TweetFollow Us on Twitter

Simple Call Stack Logging

Volume Number: 25
Issue Number: 06
Column Tag: Programming

Simple Call Stack Logging

Who called NSLog()?

by Sengan Baring-Gould

In this article I present an extension to NSLog() which not only prints out a user specified message but also lists the function calls that led to its invocation. By the end of this article you will have a new tool you can use in your own applications, and you'll understand how it works so that you can adapt it to your needs.

Why log?

NSLog() is an important tool for debugging. It can be placed anywhere in an application to log internal state.

Many programmers prefer logging to using a debugger, as it helps them concentrate on possible causes of a problem while filtering out irrelevant information. Logging provides a complete textual record of the problem that can be studied later.

Debuggers on the other hand interrupt the developer who must record by hand all the relevant state before letting the application continue. Continuing is an unforgiving operation: once performed, prior state that was not recorded is lost.

Brian W Kernighan (one of the authors of the seminal text on the C language) said:

"As a personal choice, we tend not to use debuggers beyond getting a stack trace or the value of a variable or two. One reason is that it is easy to get lost in details of complicated data structures and control flow; we find stepping through a program less productive than thinking harder and adding output statements and self-checking code at critical places. Clicking over statements takes longer than scanning the output of judiciously-placed displays. It takes less time to decide where to put print statements than to single-step to the critical section of code, even assuming we know where that is. More important, debugging statements stay with the program; debugger sessions are transient".

However, if NSLog() is invoked from a function that is called from many other functions, determining which function call caused the bug can be very difficult. We need a record of the function calls that led to the invocation of NSLog().

Where we are headed

Our new debug function debugLog() will print out any message we want the same way NSLog() does. Following the message, it will list the function invocations that led it to be called:

2009-04-05 15:37:58.119 TestDebugLog[14442:10b] C++ constructor
        0000301f — CPP::CPP() + 33             (TestDebugLog)
        0000316c — main + 86                   (TestDebugLog)
        00001a5e — start + 54                  (TestDebugLog)

The first line follows NSLog()'s traditional format: the date, the time, the name of the application (TestDebugLog) and then the message we passed as argument: "C++ Constructor".

On the next lines, debugLog() lists the function invocations that led it to be called:

  • debugLog() was called from the C++ constructor CPP::CPP() defined in TestDebugLog.
  • CPP:CPP() was called by main also defined in TestDebugLog.
  • main was called by start also defined in TestDebugLog. (start is the function the Operating System calls when it starts an application).

The module name between parentheses specifies where a function is defined. In the following example, NSPopAutoreleasePool is shown to be defined in the Foundation framework:

2009-04-05 15:40:03.921 TestDebugLog[14462:10b] Objective-C dealloc
        000030d3 — [Objc dealloc]  + 33        (TestDebugLog)
        91117e4f — NSPopAutoreleasePool + 431  (Foundation)
        000031d1 — main + 207                  (TestDebugLog)
        00001a4a — start + 54                  (TestDebugLog)

Obtaining the list of function invocations

Obtaining the list of function invocations to print is a two step process. First, debugLog() must obtain the addresses of the functions that called it. A computer uses addresses to keep track of what it is doing, but addresses are not specified in a program's source-code.

Then debugLog() must translate these addresses into the function names that appear in the program's source code. Three different methods are required to obtain C, C++, and Objective-C function names.

1. Retrieving the list of called functions' addresses

Compilers transform source-code into machine code that computers understand. When a function is called, the caller's return address must be saved so that the CPU can continue running the caller after the function invocation completes. In the context of this discussion, we will assume that these return addresses are stored on the stack. (We will ignore specific optimizations used by the PowerPC and x86 CPUs).

Unfortunately, the stack also records other information, such as local variables and function arguments. Determining precisely which items in the stack are return addresses requires compiler specific knowledge. Conveniently, the new version of gcc which ships with Leopard provides a new function, backtrace(), which gives us the return addresses in the current stack.

Remember that inlined functions are embedded within their callers rather than being invoked. This means backtrace will not see them in the stack and they will not be listed by debugLog().

2. Function layout in memory

Functions are compiled independently by the compiler and occupy contiguous areas of memory. Therefore if we know the starting addresses of any two consecutive functions f and g, and if we have an address x which falls between f and g ( &f <= x < &g ), we know that x belongs to the function f.

One rarely has addresses that match the beginning of each function precisely. Therefore function-lookup functions are designed to return information about the preceding function when given an address. Our case matches this scenario: the return addresses provided by backtrace occur within functions. Thus we can safely ignore the difference between return addresses and starting function addresses for most of this discussion. Similarly, we'll adopt the standard convention of referring to starting function addresses as function addresses.

3. Retrieving C function names

When an application is first loaded into memory, it needs to be told the addresses of the external library functions it wants to use. Because libraries are updated independently of applications, the addresses of their functions may change, although the names of their functions will not. It is the responsibility of the dynamic linker to give each application this information.

The dynamic linker reads function names from a symbol table embedded in the application and the libraries the application uses. The symbol table lists all the C function addresses and the C function names that can be accessed externally. Therefore if we know an address, we can ask the dynamic linker for the corresponding function name. The backtrace_symbols() function provides this functionality.

Because the dynamic linker only knows about externally visible function names, backtrace_symbols() always returns the nearest preceding external symbol. Static C functions are not exported and will not be given the correct name by the linker.

Most symbols will be exported as external if you compile your application in Debug Configuration. This is not true if you compile it in Release Configuration. The UNIX utility nm lists exported function names with a preceding capital T letting you check if an unexpected function name shows up.

4. Retrieving Objective-C method names

Objective-C does not use the dynamic linker. Instead it uses the Objective-C runtime, which like the dynamic linker keeps track of all known method addresses and names. (A method is a function defined within a class). However there is no equivalent to backtrace_symbols() which returns a function name when given a function address. We must build one ourselves.

The Objective-C runtime provides a function to enumerate all the Objective-C classes that can be invoked by the application, including those in the frameworks bound to the application. It also provides a function to enumerate the methods in any Objective-C class. With these components we can obtain every method's address and name.

Implementation

This code is Objective-C++ so don't forget to use the ".mm" extension for your implementation filename. We start with the necessary includes:

DebugLog Implementation File: SBGDebug.mm

#include "SBGDebug.h"
#include <cxxabi.h>
#include <map>
#include <string>
#include <execinfo.h>
#include <stdio.h>
#import <objc/Object.h>

1. Finding Objective-C methods

We want to build a method-lookup function that will return the method in which an address lies. We know how to enumerate the name and address of every Objective-C method available to the application, but this enumeration is expensive. Therefore we need a data structure in which to store the locations of the member functions.

The data structure must return the correct member function when queried with any address belonging to that member function. NSDictionary does not provide this functionality, but C++'s Standard Template Library's (STL) map container does.

map::upper_bound returns an iterator to the first element in the map whose key is larger than the queried key. For a map with method addresses as keys and method names as values, map::upper_bound will return an iterator pointing to the name of the method following the one we are looking for. Simply decrementing the iterator will make it point to the preceding method name.

// Lookup Function names
static std::map<uint32, std::string>* objectiveCMethodNames = NULL;
inline static uint32 lookupFunction(uint32 addr, const char** name)
{
   if (objectiveCMethodNames == NULL)
      return NULL;
     // Find the next function
   std::map<uint32, std::string>::iterator iter
      = objectiveCMethodNames->upper_bound( addr );
    // Go back a function: now we are looking at the right one!
   —iter;
   *name = iter->second.c_str();
   return iter->first;
}

Populating the STL map is a simple matter of iterating through all the classes known to the Objective-C runtime, and enumerating their methods.

// Add classes by stepping through their method lists.
inline static void  addObjectiveCMethod(uint32 addr, const char* name)
{   (*objectiveCMethodNames)[addr] = std::string(name); }
void addClass(Class c)
{
   unsigned int method_count;
   Method *method_list = class_copyMethodList(c, &method_count);
   for (int i = 0; i < method_count; i++)
   {
      Method      func = method_list[i];
      const char* name = sel_getName( method_getName( func ) );
      uint32      addr = (uint32) method_getImplementation( func );
      addObjectiveCMethod(   addr,
                           [[NSStringstringWith Format:@"[%s %s]",
                           class_getName(c), name] cString]);
   }
}

We could call the code that enumerates the Objective-C methods explicitly from main, but that requires remembering to add the call to each new application that uses debugLog(). Instead I can put the enumeration code into the load method of an Objective-C class which is guaranteed to be called if debugLog() is built into the application. The only gotcha is that the load method is invoked before Cocoa has created an NSAutoreleasePool. That's why the code below creates its own NSAutoreleasePool to avoid memory leaks.

@implementation SBGDebug
+ (void) load
{
   if (objectiveCMethodNames != NULL)
      return;
   NSAutoreleasePool* pool = [[NSAutoreleasePool alloc] init];
   objectiveCMethodNames = new std::map<uint32, std::string>();
   int numClasses = objc_getClassList(NULL, 0);
   if (numClasses > 0 )
   {
      Class *classes = (Class*) malloc(sizeof(Class) * numClasses);
      numClasses     = objc_getClassList(classes, numClasses);
      for (int i = 0; i < numClasses; ++i)
         addClass(classes[i]);
      free(classes);
   }
   [pool release];
}
@end

2. Deciding whether a function is C, C++ or Objective-C

The return addresses provided by backtrace() could belong to a C function, a C++ function or an Objective-C method. We need a way to decide which case we're dealing with. We start by asking both the C/C++ function-lookup function and the Objective-C method-lookup function to what function they believe a return address belongs. We will obtain two addresses a and b which should both be smaller than the return address r. Because functions are contiguous and do not intersect with each other, a and b must differ, and one of them must be lower than the other. For the same reason, the return address r cannot belong to the function with the lower address, as that function must end before the higher address. Therefore we use the name of the function that starts at the higher address:

extern "C" void debugLog(NSString* format, ...)
{
   // Print the debug message
   va_list arguments;
   va_start(arguments,format);
   NSLogv(format, arguments);
   // Dump the callstack
   uint32 callstack[128];
   int  frames = backtrace((void**) callstack, 128);
   char** strs = backtrace_symbols((void**) callstack, frames);
   for (int i = 1; i < frames; ++i)
   {
      char functionSymbol[64*1024];
      char moduleName    [64*1024];
      int  offset        = 0;
      sscanf(strs[i], "%*d %s %*s %s %*s %d", &moduleName,
                                       &functionSymbol, &offset);
      uint32 addr = callstack[i];
      if (objectiveCMethodNames)
      {
         const char* objcName;
         uint32      objcAddr = lookupFunction(addr, &objcName);
         if (      (objcAddr != 0)
               &&   (addr > objcAddr)
               &&   (addr - objcAddr < offset))
         {   printf("\t%8.8x — %s  + %d\t\t(%s)\n", addr, objcName,
                                             addr - objcAddr, moduleName);
            continue; };
      };
      int   validCppName;
      char* functionName = abi::__cxa_demangle(functionSymbol, NULL, 0,
                                                            &validCppName);
      if (validCppName == 0)
         printf(   "\t%8.8x — %s + %d\t\t(%s)\n",
                  addr, functionName, offset, moduleName);
      else
         printf(   "\t%8.8x — %s + %d\t\t(%s)\n",
                  addr, functionSymbol, offset, moduleName);
      if (functionName)
         free(functionName);
   }
   free(strs);
}

The output of backtrace_symbols() is an array of C-strings. We use sscanf() to parse them. The resulting function names are passed to the C++ demangler to convert into human-readable form if they are C++ names.

debugLog() uses printf() rather than NSLog() to avoid printing the application's name at the beginning of each line.

debugLog() is declared as extern "C" so it can be linked directly to Objective-C code. The class interface file does the same:

DebugLog Interface File: SBGDebug.h

@interface SBGDebug : NSObject
+ (void) load;
@end
#ifdef __cplusplus
extern "C" {
#endif
void debugLog(NSString* format, ...);
#ifdef __cplusplus
};
#endif

Using DebugLog

Invoke debugLog() just as you would NSLog():

Test file: TestDebugLog.mm

#import "SBGDebug.h"
// C++ test
struct CPP      { CPP(); ~CPP(); };
CPP::CPP()      { debugLog(@"C++ Constructor"); };
CPP::~CPP()   { debugLog(@"C++ Destructor"); };
// Objective C test
@interface Objc : NSObject
@end
@implementation Objc
- (id)      init
{ debugLog(@"Objective-C init"); return [super init]; };
(void)   dealloc
{ debugLog(@"Objective-C dealloc"); [super dealloc]; };
@end
// Main
int main(int argc, const char* argv[])
{
   NSAutoreleasePool* pool = [[NSAutoreleasePool alloc] init];
   CPP   cpp;
   Objc* objc = [[[Objc alloc] init] autorelease];
   debugLog(@"C — test arguments work too: %@", objc);
   [pool release];
   return 0;
}

Conclusion

Leopard provides all the components necessary to build a cross-platform NSLog() which can print function call traces. Although the code I provide assumes compilation to a 32-bit executable, extending it to 64 bits should be straightforward as only standard library functions are used.

You can download the entire Objective-C++ project from the MacTech ftp source archive at ftp.mactech.com/src/mactech/volume25_2009/25.06.sit.

Don't forget to compile it and run it in Debug Configuration!

References:

backtrace() : man backtrace.

backtrace_symbols() limitations : http://lists.apple.com/archives/darwin-dev/2009/Mar/msg00111.html.

backtrace_symbols() : man backtrace_symbols.

abi::__cxa_demangle : http://www.ib.cnea.gov.ar/~oop/biblio/libstdc++/namespaceabi.html.

Objective-C runtime: http://developer.apple.com/documentation/Cocoa/Reference/ObjCRuntimeRef/ObjCRuntimeRef.pdf.

The Standard Template Library: http://www.sgi.com/tech/stl/


Dr. Sengan Baring-Gould is a Boulder, Colorado-based independent Mac OS X developer and writer. He is available for consulting and specializes in Algorithms, AI, Cocoa, Debugging tools, High performance code, and UIs. He can be reached at sengan@ansemond.com.

 
AAPL
$501.11
Apple Inc.
+2.43
MSFT
$34.64
Microsoft Corpora
+0.15
GOOG
$898.03
Google Inc.
+16.02

MacTech Search:
Community Search:

Software Updates via MacUpdate

Paperless 2.3.1 - Digital documents mana...
Paperless is a digital documents manager. Remember when everyone talked about how we would soon be a paperless society? Now it seems like we use paper more than ever. Let's face it - we need and we... Read more
Apple HP Printer Drivers 2.16.1 - For OS...
Apple HP Printer Drivers includes the latest HP printing and scanning software for Mac OS X 10.6, 10.7 and 10.8. For information about supported printer models, see this page.Version 2.16.1: This... Read more
Yep 3.5.1 - Organize and manage all your...
Yep is a document organization and management tool. Like iTunes for music or iPhoto for photos, Yep lets you search and view your documents in a comfortable interface, while offering the ability to... Read more
Apple Canon Laser Printer Drivers 2.11 -...
Apple Canon Laser Printer Drivers is the latest Canon Laser printing and scanning software for Mac OS X 10.6, 10.7 and 10.8. For information about supported printer models, see this page.Version 2.11... Read more
Apple Java for Mac OS X 10.6 Update 17 -...
Apple Java for Mac OS X 10.6 delivers improved security, reliability, and compatibility by updating Java SE 6.Version Update 17: Java for Mac OS X 10.6 Update 17 delivers improved security,... Read more
Arq 3.3 - Online backup (requires Amazon...
Arq is online backup for the Mac using Amazon S3 and Amazon Glacier. It backs-up and faithfully restores all the special metadata of Mac files that other products don't, including resource forks,... Read more
Apple Java 2013-005 - For OS X 10.7 and...
Apple Java for OS X 2013-005 delivers improved security, reliability, and compatibility by updating Java SE 6 to 1.6.0_65. On systems that have not already installed Java for OS X 2012-006, this... Read more
DEVONthink Pro 2.7 - Knowledge base, inf...
Save 10% with our exclusive coupon code: MACUPDATE10 DEVONthink Pro is your essential assistant for today's world, where almost everything is digital. From shopping receipts to important research... Read more
VirtualBox 4.3.0 - x86 virtualization so...
VirtualBox is a family of powerful x86 virtualization products for enterprise as well as home use. Not only is VirtualBox an extremely feature rich, high performance product for enterprise customers... Read more
Merlin 2.9.2 - Project management softwa...
Merlin is the only native network-based collaborative Project Management solution for Mac OS X. This version offers many features propelling Merlin to the top of Mac OS X professional project... Read more

Briquid Gets Updated with New Undo Butto...
Briquid Gets Updated with New Undo Button, Achievements, and Leaderboards, on Sale for $0.99 Posted by Andrew Stevens on October 16th, 2013 [ | Read more »
Halloween – iLovecraft Brings Frightenin...
Halloween – iLovecraft Brings Frightening Stories From Author H.P. | Read more »
The Blockheads Creator David Frampton Gi...
The Blockheads Creator David Frampton Gives a Postmortem on the Creation Process of the Game Posted by Andrew Stevens on October 16th, 2013 [ permalink ] Hey, a | Read more »
Sorcery! Enhances the Gameplay in Latest...
Sorcery! | Read more »
It Came From Australia: Tiny Death Star
NimbleBit and Disney have teamed up to make Star Wars: Tiny Death Star, a Star Wars take on Tiny Tower. Right now, the game is in testing in Australia (you will never find a more wretched hive of scum and villainy) but we were able to sneak past... | Read more »
FIST OF AWESOME Review
FIST OF AWESOME Review By Rob Rich on October 16th, 2013 Our Rating: :: TALK TO THE FISTUniversal App - Designed for iPhone and iPad A totalitarian society of bears is only the tip of the iceberg in this throwback brawler.   | Read more »
PROVERBidioms Paints English Sayings in...
PROVERBidioms Paints English Sayings in a Picture for Users to Find Posted by Andrew Stevens on October 16th, 2013 [ permalink ] | Read more »
OmniFocus 2 for iPhone Review
OmniFocus 2 for iPhone Review By Carter Dotson on October 16th, 2013 Our Rating: :: OMNIPOTENTiPhone App - Designed for the iPhone, compatible with the iPad OmniFocus 2 for iPhone is a task management app for people who absolutely... | Read more »
Ingress – Google’s Augmented-Reality Gam...
Ingress – Google’s Augmented-Reality Game to Make its Way to iOS Next Year Posted by Andrew Stevens on October 16th, 2013 [ permalink ] | Read more »
CSR Classics is Full of Ridiculously Pre...
CSR Classics is Full of Ridiculously Pretty Classic Automobiles Posted by Rob Rich on October 16th, 2013 [ permalink ] | Read more »

Price Scanner via MacPrices.net

Apple Store Canada offers refurbished 11-inch...
 The Apple Store Canada has Apple Certified Refurbished 2013 11″ MacBook Airs available starting at CDN$ 849. Save up to $180 off the cost of new models. An Apple one-year warranty is included with... Read more
Updated MacBook Price Trackers
We’ve updated our MacBook Price Trackers with the latest information on prices, bundles, and availability on MacBook Airs, MacBook Pros, and the MacBook Pros with Retina Displays from Apple’s... Read more
13-inch Retina MacBook Pros on sale for up to...
B&H Photo has the 13″ 2.5GHz Retina MacBook Pro on sale for $1399 including free shipping. Their price is $100 off MSRP. They have the 13″ 2.6GHz Retina MacBook Pro on sale for $1580 which is $... Read more
AppleCare Protection Plans on sale for up to...
B&H Photo has 3-Year AppleCare Warranties on sale for up to $105 off MSRP including free shipping plus NY sales tax only: - Mac Laptops 15″ and Above: $244 $105 off MSRP - Mac Laptops 13″ and... Read more
Apple’s 64-bit A7 Processor: One Step Closer...
PC Pro’s Darien Graham-Smith reported that Canonical founder and Ubuntu Linux creator Mark Shuttleworth believes Apple intends to follow Ubuntu’s lead and merge its desktop and mobile operating... Read more
MacBook Pro First, Followed By iPad At The En...
French site Info MacG’s Florian Innocente says he has received availability dates and order of arrival for the next MacBook Pro and the iPad from the same contact who had warned hom of the arrival of... Read more
Chart: iPad Value Decline From NextWorth
With every announcement of a new Apple device, serial upgraders begin selling off their previous models – driving down the resale value. So, with the Oct. 22 Apple announcement date approaching,... Read more
SOASTA Survey: What App Do You Check First in...
SOASTA Inc., the leader in cloud and mobile testing announced the results of its recent survey showing which mobile apps are popular with smartphone owners in major American markets. SOASTA’s survey... Read more
Apple, Samsung Reportedly Both Developing 12-...
Digitimes’ Aaron Lee and Joseph Tsai report that Apple and Samsung Electronics are said to both be planning to release 12-inch tablets, and that Apple is currently cooperating with Quanta Computer on... Read more
Apple’s 2011 MacBook Pro Lineup Suffering Fro...
Appleinsider’s Shane Cole says that owners of early-2011 15-inch and 17-inch MacBook Pros are reporting issues with those models’ discrete AMD graphics processors, which in some cases results in the... Read more

Jobs Board

Senior Mac / *Apple* Systems Engineer - 318...
318 Inc, a top provider of Apple solutions is seeking a new Senior Apple Systems Engineer to be based out of our Santa Monica, California location. We are a Read more
*Apple* Retail - Manager - Apple Inc. (Unite...
Job Summary Keeping an Apple Store thriving requires a diverse set of leadership skills, and as a Manager, you’re a master of them all. In the store’s fast-paced, Read more
*Apple* Solutions Consultant - Apple (United...
**Job Summary** Apple Solutions Consultant (ASC) - Retail Representatives Apple Solutions Consultants are trained by Apple on selling Apple -branded products Read more
Associate *Apple* Solutions Consultant - Ap...
**Job Summary** The Associate ASC is an Apple employee who serves as an Apple brand ambassador and influencer in a Reseller's store. The Associate ASC's role is to Read more
*Apple* Solutions Consultant (ASC) - Apple (...
**Job Summary** The ASC is an Apple employee who serves as an Apple brand ambassador and influencer in a Reseller's store. The ASC's role is to grow Apple Read more
All contents are Copyright 1984-2011 by Xplain Corporation. All rights reserved. Theme designed by Icreon.