TweetFollow Us on Twitter

Simple Call Stack Logging

Volume Number: 25
Issue Number: 06
Column Tag: Programming

Simple Call Stack Logging

Who called NSLog()?

by Sengan Baring-Gould

In this article I present an extension to NSLog() which not only prints out a user specified message but also lists the function calls that led to its invocation. By the end of this article you will have a new tool you can use in your own applications, and you'll understand how it works so that you can adapt it to your needs.

Why log?

NSLog() is an important tool for debugging. It can be placed anywhere in an application to log internal state.

Many programmers prefer logging to using a debugger, as it helps them concentrate on possible causes of a problem while filtering out irrelevant information. Logging provides a complete textual record of the problem that can be studied later.

Debuggers on the other hand interrupt the developer who must record by hand all the relevant state before letting the application continue. Continuing is an unforgiving operation: once performed, prior state that was not recorded is lost.

Brian W Kernighan (one of the authors of the seminal text on the C language) said:

"As a personal choice, we tend not to use debuggers beyond getting a stack trace or the value of a variable or two. One reason is that it is easy to get lost in details of complicated data structures and control flow; we find stepping through a program less productive than thinking harder and adding output statements and self-checking code at critical places. Clicking over statements takes longer than scanning the output of judiciously-placed displays. It takes less time to decide where to put print statements than to single-step to the critical section of code, even assuming we know where that is. More important, debugging statements stay with the program; debugger sessions are transient".

However, if NSLog() is invoked from a function that is called from many other functions, determining which function call caused the bug can be very difficult. We need a record of the function calls that led to the invocation of NSLog().

Where we are headed

Our new debug function debugLog() will print out any message we want the same way NSLog() does. Following the message, it will list the function invocations that led it to be called:

2009-04-05 15:37:58.119 TestDebugLog[14442:10b] C++ constructor
        0000301f — CPP::CPP() + 33             (TestDebugLog)
        0000316c — main + 86                   (TestDebugLog)
        00001a5e — start + 54                  (TestDebugLog)

The first line follows NSLog()'s traditional format: the date, the time, the name of the application (TestDebugLog) and then the message we passed as argument: "C++ Constructor".

On the next lines, debugLog() lists the function invocations that led it to be called:

  • debugLog() was called from the C++ constructor CPP::CPP() defined in TestDebugLog.
  • CPP:CPP() was called by main also defined in TestDebugLog.
  • main was called by start also defined in TestDebugLog. (start is the function the Operating System calls when it starts an application).

The module name between parentheses specifies where a function is defined. In the following example, NSPopAutoreleasePool is shown to be defined in the Foundation framework:

2009-04-05 15:40:03.921 TestDebugLog[14462:10b] Objective-C dealloc
        000030d3 — [Objc dealloc]  + 33        (TestDebugLog)
        91117e4f — NSPopAutoreleasePool + 431  (Foundation)
        000031d1 — main + 207                  (TestDebugLog)
        00001a4a — start + 54                  (TestDebugLog)

Obtaining the list of function invocations

Obtaining the list of function invocations to print is a two step process. First, debugLog() must obtain the addresses of the functions that called it. A computer uses addresses to keep track of what it is doing, but addresses are not specified in a program's source-code.

Then debugLog() must translate these addresses into the function names that appear in the program's source code. Three different methods are required to obtain C, C++, and Objective-C function names.

1. Retrieving the list of called functions' addresses

Compilers transform source-code into machine code that computers understand. When a function is called, the caller's return address must be saved so that the CPU can continue running the caller after the function invocation completes. In the context of this discussion, we will assume that these return addresses are stored on the stack. (We will ignore specific optimizations used by the PowerPC and x86 CPUs).

Unfortunately, the stack also records other information, such as local variables and function arguments. Determining precisely which items in the stack are return addresses requires compiler specific knowledge. Conveniently, the new version of gcc which ships with Leopard provides a new function, backtrace(), which gives us the return addresses in the current stack.

Remember that inlined functions are embedded within their callers rather than being invoked. This means backtrace will not see them in the stack and they will not be listed by debugLog().

2. Function layout in memory

Functions are compiled independently by the compiler and occupy contiguous areas of memory. Therefore if we know the starting addresses of any two consecutive functions f and g, and if we have an address x which falls between f and g ( &f <= x < &g ), we know that x belongs to the function f.

One rarely has addresses that match the beginning of each function precisely. Therefore function-lookup functions are designed to return information about the preceding function when given an address. Our case matches this scenario: the return addresses provided by backtrace occur within functions. Thus we can safely ignore the difference between return addresses and starting function addresses for most of this discussion. Similarly, we'll adopt the standard convention of referring to starting function addresses as function addresses.

3. Retrieving C function names

When an application is first loaded into memory, it needs to be told the addresses of the external library functions it wants to use. Because libraries are updated independently of applications, the addresses of their functions may change, although the names of their functions will not. It is the responsibility of the dynamic linker to give each application this information.

The dynamic linker reads function names from a symbol table embedded in the application and the libraries the application uses. The symbol table lists all the C function addresses and the C function names that can be accessed externally. Therefore if we know an address, we can ask the dynamic linker for the corresponding function name. The backtrace_symbols() function provides this functionality.

Because the dynamic linker only knows about externally visible function names, backtrace_symbols() always returns the nearest preceding external symbol. Static C functions are not exported and will not be given the correct name by the linker.

Most symbols will be exported as external if you compile your application in Debug Configuration. This is not true if you compile it in Release Configuration. The UNIX utility nm lists exported function names with a preceding capital T letting you check if an unexpected function name shows up.

4. Retrieving Objective-C method names

Objective-C does not use the dynamic linker. Instead it uses the Objective-C runtime, which like the dynamic linker keeps track of all known method addresses and names. (A method is a function defined within a class). However there is no equivalent to backtrace_symbols() which returns a function name when given a function address. We must build one ourselves.

The Objective-C runtime provides a function to enumerate all the Objective-C classes that can be invoked by the application, including those in the frameworks bound to the application. It also provides a function to enumerate the methods in any Objective-C class. With these components we can obtain every method's address and name.

Implementation

This code is Objective-C++ so don't forget to use the ".mm" extension for your implementation filename. We start with the necessary includes:

DebugLog Implementation File: SBGDebug.mm

#include "SBGDebug.h"
#include <cxxabi.h>
#include <map>
#include <string>
#include <execinfo.h>
#include <stdio.h>
#import <objc/Object.h>

1. Finding Objective-C methods

We want to build a method-lookup function that will return the method in which an address lies. We know how to enumerate the name and address of every Objective-C method available to the application, but this enumeration is expensive. Therefore we need a data structure in which to store the locations of the member functions.

The data structure must return the correct member function when queried with any address belonging to that member function. NSDictionary does not provide this functionality, but C++'s Standard Template Library's (STL) map container does.

map::upper_bound returns an iterator to the first element in the map whose key is larger than the queried key. For a map with method addresses as keys and method names as values, map::upper_bound will return an iterator pointing to the name of the method following the one we are looking for. Simply decrementing the iterator will make it point to the preceding method name.

// Lookup Function names
static std::map<uint32, std::string>* objectiveCMethodNames = NULL;
inline static uint32 lookupFunction(uint32 addr, const char** name)
{
   if (objectiveCMethodNames == NULL)
      return NULL;
     // Find the next function
   std::map<uint32, std::string>::iterator iter
      = objectiveCMethodNames->upper_bound( addr );
    // Go back a function: now we are looking at the right one!
   —iter;
   *name = iter->second.c_str();
   return iter->first;
}

Populating the STL map is a simple matter of iterating through all the classes known to the Objective-C runtime, and enumerating their methods.

// Add classes by stepping through their method lists.
inline static void  addObjectiveCMethod(uint32 addr, const char* name)
{   (*objectiveCMethodNames)[addr] = std::string(name); }
void addClass(Class c)
{
   unsigned int method_count;
   Method *method_list = class_copyMethodList(c, &method_count);
   for (int i = 0; i < method_count; i++)
   {
      Method      func = method_list[i];
      const char* name = sel_getName( method_getName( func ) );
      uint32      addr = (uint32) method_getImplementation( func );
      addObjectiveCMethod(   addr,
                           [[NSStringstringWith Format:@"[%s %s]",
                           class_getName(c), name] cString]);
   }
}

We could call the code that enumerates the Objective-C methods explicitly from main, but that requires remembering to add the call to each new application that uses debugLog(). Instead I can put the enumeration code into the load method of an Objective-C class which is guaranteed to be called if debugLog() is built into the application. The only gotcha is that the load method is invoked before Cocoa has created an NSAutoreleasePool. That's why the code below creates its own NSAutoreleasePool to avoid memory leaks.

@implementation SBGDebug
+ (void) load
{
   if (objectiveCMethodNames != NULL)
      return;
   NSAutoreleasePool* pool = [[NSAutoreleasePool alloc] init];
   objectiveCMethodNames = new std::map<uint32, std::string>();
   int numClasses = objc_getClassList(NULL, 0);
   if (numClasses > 0 )
   {
      Class *classes = (Class*) malloc(sizeof(Class) * numClasses);
      numClasses     = objc_getClassList(classes, numClasses);
      for (int i = 0; i < numClasses; ++i)
         addClass(classes[i]);
      free(classes);
   }
   [pool release];
}
@end

2. Deciding whether a function is C, C++ or Objective-C

The return addresses provided by backtrace() could belong to a C function, a C++ function or an Objective-C method. We need a way to decide which case we're dealing with. We start by asking both the C/C++ function-lookup function and the Objective-C method-lookup function to what function they believe a return address belongs. We will obtain two addresses a and b which should both be smaller than the return address r. Because functions are contiguous and do not intersect with each other, a and b must differ, and one of them must be lower than the other. For the same reason, the return address r cannot belong to the function with the lower address, as that function must end before the higher address. Therefore we use the name of the function that starts at the higher address:

extern "C" void debugLog(NSString* format, ...)
{
   // Print the debug message
   va_list arguments;
   va_start(arguments,format);
   NSLogv(format, arguments);
   // Dump the callstack
   uint32 callstack[128];
   int  frames = backtrace((void**) callstack, 128);
   char** strs = backtrace_symbols((void**) callstack, frames);
   for (int i = 1; i < frames; ++i)
   {
      char functionSymbol[64*1024];
      char moduleName    [64*1024];
      int  offset        = 0;
      sscanf(strs[i], "%*d %s %*s %s %*s %d", &moduleName,
                                       &functionSymbol, &offset);
      uint32 addr = callstack[i];
      if (objectiveCMethodNames)
      {
         const char* objcName;
         uint32      objcAddr = lookupFunction(addr, &objcName);
         if (      (objcAddr != 0)
               &&   (addr > objcAddr)
               &&   (addr - objcAddr < offset))
         {   printf("\t%8.8x — %s  + %d\t\t(%s)\n", addr, objcName,
                                             addr - objcAddr, moduleName);
            continue; };
      };
      int   validCppName;
      char* functionName = abi::__cxa_demangle(functionSymbol, NULL, 0,
                                                            &validCppName);
      if (validCppName == 0)
         printf(   "\t%8.8x — %s + %d\t\t(%s)\n",
                  addr, functionName, offset, moduleName);
      else
         printf(   "\t%8.8x — %s + %d\t\t(%s)\n",
                  addr, functionSymbol, offset, moduleName);
      if (functionName)
         free(functionName);
   }
   free(strs);
}

The output of backtrace_symbols() is an array of C-strings. We use sscanf() to parse them. The resulting function names are passed to the C++ demangler to convert into human-readable form if they are C++ names.

debugLog() uses printf() rather than NSLog() to avoid printing the application's name at the beginning of each line.

debugLog() is declared as extern "C" so it can be linked directly to Objective-C code. The class interface file does the same:

DebugLog Interface File: SBGDebug.h

@interface SBGDebug : NSObject
+ (void) load;
@end
#ifdef __cplusplus
extern "C" {
#endif
void debugLog(NSString* format, ...);
#ifdef __cplusplus
};
#endif

Using DebugLog

Invoke debugLog() just as you would NSLog():

Test file: TestDebugLog.mm

#import "SBGDebug.h"
// C++ test
struct CPP      { CPP(); ~CPP(); };
CPP::CPP()      { debugLog(@"C++ Constructor"); };
CPP::~CPP()   { debugLog(@"C++ Destructor"); };
// Objective C test
@interface Objc : NSObject
@end
@implementation Objc
- (id)      init
{ debugLog(@"Objective-C init"); return [super init]; };
(void)   dealloc
{ debugLog(@"Objective-C dealloc"); [super dealloc]; };
@end
// Main
int main(int argc, const char* argv[])
{
   NSAutoreleasePool* pool = [[NSAutoreleasePool alloc] init];
   CPP   cpp;
   Objc* objc = [[[Objc alloc] init] autorelease];
   debugLog(@"C — test arguments work too: %@", objc);
   [pool release];
   return 0;
}

Conclusion

Leopard provides all the components necessary to build a cross-platform NSLog() which can print function call traces. Although the code I provide assumes compilation to a 32-bit executable, extending it to 64 bits should be straightforward as only standard library functions are used.

You can download the entire Objective-C++ project from the MacTech ftp source archive at ftp.mactech.com/src/mactech/volume25_2009/25.06.sit.

Don't forget to compile it and run it in Debug Configuration!

References:

backtrace() : man backtrace.

backtrace_symbols() limitations : http://lists.apple.com/archives/darwin-dev/2009/Mar/msg00111.html.

backtrace_symbols() : man backtrace_symbols.

abi::__cxa_demangle : http://www.ib.cnea.gov.ar/~oop/biblio/libstdc++/namespaceabi.html.

Objective-C runtime: http://developer.apple.com/documentation/Cocoa/Reference/ObjCRuntimeRef/ObjCRuntimeRef.pdf.

The Standard Template Library: http://www.sgi.com/tech/stl/


Dr. Sengan Baring-Gould is a Boulder, Colorado-based independent Mac OS X developer and writer. He is available for consulting and specializes in Algorithms, AI, Cocoa, Debugging tools, High performance code, and UIs. He can be reached at sengan@ansemond.com.

 

Community Search:
MacTech Search:

Software Updates via MacUpdate

Goat Simulator Waste of Space (Games)
Goat Simulator Waste of Space 1.1 Device: iOS Universal Category: Games Price: $4.99, Version: 1.1 (iTunes) Description: ** IMPORTANT - SUPPORTED DEVICESiPhone 4S, iPad 2, iPod Touch 5 or better.** | Read more »
Wildfulness - Unwind in nature and calm...
Wildfulness - Unwind in nature and calm your mind with nature sounds and illustrations 1.0 Device: iOS Universal Category: Healthcare & Fitness Price: $1.99, Version: 1.0 (iTunes) Description: Spending time in nature helps you to... | Read more »
Dr. Panda Racers (Education)
Dr. Panda Racers 1.0 Device: iOS Universal Category: Education Price: $2.99, Version: 1.0 (iTunes) Description: STEP ON THE GAS, RACE AND WIN!Fasten your seat belts and get ready to race! Speed your way to the finish line while doing... | Read more »
ROMANCING SAGA 2 (Games)
ROMANCING SAGA 2 1.0.0 Device: iOS Universal Category: Games Price: $17.99, Version: 1.0.0 (iTunes) Description: Romancing SaGa 2, originally released only in Japan in 1993, has been completely remastered and now receives its first... | Read more »
WRIO Keyboard (Utilities)
WRIO Keyboard 1.0 Device: iOS iPhone Category: Utilities Price: $2.99, Version: 1.0 (iTunes) Description: 40% OFF DURING LIMITED INTRODUCTORY OFFER | Read more »
Hatoful Boyfriend (Games)
Hatoful Boyfriend 1.0 Device: iOS Universal Category: Games Price: $4.99, Version: 1.0 (iTunes) Description: The hit PC game that everybirdie loves has now migrated to your mobile device! Now you are free to explore the wonders of St... | Read more »
Warp Shift (Games)
Warp Shift 1.0 Device: iOS Universal Category: Games Price: $2.99, Version: 1.0 (iTunes) Description: [ CHECK YOUR HARDWARE: Warp Shift does NOT run on iPhone 4, iPad 1 and iPod touch 4G or older devices! It requires at least iOS8... | Read more »
Lifeline: Whiteout (Games)
Lifeline: Whiteout 1.0.2 Device: iOS Universal Category: Games Price: $2.99, Version: 1.0.2 (iTunes) Description: Alone in a frozen wasteland with no memory of how he got there, a lost adventurer’s only hope is his last line of... | Read more »
Castles of Mad King Ludwig (Games)
Castles of Mad King Ludwig 1.0.1 Device: iOS Universal Category: Games Price: $6.99, Version: 1.0.1 (iTunes) Description: | Read more »
How to command and conquer in Raid HQ
Raid HQ is a satisfyingly deep base building game with over-the-top macho action and explosions. This little free to play bundle gives you a lot to do from managing a squad to building the most powerful base you possibly can. [Read more] | Read more »

Price Scanner via MacPrices.net

Kanex Introduces GoPower USB-C Rechargeable B...
Kanex has announced its GoPower USB-C portable battery for the USB-C MacBook, featuring the new industry standard connector and cable used for connectivity and power. Providing users with a new... Read more
Convertible and Detachable Devices Winning Ov...
According to the latest figures published by International Data Corporation (IDC), Western European shipments of ultraslim convertibles and detachables posted positive growth (44.7%) to account for... Read more
New MacBook Pros And Will MacBook Air Be Upgr...
With my mid-2013 13-inch MacBook Air closing on its third anniversary come November, I’m in system upgrade mode. Actually the Haswell CPU equipped Air is still doing a fine job, but my good wife is... Read more
Apple’s Education discount saves up to $300 o...
Purchase a new Mac or iPad using Apple’s Education Store and take up to $300 off MSRP. All teachers, students, and staff of any educational institution qualify for the discount. Shipping is free, and... Read more
13-inch 2.5GHz MacBook Pro on sale for $999,...
B&H Photo has the 13″ 2.5GHz MacBook Pro on sale for $999 including free shipping plus NY sales tax only. Their price is $100 off MSRP. Read more
Apple refurbished iMacs available for up to $...
Apple has Certified Refurbished 2015 21″ & 27″ iMacs available for up to $350 off MSRP. Apple’s one-year warranty is standard, and shipping is free. The following models are available: - 21″ 3.... Read more
Textkraft Professional Becomes A Mobile Produ...
The new update 4.1 of Textkraft Professional for the iPad comes with many new and updated features that will be particularly of interest to self-publishers of e-books. Highlights include import and... Read more
SnipNotes 2.0 – Intelligent note-taking for i...
Indie software developer Felix Lisczyk has announced the release and immediate availability of SnipNotes 2.0, the next major version of his productivity app for iOS devices and Apple Watch.... Read more
Pitch Clock – The Entrepreneur’s Wingman Laun...
Grand Rapids, Michigan based Skunk Tank has announced the release and immediate availability of Pitch Clock – The Entrepreneur’s Wingman 1.1, the company’s new business app available exclusively on... Read more
13-inch 2.9GHz Retina MacBook Pro on sale for...
B&H Photo has the 13″ 2.9GHz Retina MacBook Pro (model #MF841LL/A) on sale for $1599 including free shipping plus NY tax only. Their price is $200 off MSRP. Amazon also has the 13″ 3.9GHz Retina... Read more

Jobs Board

Editor, *Apple* News - APPLE (United States...
Job Summary The Apple News team is looking for a passionate and knowledgeable editor with experience covering entertainment/pop culture and experience running social Read more
*Apple* Nissan Service Technicians - Apple A...
Apple Automotive is one of the fastest growing dealer...and it shows. Consider making the switch to the Apple Automotive Group today! At Apple Automotive , Read more
ISCS *Apple* ID Site Support Engineer - APP...
…position, we are looking for an individual who has experience supporting customers with Apple ID issues and enjoys this area of support. This person should be Read more
Automotive Sales Consultant - Apple Ford Linc...
…you. The best candidates are smart, technologically savvy and are customer focused. Apple Ford Lincoln Apple Valley is different, because: $30,000 annual salary Read more
*Apple* Support Technician II - Worldventure...
…global, fast growing member based travel company, is currently sourcing for an Apple Support Technician II to be based in our Plano headquarters. WorldVentures is Read more
All contents are Copyright 1984-2011 by Xplain Corporation. All rights reserved. Theme designed by Icreon.