that thread. And in the case of a command line based program such as memexplore, it is necessary to create an autorelease pool as well.

Autorelease pools can be created many times, with the most recent pool being the one that receives any objects that receive the autorelease message. In essence, autorelease pools are stacked as they are created. When the topmost autorelease pool is destroyed, the next autorelease pool will receive autoreleased objects. Destroying an autorelease pool is similar to destroying any object: sending a release message to the pool will cause it to in turn send release messages to all objects that it holds, and finally the pool itself is deallocated. A slight twist on this is that since the release of Objective-C 2.0 and garbage collection, the drain message is the desired message to send to an autorelease pool instead. This message performs the same function as the release message, but does additional work in a garbage collected environment. For our code, we'll use the drain message when releasing our pools.

Can we peek into an autorelease pool? We certainly can, thanks to the NSDebug.h header file's NSAutoreleasePoolDebugging category. The showPool message, when sent to an autorelease pool object, will display the contents of all pools in the pool stack to the standard error path. We use this debugging method in several of our test programs to illustrate what the pool looks like just before it is drained. To illustrate this, run test 1 (allocRunRelease) then test 5 (allocRunReleaseWithPoolOverRetain). The final output will look like this:

==== top of stack ================
  0x100110b00 (NSCFString)
  0x100110ae0 (NSCFString)
  0x100110920 (MemObject)
  0x100110a70 (NSCFString)
  0x100110a50 (NSCFString)
  0x100110a30 (NSCFString)
==== top of pool, 6 objects ================
  0x1001109b0 (NSCFString)
  0x1001109e0 (NSCFString)
  0x100110990 (NSCFString)
  0x1001108b0 (NSCFString)
  0x100110070 (NSCFString)
==== top of pool, 5 objects ================

The pool appearing on the very top of the stack was created in the allocRunReleaseWithPoolOverRetain() function and has 6 objects, including a MemObject which we overretained and is just leaking. The next pool was created in the main() function has 5 objects. You may be wondering what is going on with all of the NSCFString objects in the autorelease pool. Those are the various string literals which appear in the NSLog() functions that have been executed during the program's run. As objects themselves, these strings require memory management, and they are automatically added to the autorelease pool when initialized.

Pool Hazards

As convenient as autorelease pools are, they must be used with care. The same problems that we discussed last month (overretaining/underreleasing or overreleasing/

underretaining) can still lead to memory leaks or crashes. A common mistake that many beginning programmers make is to send a release message to an object after it has been sent an autorelease message. The net effect of that transgression is that the object will end up being overreleased, and a crash is likely. The allocRunReleaseWithPoolOverRelease test illustrates this poignantly.

   NSAutoreleasePool * pool = [[NSAutoreleasePool alloc] init];
   NSLog(@"- allocRunReleaseWithPoolOverRelease -");
   MemObject *s1 = [[[MemObject alloc] init] autorelease];
   [s1 run];
   [s1 release];
   [NSAutoreleasePool showPools];
   [pool drain];

Note that the autorelease message is sent to the s1 object upon creation, then a release message follows. It is at that point which the object's retain count goes to 0 and its dealloc method is called. Since its reference is also in the autorelease pool, the simple act of sending the showPools method is enough to trigger an access exception and crash the program.

Another interesting hazard is having no autorelease pool at all. Without an autorelease pool, objects sent an autorelease message (including NSCFString string literals that we saw above) have nowhere to go, and just leak all over the place. If you ever see a message like this coming from your application:

*** __NSAutoreleaseNoPool(): Object 0x100110770 of class NSCFString autoreleased with no pool in place - just leaking

then you know that somewhere, an autorelease pool is needed but doesn't exist. This most commonly happens when using threads and failing to create an autorelease pool. As a rule, your thread's entry point method should create an autorelease pool at the beginning, then drain the pool at the end.

Inspecting Memory Leaks With Instruments

Apple's Instruments is part of the Xcode development suite, and is a powerful tool for strengthening and bulletproofing your applications in a number of areas. When it comes to memory usage and management, it is particularly useful, and has handy two templates that are a must: Allocations and Leaks. The former template shows you exactly what objects and how many are being allocated by your application. The latter gives you insight into where your application may be leaking memory.

Typically, Instruments can be invoked from within Xcode's Run menu. Given that our application is a windowless application whose input and output appear on the console, we'll start Instruments from the Finder and then attach to the running process.

Before starting Instruments, go ahead and run the memexplore program from within Xcode. Now let's start Instruments by navigating to the /Developer/Applications folder in the Finder and double-click the Instruments icon. You will see a window with a drop-down sheet asking for the template to use. Select the Leaks template and click the Choose button.

Figure 4 - Selecting the Leaks template from Instruments

With the template chosen, you will see the main Instruments window with both the Allocations and Leaks templates shown. Since our application is running, we can attach to it from the Choose Target button and selecting the Attach to Process menu item, then navigate the list of running processes until we find memexplore. After memexplore has been selected, click the Record button in the toolbar. This starts the process of recording all object allocations as well as the leak detection procedure.

Figure 5 - Selecting the memexplore process from Instruments

With Instruments recording the memexplore application, switch to the Xcode console and select test 5 (allocRunReleasePoolWithPoolOverRetain). This test purposely performs an extra retain to the object so that it will leak. After the test is run, switch back to Instruments and click on the Leaks template header on the left side of the window. Within a a short time, the leaked object name should appear, along with the address and size. Clicking the third button of the view group in the toolbar will reveal the extended detail including the stack trace where the leak occurred. As we can see in the stack trace, the DDObject's allocWithZone: method is where the leak originated.

Figure 6 - Instruments showing the memory leak in memexplore


As we have seen, mismanaging an object's lifetime through its retain count can have ramifications for the health of your applications. Autorelease pools give us some convenience but even so, we must still be vigilant when balancing our retains and releases. Crashes are often caused by objects being released prematurely, and leaks are the result of retaining an object beyond its lifetime. It's times like these when Apple's Instruments can pinpoint the exact spot where the leak occurred, and we can take corrective action. For those of you who have started delving into Objective-C, these articles and the accompanying code should give you a basis for understanding memory management as well as a springboard to further experimentation.

Bibliography and References

Apple. Instruments User Guide.

CocoaDev. DebuggingAutorelease.

Boisy G. Pitre lives in Southwest Louisiana and is the lead developer at Tee-Boy where he also consults on Mac and iOS projects with a variety of clients. He holds a Master of Science in Computer Science from the University of Louisiana at Lafayette. Besides Mac programming, his hobbies and interests include retro-computing, ham radio, vending machine and arcade game restoration, and playing Cajun music. You can reach him at


Community Search:
MacTech Search:

Software Updates via MacUpdate

Dash 3.4.0 - Instant search and offline...
Dash is an API documentation browser and code snippet manager. Dash helps you store snippets of code, as well as instantly search and browse documentation for almost any API you might use (for a full... Read more
RapidWeaver 7.1.7 - Create template-base...
RapidWeaver is a next-generation Web design application to help you easily create professional-looking Web sites in minutes. No knowledge of complex code is required, RapidWeaver will take care of... Read more
Printopia 2.1.22 - Share Mac printers wi...
Run Printopia on your Mac to share its printers to any capable iPhone, iPad or iPod Touch. Printopia will also add virtual printers, allowing you to save print-outs to your Mac and send to apps.... Read more
SteerMouse 5.0 - Powerful third-party mo...
SteerMouse is an advanced driver for USB and Bluetooth mice. It also supports Apple Mighty Mouse very well. SteerMouse can assign various functions to buttons that Apple's software does not allow,... Read more
Arq 5.5.1 - Online backup to Google Driv...
Arq is super-easy online backup for Mac and Windows computers. Back up to your own cloud account (Amazon Cloud Drive, Google Drive, Dropbox, OneDrive, Google Cloud Storage, any S3-compatible server... Read more
Slack 2.3.0 - Collaborative communicatio...
Slack is a collaborative communication app that simplifies real-time messaging, archiving, and search for modern working teams. Version 2.3.0: Note: Now requires OS X 10.8 or later New The app... Read more
Cocktail 10.1 - General maintenance and...
Cocktail is a general purpose utility for macOS that lets you clean, repair and optimize your Mac. It is a powerful digital toolset that helps hundreds of thousands of Mac users around the world get... Read more
Firefox 49.0.2 - Fast, safe Web browser.
Firefox offers a fast, safe Web browsing experience. Browse quickly, securely, and effortlessly. With its industry-leading features, Firefox is the choice of Web development professionals and casual... Read more
Art Text 3.1 - $49.99
Art Text is graphic design software to create stunning illustrations, such as badges, flyers, logos, social headers and icons, text mockups, website graphics and buttons, picture captions, word art,... Read more
AirRadar 3.1.9 - $9.95
With AirRadar, scanning for wireless networks is now easier and more personalized! It allows you to scan for open networks and tag them as favourites or filter them out. View detailed network... Read more

Latest Forum Discussions

See All

Oh...Sir! The Insult Simulator (Games)
Oh...Sir! The Insult Simulator 1.0 Device: iOS Universal Category: Games Price: $1.99, Version: 1.0 (iTunes) Description: | Read more »
WitchSpring2 (Games)
WitchSpring2 1.27 Device: iOS Universal Category: Games Price: $3.99, Version: 1.27 (iTunes) Description: This is the story of Luna, the Moonlight Witch as she sets out into the world. This is a sequel to Witch Spring. Witch Spring 2... | Read more »
4 popular apps getting a Halloween makeo...
'Tis the season for all things spooky. So much, so, in fact, that even apps are getting into the spirt of things, dressing up in costume and spreading jack o' lanterns all about the place. These updates bring frightening new character skins, scary... | Read more »
Pokémon GO celebrates Halloween with can...
The folks behind Pokémon GO have some exciting things planned for their Halloween celebration, the first in-game event since it launched back in July. Starting October 26 and ending on November 1, trainers will be running into large numbers of... | Read more »
Best Fiends Forever Guide: How to collec...
The fiendship in Seriously's hit Best Fiends has been upgraded this time around in Best Fiends Forever. It’s a fast-paced clicker with lots of color and style--kind of reminiscent of a ‘90s animal mascot game like Crash Bandicoot. The game... | Read more »
5 apps for the budding mixologist
Creating your own cocktails is something of an art form, requiring a knack for unique tastes and devising interesting combinations. It's easy to get started right in your own kitchen, though, even if you're a complete beginner. Try using one of... | Read more »
5 mobile strategy games to try when you...
Strategy enthusiasts everywhere are celebrating the release of Civilization VI this week, and so far everyone seems pretty satisfied with the first full release in the series since 2010. The series has always been about ultra-addictive gameplay... | Read more »
Popclaire talk to us about why The Virus...
Humanity has succumbed to a virus that’s spread throughout the world. Now the dead have risen with a hunger for human flesh, and all that remain are a few survivors. One of those survivors has just called you for help. That’s the plot in POPCLAIRE’... | Read more »
Oceans & Empires preview build sets...
Hugely ambitious sea battler Oceans & Empires is available to play in preview form now on Google Play - but download it quickly, as it’s setting sail away in just a few days. [Read more] | Read more »
Rusty Lake: Roots (Games)
Rusty Lake: Roots 1.1.4 Device: iOS Universal Category: Games Price: $2.99, Version: 1.1.4 (iTunes) Description: James Vanderboom's life drastically changes when he plants a special seed in the garden of the house he has inherited.... | Read more »

Price Scanner via

Apple refurbished 2015 13-inch MacBook Airs a...
Apple has Certified Refurbished 2015 13″ MacBook Airs available starting at $759. An Apple one-year warranty is included with each MacBook, and shipping is free: - 2015 13″ 1.6GHz/4GB/128GB MacBook... Read more
64GB Apple TV on sale for $159, save $40
Best Buy has the 64GB Apple TV on sale for $40 off MSRP on their online store. Choose free shipping or free local store pickup (if available). Sale price for online orders only, in-store price may... Read more
EyeQue Introduces iOS And Android Based Advan...
Affordable vision technologies developers EyeQue have announced what they claim to be the world’s most advanced intelligent vision solution, pitched as enabling anyone, anywhere to easily and... Read more
Smartwatch Market Tanks, Declining 51.6% in 2...
The worldwide smartwatch market experienced a round of growing pains in the third quarter of 2016 (3Q16), resulting in a year-over-year decline in shipment volumes. According to data from the... Read more
CAZE announces Ultra Thin Glass Screen Protec...
Hong Kong based CAZE has announced its first ultra thin glass screen protector, the Glazz Pro for iPhone 7/7 Plus. Glazz Pro is made from chemically reinforced glass with an anti-fingerprint... Read more
11-inch MacBook Airs on sale for up to $120 o...
Newegg has 11″ MacBook Airs on sale for up to $120 off MSRP. Shipping is free: - 11″ 1.6GHz/128GB MacBook Air: $799.99 $100 off MSRP - 11″ 1.6GHz/256GB MacBook Air: $979 $120 off MSRP Read more
Up to $300 off Macs, $20 off iPads with Apple...
Purchase a new Mac or iPad using Apple’s Education Store and take up to $300 off MSRP. All teachers, students, and staff of any educational institution qualify for the discount. Shipping is free, and... Read more
Apple’s Thursday “Hello Again” Event A Largel...
KGI Securities analyst Ming-Chi Kuo, who has a strong record of Apple hardware prediction accuracy, forecasts in a new note to investors released late last week that a long-overdue redo of the... Read more
12-inch Retina MacBooks on sale for $100 off...
Amazon has 2016 12″ Apple Retina MacBooks on sale for $100 off MSRP. Shipping is free: - 12″ 1.1GHz Silver Retina MacBook: $1199.99 $100 off MSRP - 12″ 1.1GHz Gold Retina MacBook: $1199.99 $100 off... Read more
Save up to $600 with Apple refurbished Mac Pr...
Apple has Certified Refurbished Mac Pros available for up to $600 off the cost of new models. An Apple one-year warranty is included with each Mac Pro, and shipping is free. The following... Read more

Jobs Board

*Apple* Retail - Multiple Positions - Apple,...
Job Description: Sales Specialist - Retail Customer Service and Sales Transform Apple Store visitors into loyal Apple customers. When customers enter the store, Read more
*Apple* Solutions Consultant - Apple (United...
# Apple Solutions Consultant Job Number: 52812872 Houston, Texas, United States Posted: Oct. 18, 2016 Weekly Hours: 40.00 **Job Summary** As an Apple Solutions Read more
Lead *Apple* Solutions Consultant - Apple (...
# Lead Apple Solutions Consultant Job Number: 52812906 Houston, Texas, United States Posted: Oct. 18, 2016 Weekly Hours: 40.00 **Job Summary** The Lead ASC is an Read more
*Apple* Retail - Multiple Positions- Towson,...
Job Description: Sales Specialist - Retail Customer Service and Sales Transform Apple Store visitors into loyal Apple customers. When customers enter the store, Read more
Software Engineering Intern: Integration / QA...
Job Summary Apple is currently seeking enthusiastic interns who can work full-time for a minimum of 12-weeks between Fall 2015 and Summer 2016. Our software Read more
All contents are Copyright 1984-2011 by Xplain Corporation. All rights reserved. Theme designed by Icreon.