TweetFollow Us on Twitter

Simple Call Stack Logging

Volume Number: 25
Issue Number: 06
Column Tag: Programming

Simple Call Stack Logging

Who called NSLog()?

by Sengan Baring-Gould

In this article I present an extension to NSLog() which not only prints out a user specified message but also lists the function calls that led to its invocation. By the end of this article you will have a new tool you can use in your own applications, and you'll understand how it works so that you can adapt it to your needs.

Why log?

NSLog() is an important tool for debugging. It can be placed anywhere in an application to log internal state.

Many programmers prefer logging to using a debugger, as it helps them concentrate on possible causes of a problem while filtering out irrelevant information. Logging provides a complete textual record of the problem that can be studied later.

Debuggers on the other hand interrupt the developer who must record by hand all the relevant state before letting the application continue. Continuing is an unforgiving operation: once performed, prior state that was not recorded is lost.

Brian W Kernighan (one of the authors of the seminal text on the C language) said:

"As a personal choice, we tend not to use debuggers beyond getting a stack trace or the value of a variable or two. One reason is that it is easy to get lost in details of complicated data structures and control flow; we find stepping through a program less productive than thinking harder and adding output statements and self-checking code at critical places. Clicking over statements takes longer than scanning the output of judiciously-placed displays. It takes less time to decide where to put print statements than to single-step to the critical section of code, even assuming we know where that is. More important, debugging statements stay with the program; debugger sessions are transient".

However, if NSLog() is invoked from a function that is called from many other functions, determining which function call caused the bug can be very difficult. We need a record of the function calls that led to the invocation of NSLog().

Where we are headed

Our new debug function debugLog() will print out any message we want the same way NSLog() does. Following the message, it will list the function invocations that led it to be called:

2009-04-05 15:37:58.119 TestDebugLog[14442:10b] C++ constructor
        0000301f — CPP::CPP() + 33             (TestDebugLog)
        0000316c — main + 86                   (TestDebugLog)
        00001a5e — start + 54                  (TestDebugLog)

The first line follows NSLog()'s traditional format: the date, the time, the name of the application (TestDebugLog) and then the message we passed as argument: "C++ Constructor".

On the next lines, debugLog() lists the function invocations that led it to be called:

  • debugLog() was called from the C++ constructor CPP::CPP() defined in TestDebugLog.
  • CPP:CPP() was called by main also defined in TestDebugLog.
  • main was called by start also defined in TestDebugLog. (start is the function the Operating System calls when it starts an application).

The module name between parentheses specifies where a function is defined. In the following example, NSPopAutoreleasePool is shown to be defined in the Foundation framework:

2009-04-05 15:40:03.921 TestDebugLog[14462:10b] Objective-C dealloc
        000030d3 — [Objc dealloc]  + 33        (TestDebugLog)
        91117e4f — NSPopAutoreleasePool + 431  (Foundation)
        000031d1 — main + 207                  (TestDebugLog)
        00001a4a — start + 54                  (TestDebugLog)

Obtaining the list of function invocations

Obtaining the list of function invocations to print is a two step process. First, debugLog() must obtain the addresses of the functions that called it. A computer uses addresses to keep track of what it is doing, but addresses are not specified in a program's source-code.

Then debugLog() must translate these addresses into the function names that appear in the program's source code. Three different methods are required to obtain C, C++, and Objective-C function names.

1. Retrieving the list of called functions' addresses

Compilers transform source-code into machine code that computers understand. When a function is called, the caller's return address must be saved so that the CPU can continue running the caller after the function invocation completes. In the context of this discussion, we will assume that these return addresses are stored on the stack. (We will ignore specific optimizations used by the PowerPC and x86 CPUs).

Unfortunately, the stack also records other information, such as local variables and function arguments. Determining precisely which items in the stack are return addresses requires compiler specific knowledge. Conveniently, the new version of gcc which ships with Leopard provides a new function, backtrace(), which gives us the return addresses in the current stack.

Remember that inlined functions are embedded within their callers rather than being invoked. This means backtrace will not see them in the stack and they will not be listed by debugLog().

2. Function layout in memory

Functions are compiled independently by the compiler and occupy contiguous areas of memory. Therefore if we know the starting addresses of any two consecutive functions f and g, and if we have an address x which falls between f and g ( &f <= x < &g ), we know that x belongs to the function f.

One rarely has addresses that match the beginning of each function precisely. Therefore function-lookup functions are designed to return information about the preceding function when given an address. Our case matches this scenario: the return addresses provided by backtrace occur within functions. Thus we can safely ignore the difference between return addresses and starting function addresses for most of this discussion. Similarly, we'll adopt the standard convention of referring to starting function addresses as function addresses.

3. Retrieving C function names

When an application is first loaded into memory, it needs to be told the addresses of the external library functions it wants to use. Because libraries are updated independently of applications, the addresses of their functions may change, although the names of their functions will not. It is the responsibility of the dynamic linker to give each application this information.

The dynamic linker reads function names from a symbol table embedded in the application and the libraries the application uses. The symbol table lists all the C function addresses and the C function names that can be accessed externally. Therefore if we know an address, we can ask the dynamic linker for the corresponding function name. The backtrace_symbols() function provides this functionality.

Because the dynamic linker only knows about externally visible function names, backtrace_symbols() always returns the nearest preceding external symbol. Static C functions are not exported and will not be given the correct name by the linker.

Most symbols will be exported as external if you compile your application in Debug Configuration. This is not true if you compile it in Release Configuration. The UNIX utility nm lists exported function names with a preceding capital T letting you check if an unexpected function name shows up.

4. Retrieving Objective-C method names

Objective-C does not use the dynamic linker. Instead it uses the Objective-C runtime, which like the dynamic linker keeps track of all known method addresses and names. (A method is a function defined within a class). However there is no equivalent to backtrace_symbols() which returns a function name when given a function address. We must build one ourselves.

The Objective-C runtime provides a function to enumerate all the Objective-C classes that can be invoked by the application, including those in the frameworks bound to the application. It also provides a function to enumerate the methods in any Objective-C class. With these components we can obtain every method's address and name.

Implementation

This code is Objective-C++ so don't forget to use the ".mm" extension for your implementation filename. We start with the necessary includes:

DebugLog Implementation File: SBGDebug.mm

#include "SBGDebug.h"
#include <cxxabi.h>
#include <map>
#include <string>
#include <execinfo.h>
#include <stdio.h>
#import <objc/Object.h>

1. Finding Objective-C methods

We want to build a method-lookup function that will return the method in which an address lies. We know how to enumerate the name and address of every Objective-C method available to the application, but this enumeration is expensive. Therefore we need a data structure in which to store the locations of the member functions.

The data structure must return the correct member function when queried with any address belonging to that member function. NSDictionary does not provide this functionality, but C++'s Standard Template Library's (STL) map container does.

map::upper_bound returns an iterator to the first element in the map whose key is larger than the queried key. For a map with method addresses as keys and method names as values, map::upper_bound will return an iterator pointing to the name of the method following the one we are looking for. Simply decrementing the iterator will make it point to the preceding method name.

// Lookup Function names
static std::map<uint32, std::string>* objectiveCMethodNames = NULL;
inline static uint32 lookupFunction(uint32 addr, const char** name)
{
   if (objectiveCMethodNames == NULL)
      return NULL;
     // Find the next function
   std::map<uint32, std::string>::iterator iter
      = objectiveCMethodNames->upper_bound( addr );
    // Go back a function: now we are looking at the right one!
   —iter;
   *name = iter->second.c_str();
   return iter->first;
}

Populating the STL map is a simple matter of iterating through all the classes known to the Objective-C runtime, and enumerating their methods.

// Add classes by stepping through their method lists.
inline static void  addObjectiveCMethod(uint32 addr, const char* name)
{   (*objectiveCMethodNames)[addr] = std::string(name); }
void addClass(Class c)
{
   unsigned int method_count;
   Method *method_list = class_copyMethodList(c, &method_count);
   for (int i = 0; i < method_count; i++)
   {
      Method      func = method_list[i];
      const char* name = sel_getName( method_getName( func ) );
      uint32      addr = (uint32) method_getImplementation( func );
      addObjectiveCMethod(   addr,
                           [[NSStringstringWith Format:@"[%s %s]",
                           class_getName(c), name] cString]);
   }
}

We could call the code that enumerates the Objective-C methods explicitly from main, but that requires remembering to add the call to each new application that uses debugLog(). Instead I can put the enumeration code into the load method of an Objective-C class which is guaranteed to be called if debugLog() is built into the application. The only gotcha is that the load method is invoked before Cocoa has created an NSAutoreleasePool. That's why the code below creates its own NSAutoreleasePool to avoid memory leaks.

@implementation SBGDebug
+ (void) load
{
   if (objectiveCMethodNames != NULL)
      return;
   NSAutoreleasePool* pool = [[NSAutoreleasePool alloc] init];
   objectiveCMethodNames = new std::map<uint32, std::string>();
   int numClasses = objc_getClassList(NULL, 0);
   if (numClasses > 0 )
   {
      Class *classes = (Class*) malloc(sizeof(Class) * numClasses);
      numClasses     = objc_getClassList(classes, numClasses);
      for (int i = 0; i < numClasses; ++i)
         addClass(classes[i]);
      free(classes);
   }
   [pool release];
}
@end

2. Deciding whether a function is C, C++ or Objective-C

The return addresses provided by backtrace() could belong to a C function, a C++ function or an Objective-C method. We need a way to decide which case we're dealing with. We start by asking both the C/C++ function-lookup function and the Objective-C method-lookup function to what function they believe a return address belongs. We will obtain two addresses a and b which should both be smaller than the return address r. Because functions are contiguous and do not intersect with each other, a and b must differ, and one of them must be lower than the other. For the same reason, the return address r cannot belong to the function with the lower address, as that function must end before the higher address. Therefore we use the name of the function that starts at the higher address:

extern "C" void debugLog(NSString* format, ...)
{
   // Print the debug message
   va_list arguments;
   va_start(arguments,format);
   NSLogv(format, arguments);
   // Dump the callstack
   uint32 callstack[128];
   int  frames = backtrace((void**) callstack, 128);
   char** strs = backtrace_symbols((void**) callstack, frames);
   for (int i = 1; i < frames; ++i)
   {
      char functionSymbol[64*1024];
      char moduleName    [64*1024];
      int  offset        = 0;
      sscanf(strs[i], "%*d %s %*s %s %*s %d", &moduleName,
                                       &functionSymbol, &offset);
      uint32 addr = callstack[i];
      if (objectiveCMethodNames)
      {
         const char* objcName;
         uint32      objcAddr = lookupFunction(addr, &objcName);
         if (      (objcAddr != 0)
               &&   (addr > objcAddr)
               &&   (addr - objcAddr < offset))
         {   printf("\t%8.8x — %s  + %d\t\t(%s)\n", addr, objcName,
                                             addr - objcAddr, moduleName);
            continue; };
      };
      int   validCppName;
      char* functionName = abi::__cxa_demangle(functionSymbol, NULL, 0,
                                                            &validCppName);
      if (validCppName == 0)
         printf(   "\t%8.8x — %s + %d\t\t(%s)\n",
                  addr, functionName, offset, moduleName);
      else
         printf(   "\t%8.8x — %s + %d\t\t(%s)\n",
                  addr, functionSymbol, offset, moduleName);
      if (functionName)
         free(functionName);
   }
   free(strs);
}

The output of backtrace_symbols() is an array of C-strings. We use sscanf() to parse them. The resulting function names are passed to the C++ demangler to convert into human-readable form if they are C++ names.

debugLog() uses printf() rather than NSLog() to avoid printing the application's name at the beginning of each line.

debugLog() is declared as extern "C" so it can be linked directly to Objective-C code. The class interface file does the same:

DebugLog Interface File: SBGDebug.h

@interface SBGDebug : NSObject
+ (void) load;
@end
#ifdef __cplusplus
extern "C" {
#endif
void debugLog(NSString* format, ...);
#ifdef __cplusplus
};
#endif

Using DebugLog

Invoke debugLog() just as you would NSLog():

Test file: TestDebugLog.mm

#import "SBGDebug.h"
// C++ test
struct CPP      { CPP(); ~CPP(); };
CPP::CPP()      { debugLog(@"C++ Constructor"); };
CPP::~CPP()   { debugLog(@"C++ Destructor"); };
// Objective C test
@interface Objc : NSObject
@end
@implementation Objc
- (id)      init
{ debugLog(@"Objective-C init"); return [super init]; };
(void)   dealloc
{ debugLog(@"Objective-C dealloc"); [super dealloc]; };
@end
// Main
int main(int argc, const char* argv[])
{
   NSAutoreleasePool* pool = [[NSAutoreleasePool alloc] init];
   CPP   cpp;
   Objc* objc = [[[Objc alloc] init] autorelease];
   debugLog(@"C — test arguments work too: %@", objc);
   [pool release];
   return 0;
}

Conclusion

Leopard provides all the components necessary to build a cross-platform NSLog() which can print function call traces. Although the code I provide assumes compilation to a 32-bit executable, extending it to 64 bits should be straightforward as only standard library functions are used.

You can download the entire Objective-C++ project from the MacTech ftp source archive at ftp.mactech.com/src/mactech/volume25_2009/25.06.sit.

Don't forget to compile it and run it in Debug Configuration!

References:

backtrace() : man backtrace.

backtrace_symbols() limitations : http://lists.apple.com/archives/darwin-dev/2009/Mar/msg00111.html.

backtrace_symbols() : man backtrace_symbols.

abi::__cxa_demangle : http://www.ib.cnea.gov.ar/~oop/biblio/libstdc++/namespaceabi.html.

Objective-C runtime: http://developer.apple.com/documentation/Cocoa/Reference/ObjCRuntimeRef/ObjCRuntimeRef.pdf.

The Standard Template Library: http://www.sgi.com/tech/stl/


Dr. Sengan Baring-Gould is a Boulder, Colorado-based independent Mac OS X developer and writer. He is available for consulting and specializes in Algorithms, AI, Cocoa, Debugging tools, High performance code, and UIs. He can be reached at sengan@ansemond.com.

 

Community Search:
MacTech Search:

Software Updates via MacUpdate

iFFmpeg 6.4.0 - Convert multimedia files...
iFFmpeg is a comprehensive media tool to convert movie, audio and media files between formats. The FFmpeg command line instructions can be very hard to master/understand, so iFFmpeg does all the hard... Read more
Beamer 3.3 - Stream any movie file from...
Beamer streams to your Apple TV.... Plays any movie file - Just like the popular desktop movie players, Beamer accepts all common formats, codecs and resolutions. AVI, MKV, MOV, MP4, WMV, FLV. To... Read more
jAlbum Pro 14.0 - Organize your digital...
jAlbum Pro has all the features you love in jAlbum, but comes with a commercial license. You can create gorgeous custom photo galleries for the Web without writing a line of code! Beginner-friendly... Read more
Apple Remote Desktop Client 3.9.3 - Clie...
Apple Remote Desktop Client is the best way to manage the Mac computers on your network. Distribute software, provide real-time online help to end users, create detailed software and hardware reports... Read more
Chromium 59.0.3071.109 - Fast and stable...
Chromium is an open-source browser project that aims to build a safer, faster, and more stable way for all Internet users to experience the web. Version 59.0.3071.109: This update has no Flash plug-... Read more
Thunderbird 52.2.0 - Email client from M...
As of July 2012, Thunderbird has transitioned to a new governance model, with new features being developed by the broader free software and open source community, and security fixes and improvements... Read more
Google Chrome 59.0.3071.109 - Modern and...
Google Chrome is a Web browser by Google, created to be a modern platform for Web pages and applications. It utilizes very fast loading of Web pages and has a V8 engine, which is a custom built... Read more
Shredo 1.2.2 - $9.99
Shredo is a beautiful, functional file-shredding and privacy scan utility. It permanently shreds files, folders, and external volumes' contents to keep information secure and impossible for anyone to... Read more
Airfoil 5.6.1 - Send audio from any app...
Airfoil allows you to send any audio to AirPort Express units, Apple TVs, and even other Macs and PCs, all in sync! It's your audio - everywhere. With Airfoil you can take audio from any... Read more
Vitamin-R 2.48 - Personal productivity t...
Vitamin-R creates the optimal conditions for your brain to work at its best by structuring your work into short bursts of distraction-free, highly focused activity alternating with opportunities for... Read more

Latest Forum Discussions

See All

The House of da Vinci (Games)
The House of da Vinci 1.0.0 Device: iOS Universal Category: Games Price: $4.99, Version: 1.0.0 (iTunes) Description: Enter The House of Da Vinci, a new must-try 3D puzzle adventure game. Solve mechanical puzzles, discover hidden... | Read more »
Solve the disappearance of history’s gre...
Blue Brain Games invites you to indulge in an immersive hands-on 3D puzzle adventure in similar vein to The Room series, with its debut release The House of Da Vinci. Set during the historic period of the Italian Renaissance (when Leonardo himself... | Read more »
Age of Rivals (Games)
Age of Rivals 3.3 Device: iOS Universal Category: Games Price: $.99, Version: 3.3 (iTunes) Description: Deep civilization-building strategy in a fast-paced card game! | Read more »
Panthera Frontier (Games)
Panthera Frontier 1.0 Device: iOS Universal Category: Games Price: $4.99, Version: 1.0 (iTunes) Description: | Read more »
Angry Birds Evolution beginner's gu...
Angry Birds changes things up a fair bit in its latest iteration, Angry Birds Evolution. The familiar sling-shot physics mechanics are still there, but the game now features team-based gameplay, RPG elements, and a new top-down view. With all of... | Read more »
Sega Forever is for the retro game fans
Sega is launching a new retro games service titled Sega Forever, in a move that's sure to delight games enthusiasts with a bit of nostalgia. Sega's releasing five classic games for free. The titles include Sonic the Hedgehog, Phantasy Star II,... | Read more »
The Little Acre (Games)
The Little Acre 1.0 Device: iOS Universal Category: Games Price: $2.99, Version: 1.0 (iTunes) Description: | Read more »
Lovely adventure game 'The Little A...
The Little Acre makes its way from PC to iOS today and it's a real charmer. It's a lovely little adventure game set in 1950's Ireland, gorgeously animated in a style slightly reminiscent of old Disney films. The game won a lot of praise for its... | Read more »
Futurama: Worlds of Tomorrow officially...
Futurama: Worlds of Tomorrow arrives next Thursday, and it features . . . Stephen Hawking? Turns out a few of your favorite science super stars, including Bill Nye, Neil DeGrasse Tyson, and George Takei will be making an appearance alongside the... | Read more »
MU Origin’s new update offers exciting c...
MU Origin is kicking off the summer with style. Its latest update is a real doozy, offering up plenty of fresh content. New challenges, some extra help for newcomers, and new costumes are just a few of the things you will find in the new patch. | Read more »

Price Scanner via MacPrices.net

Clearance 2016 MacBook Pros available for up...
B&H Photo has clearance 2016 13″ and 15″ MacBook Pros in stock today and on sale for up to $400 off original MSRP. Shipping is free, and B&H charges NY & NJ sales tax only: - 15″ 2.7GHz... Read more
Apple Ranks 9th In comScore Top 50 U.S. Digit...
comScore, Inc. has released its monthly ranking of U.S. online activity at the top digital media properties for May 2017 based on data from comScore Media Metrix Multi-Platform. * Entity has... Read more
10.5-inch iPad Pros available for up to $20 o...
B&H Photo has the new 2017 10.5″ iPad Pros available for up to $20 off MSRP including free shipping plus NY & NJ sales tax only: - 64GB iPad Pro WiFi: $649 - 256GB iPad Pro WiFi: $749 - 512GB... Read more
Three Off-The-Beaten-Track iOS Apps That Dese...
One of the great things about using iPads and iPhones is the vast selection of apps available for most anything you want or need to do. The three outlined in this article have been in my core app... Read more
Apple No. 1 Spot In Gartner Top 100 Vendors i...
Gartner, Inc. has unveiled the top global 100 vendors in IT in 2016 based on their revenue across IT (excluding communication services) and component market segments. In the Gartner Global Top 100:... Read more
Clearance iMacs available for up to $300 off...
B&H Photo has clearance 21″ and 27″ Apple iMacs available starting at $949, each including free shipping plus NY & NJ sales tax only: - 27″ 3.3GHz iMac 5K: $1999 $300 off original MSRP - 27″... Read more
1.4GHz Mac mini, refurbished, available for $...
The Apple Store has Apple Certified Refurbished 1.4GHz Mac minis available for $419. Apple’s one-year warranty is included, and shipping is free. Their price is $80 off MSRP, and it’s the lowest... Read more
Free Mixoo iOS Photo Editing App Gets Major U...
Button Software Technology has announced Mixoo 3.0, an important feature update to the company’s photo editor for iOS devices. Mixoo offers amazing ways to edit as well as decorate personal photo... Read more
FNable 2.0 Function Key Enabling Software Get...
Briksoftware has released FNable 2.0 With Touch Bar Support, a major new version of the function key enabling software now compatible with Touch Bar keyboards. FNable’s simplicity that allows users... Read more
Clearance 2016 12-inch Retina MacBooks, Apple...
Apple recently dropped prices on Certified Refurbished 2016 12″ Retina MacBooks, with models now available starting at $1019. Apple will include a standard one-year warranty with each MacBook, and... Read more

Jobs Board

*Apple* Retail - Multiple Positions - Apple,...
Job Description: Sales Specialist - Retail Customer Service and Sales Transform Apple Store visitors into loyal Apple customers. When customers enter the store, Read more
Security Data Analyst - *Apple* Information...
…data sources need to be collected to allow Information Security to better protect Apple employees and customers from a wide range of threats.Act as the subject matter Read more
Lead *Apple* Solutions Consultant - Apple I...
…integrity, and trust.Success Metrics/Key Performance Indicators:Quantitative* Year over Year growth in Apple Product and Beyond the Box sales in the assigned Point of Read more
*Apple* Solutions Consultant till v%u00E5r...
…ethics, integrity, and trust.Success Metrics/Key Performance Indicators:QuantitativeYear over Year growth in Apple Product and Beyond the Box sales in the assigned Point Read more
Sr. Software Engineer, *Apple* Retail - App...
Apple Retail is looking for a Software Engineer…You'll work on projects that touch all aspects of Apple Retail Point-of-Sale system, and will leverage your strong Read more
All contents are Copyright 1984-2011 by Xplain Corporation. All rights reserved. Theme designed by Icreon.