TweetFollow Us on Twitter

Timeline

Volume Number: 22 (2006)
Issue Number: 2
Column Tag: Programming

QuickTime Toolkit

Timeline

by Tim Monroe

Mapping the Evolution of QuickTime Programming

The QuickTime programming landscape looks pretty good nowadays. In terms of what you can do with QuickTime, the story has never been better. In the nearly 15 years since its introduction in December 1991, QuickTime has gained a truly impressive set of multimedia capabilities. It now provides services for displaying and creating movies, capturing audio and video data, compressing and transcoding media data, broadcasting saved movies and live captured data across a network, displaying and modifying still images, and other tasks too numerous to list here exhaustively. With the recent appearance of QuickTime 7, the QuickTime programming APIs now comprise more than 2500 actively-supported functions.

Introduction

But that of course is only half of the story, and in many ways it is the less interesting half. We would expect this sort of continual feature expansion from any software architecture that has been around for a decade and a half. What is perhaps more interesting is the wealth of tools that we as software developers can use to access those multimedia capabilities. For almost three full years, believe it or not, this QuickTime Toolkit column has focused more or less directly on the issue of how to use various different programming languages and development environments to construct QuickTime applications. We've built applications using a wide variety of alternate languages and IDEs, including Cocoa, REALbasic, Revolution, Visual Basic, AppleScript Studio, Java, Tcl/Tk, and others. From modern object-oriented application frameworks to old-school scripting languages, we've pretty much run the gamut of possibilities for developing applications and tools to create and modify and display QuickTime content.

It would be nice to pause and reflect on these tools and languages and to see how they compare with one another in terms of ease-of-use and feature completeness and extensibility. It would also be nice to run some benchmarks to see if some of these development environments produce particularly more efficient and resource-friendly applications than others. (Java, for instance, has a reputation for being slow; it would be nice to actually test our sample Java-based player application against our other sample applications.) But those reflections will have to wait for some other opportunity, since in this article I want to discuss a somewhat different issue. In particular, I want to look at how QuickTime programming itself has evolved in the years since its introduction. What did it look like in the beginning, and what is its general character now? What sorts of forces have prompted changes in the QuickTime programming model?

I think that this is an interesting set of questions because not every QuickTime developer -- and in fact probably a minority of current QuickTime developers -- has been using QuickTime for a significant portion of those 15 years. In addition, most developers are probably using one or more of the QuickTime-savvy RAD tools or application frameworks. Since none of these tools or frameworks provides access to all the existing QuickTime capabilities, it's likely that some QuickTime developers will need to venture outside the limits of their chosen tools to develop plug-ins or libraries for those tools. And then they land squarely in the realm of those 2500 functions.

MacOS

So let's begin at the beginning. QuickTime was originally released on the Macintosh Operating System (specifically, on MacOS version 6.0.7). Quite sensibly, the original QuickTime APIs were heavily dependent on the data types and structures used by the Macintosh Operating System and the Macintosh User Interface Toolbox. A chunk of memory was typically specified using a Handle data type, and files were typically specified using FSSpec records. Data to be drawn on the screen was accessed using bitmaps drawn into graphics ports and graphics worlds (specified using GrafPtr and GWorldPtr data types). The intention was very clearly that the QuickTime APIs should fit into the existing programming model on Macintosh computers.

At the same time, the QuickTime architects did not hesitate to drive that programming model forward in certain important ways. One of the big departures from existing practices was to make C the language of choice for developing QuickTime applications, in spite of the fact that Pascal still dominated MacOS software development during the time QuickTime was being developed. The original developer CD for QuickTime 1.0 provided 18 sample projects using C but only half that many using Pascal. More importantly, the technical documentation for QuickTime provided all sample code and reference material in C, not Pascal. Indeed, the books Inside Macintosh: QuickTime and Inside Macintosh: QuickTime Components were the very first books in that series to relegate Pascal to the programming summaries at the end of the chapters.

Listing 1 shows what a typical routine to open a movie file might have looked like. It uses the Standard File Package to display the file-opening dialog box to the user, and then it calls OpenMovieFile and NewMovieFromFile to create a Movie identifier for the data in the movie file.

Listing 1: Loading a movie from a file

Movie GetAMovie (void)
{
   OSErr                        myErr; 
   SFTypeList                   myTypes = {MovieFileType, 0, 0, 0}; 
   StandardFileReply            myReply;
   Movie                        myMovie = NULL; 
   short                        myRefNum; 
   short                        myResID = 0; 

   StandardGetFilePreview(NIL, 1, myTypes, &myReply); 

   if (myReply.sfGood) { 
      myErr = OpenMovieFile(&myReply.sfFile, &myRefNum, 
                                          fsRdPerm); 
      if (myErr == noErr) { 
         NewMovieFromFile(&myMovie, myRefNum, &myResID, NULL, 
                                          newMovieActive, NULL); 

         CloseMovieFile(myRefNum); 
      }
   }

   return myMovie; 
}

One interesting thing about this code is that it is almost completely deprecated on current Macintosh computers. The Standard File Package never made the jump from the "classic" MacOS to Mac OS X, and (as we saw in the previous article, "State Property 2" in MacTech, December 2005) the NewMovieFromProperties function is now recommended in place of NewMovieFromFile. After all, the parameters to NewMovieFromFile include oddities like a file reference number and a pointer to a resource ID, which are not standard ways of accessing files or file data on Mac OS X.

It's worth remarking that first QuickTime developer CD also included a small set of HyperCard add-ons, called external commands or XCMDs, that allowed HyperCard developers to access QuickTime functionality in their stacks. This then marks the first integration of QuickTime into what might be called a rapid application development (RAD) tool. There were four XCMD modules:

    (1) The QTMovie XCMD, which could be used to play QuickTime movies in a window or directly onto the screen;

    (2) The QTRecordMovie XCMD, which displayed data from a video digitizer;

    (3) The QTEditMovie XCMD, which supported editing operations on a QuickTime movie;

    (4) The QTPict XCMD, which performed a variety of still image operations, including displaying a picture on a card, compressing pictures, and allowing control over the clipping region of the card window.

(The perceptive reader will notice that, by pure historical accident, one of these XCMDs shares its name with the principal class in the new Cocoa QTKit framework, QTMovie.)

Windows

In the early 1990's, Apple released a version of QuickTime (called "QuickTime for Windows") that provided support for playing QuickTime movies on Windows computers. While it was a significant step forward, this version had some severe limitations. Most importantly, it provided a playback engine only; there was no way to create QuickTime movies on the Windows platform. Also, many of the APIs for playing movies back differed from their Macintosh counterparts. For instance, on the Mac, NewMovieController is declared essentially like this:

MovieController NewMovieController (Movie theMovie, 
                        const Rect *movieRect, long someFlags);

But under QuickTime for Windows, it had this declaration:

MovieController NewMovieController (Movie theMovie, 
                        const LPRECT lprcMovieRect, long someFlags, 
                        HWND hWndParent);

You'll notice that the Windows version took an additional parameter (hWndParent) and that the type of the second parameter was a pointer to the standard Windows rectangle type (RECT), not the Macintosh rectangle type (Rect).

QuickTime 3.0, released in 1998, changed all that. It provided a set of APIs that were virtually identical -- in both parameter lists and feature completeness -- on Macintosh and Windows platforms. It was then possible to write Mac and Windows applications that used the same source code, at least for the QuickTime-specific portions of the application.

The magic provided by the Windows version of QuickTime 3.0 was accomplished principally by a library called the QuickTime Media Layer (or, more briefly, QTML). The QuickTime Media Layer provides an implementation of a number of the parts of the Macintosh Operating System (including the Memory Manager and the File Manager) and the Macintosh User Interface Toolbox (including the Dialog Manager, the Control Manager, the Resource Manager, and the Menu Manager). In other words, QuickTime was ported to Windows mainly by way of transplanting large portions of system software from the MacOS to Windows.

For existing Macintosh developers, this scheme had some profound benefits. First and foremost, this greatly reduced the need to learn the intricacies of a new operating system. To display the standard Windows file-selection dialog box to elicit a movie file from the user, a developer could just use the familiar StandardGetFile function that he or she had been using all along on MacOS. And custom application icons, sounds, and fonts could be stored in resources, just as they are with MacOS applications. And existing QuickTime code could, as noted above, simply be recompiled for Windows applications. (Indeed, the code in Listing 1 would still compile and link just fine on Windows computers.)

But for Windows developers, this scheme was less than optimal. It required working with unfamiliar data types, like Handle and FSSpec and GrafPtr, and also working with command-line tools to create resources or add them to application files. A better solution, which Apple and several third-party developers pursued, was to develop Component Object Model (COM) plug-ins that support QuickTime APIs in Windows applications. One type of COM object is an ActiveX control, which can display a user interface and process events directed at that interface. The developer can then support QuickTime in a COM-aware application (for instance, one developed using Visual Basic) by using an appropriate ActiveX control. For instance, Listing 2 shows some Visual Basic code to handle the Open menu item in the File menu.

Listing 2: Handling the Open menu item

Private Sub FileOpen_Click()
   Dim openDial As New DialogWindow
   On Error GoTo bail

   openDial.CommonDialog1.Filter = "All Files (*.*)|*.*|Movie Files (*.mov)|*.mov|Flash Files 
      (*.swf)|*.swf"
   openDial.CommonDialog1.FilterIndex = 2
   openDial.CommonDialog1.Flags = 4

   ' hide the "Read Only" check box
   openDial.CommonDialog1.CancelError = True
   openDial.CommonDialog1.ShowOpen

   OpenFile (openDial.CommonDialog1.FileName)
   Unload openDial
   Exit Sub

bail:

   ' the user pressed the Cancel button

   Unload openDial
   Exit Sub
End Sub

The FileOpen_Click handler uses standard Visual Basic methods, except for the application defined OpenFile method, shown in Listing 3.

Listing 3: Opening a movie file

Sub OpenFile(fileNm As String)
   Dim movieWind As New MovieWindow

   If Len(fileNm) = 0 Then
      movieWind.Caption = "Untitled"
   Else
      movieWind.Caption = BaseName(fileNm)
      movieWind.QTActiveXPlugin1.SetURL (fileNm)
   End If

   movieWind.Show
End Sub

It's important to note that a QuickTime-savvy ActiveX control does not so much remove the dependence on QTML as hide it. That is to say, although the Visual Basic developer doesn't need to know about MacOS data types, the person who wrote the ActiveX control does. And even the VB developer might need to know about MacOS data types when using the declare statement to reference external procedures in the QTML library. This would happen if the developer needs to access QuickTime functionality that was not implemented in whichever ActiveX control he or she is using.

Mac OS X

QuickTime's migration from MacOS to Mac OS X is remarkably similar in spirit to its migration from MacOS to Windows. Once again, a software layer was added to support the Macintosh Operating System and User Interface Toolbox managers that originated on MacOS and which are used extensively throughout the QuickTime source code. Mac OS X is a UNIX-based operating system and provides no more native support for QuickTime than does Windows. In this case, the implementation of the Macintosh Operating System and Toolbox managers is provided by a library called Carbon. The only real difference between QTML and Carbon is that Carbon has evolved more swiftly than QTML. For instance, as mentioned earlier, the Standard File Package has long since been deprecated on Macintosh computers, having been replaced by the Navigation Services (which supports longer filenames and alternate text encoding schemes such as Unicode).

The move to Mac OS X has prompted two additional sorts of changes to QuickTime APIs, above and beyond the changes required for it to keep pace with enhancements in the Carbon library. First, a reasonably extensive Cocoa framework, QTKit, was developed to replace the existing QuickTime-related classes, NSMovie and NSMovieView. We investigated QTKit in several recent articles (MacTech, May, June, and July 2005) and saw that we can develop full-featured Cocoa applications with only minimal need to venture outside of the methods it provides. And venturing outside of Cocoa is easy, because Objective-C is a superset of ANSI C. This means that we can easily call Carbon APIs within our Cocoa code. For example, Listing 4 shows a method for setting the magnification level of a Flash movie opened using QTKit. Notice that we call GetMovieIndTrackType to find the first Flash track in the movie, and then we call GetTrackMedia, GetMediaHandler, and FlashMediaSetZoom to set the zoom level of that track.

Listing 4: Setting the zoom level of a Flash movie

- (void)setZoom:(float)zoomPct
{
   Track flashTrack = NULL;
   Media flashMedia = NULL;
   MediaHandler flashHandler = NULL;
   
   flashTrack = GetMovieIndTrackType([self quickTimeMovie], 
                        1, FlashMediaType, movieTrackMediaType | 
                        movieTrackEnabledOnly);
   if (flashTrack) {
      flashMedia = GetTrackMedia(flashTrack);
   flashHandler = GetMediaHandler(flashMedia);
      FlashMediaSetZoom(flashHandler, zoomPct);
   }
}

The second principal way in which Mac OS X has affected QuickTime, on the API level, is the adoption within QuickTime of Core Foundation data types. Core Foundation is a procedural C framework that is modeled on the object-oriented Foundation framework in Cocoa. It provides, among other things, some very nice collection classes (such as arrays and dictionaries) and Unicode-compatible strings. QuickTime 6.4 introduced, for instance, several functions for creating data references from Core Foundation data types like CFString and CFURL, including these:

QTNewDataReferenceFromFullPathCFString
QTNewDataReferenceFromURLCFString
QTNewDataReferenceWithDirectoryCFString

And we saw in an earlier article ("State Property" in MacTech, November 2005) that the QuickTime property function QTGetMoviePropertyInfo can return reference-counted Core Foundation objects that need to be released (by calling CFRelease). Interestingly enough, these Core Foundation data types and functions are supported now on Windows as well as on Mac OS X.

Conclusion

So where do we stand here in early 2006? The good news is that Apple and third-party developers have invested considerable resources into making sure that the major programming tools and development environments support some level of QuickTime movie playback and editing. Moreover, the QuickTime APIs have kept pace with changes in the Carbon library and have expanded to provided support for Cocoa and Core Foundation programming paradigms.

The bad news, if there is any, is that some important parts of QuickTime are still accessible only using functions and data types are arose on MacOS, a now-deprecated operating system. It would be nice to never have to allocate another Handle object. We aren't quite there yet. But surely some day we will be.


Tim Monroe is a member of the QuickTime engineering team at Apple. You can contact him at monroe@mactech.com. The views expressed here are not necessarily shared by his employer.

 

Community Search:
MacTech Search:

Software Updates via MacUpdate

macOS Server 5.4 - Quickly and easily tu...
macOS Server, designed for macOS and iOS devices, makes it easy to share files, schedule meetings, synchronize contacts, develop software, host your own website, publish wikis, configure Mac, iPhone... Read more
CleanMyMac 3.9.0 - $39.95
CleanMyMac makes space for the things you love. Sporting a range of ingenious new features, CleanMyMac lets you safely and intelligently scan and clean your entire system, delete large, unused files... Read more
Apple High Sierra 10.13 - The latest OS...
macOS High Sierra introduces new core technologies that improve the most important functions of your Mac. From rearchitecting how it stores your data to improving the efficiency of video streaming to... Read more
OmniGraffle Pro 7.4.3 - Create diagrams,...
OmniGraffle Pro helps you draw beautiful diagrams, family trees, flow charts, org charts, layouts, and (mathematically speaking) any other directed or non-directed graphs. We've had people use... Read more
OmniGraffle 7.4.3 - Create diagrams, flo...
OmniGraffle helps you draw beautiful diagrams, family trees, flow charts, org charts, layouts, and (mathematically speaking) any other directed or non-directed graphs. We've had people use Graffle to... Read more
VueScan 9.5.86 - Scanner software with a...
VueScan is a scanning program that works with most high-quality flatbed and film scanners to produce scans that have excellent color fidelity and color balance. VueScan is easy to use, and has... Read more
ExpanDrive 6.1.0 - Access cloud storage...
ExpanDrive builds cloud storage in every application, acts just like a USB drive plugged into your Mac. With ExpanDrive, you can securely access any remote file server directly from the Finder or... Read more
Yojimbo 4.1 - Data information organizer...
Yojimbo empowers Mac users to manage, effortlessly and securely, the onslaught of information encountered every day at work and at home, even across multiple computers. Yojimbo stores different data... Read more
Airmail 3.5 - Powerful, minimal email cl...
Airmail is an mail client with fast performance and intuitive interaction. Support for iCloud, MS Exchange, Gmail, Google Apps, IMAP, POP3, Yahoo!, AOL, Outlook.com, Live.com. Airmail was designed... Read more
Cocktail 11.0 - General maintenance and...
Cocktail is a general purpose utility for macOS that lets you clean, repair and optimize your Mac. It is a powerful digital toolset that helps hundreds of thousands of Mac users around the world get... Read more

Morphite guide - how to explore like a p...
The much anticipated space exploration game, Morphite, has finally arrived, and we can't get enough of it. The game is essentially everything we wanted No Man's Sky to be. It's a game that puts a heavy focus on exploring foreign worlds, but the... | Read more »
The best visual novels on mobile
Narrative games have been around for ages, but only now have they been creeping into the mainstream spotlight. These games tell some of the industry's finest stories, and they break new ground in terms of gameplay and mechanics regularly. Here are... | Read more »
The best new games we played this week -...
It's pretty much been one big release after another. We were privy to a bunch of surprises this week, with a lot of games we'd been waiting for quite some time dropping unexpectedly. We hope you're free this weekend, because there is a lot for... | Read more »
Stormbound: Kingdom Wars guide - how to...
Stormbound: Kingdom Wars is an excellent new RTS turned card battler out now on iOS and Android. Lovers of strategy will get a lot of enjoyment out of Stormbound's chess-like mechanics, and it's cardbased units are perfect for anyone who loves the... | Read more »
The best AR apps and games on iOS right...
iOS 11 has officially launched, and with it comes Apple's ARKit, a helpful framework that makes it easier than ever for developers to create mobile AR experiences. To celebrate the occassion, we're featuring some of the best AR apps and games on... | Read more »
Phoenix Wright: Ace Attorney - Spirit of...
Phoenix Wright: Ace Attorney - Spirit of Justice 1.00.00 Device: iOS Universal Category: Games Price: $.99, Version: 1.00.00 (iTunes) Description: ************************************************※IMPORTANT※・Please read the “When... | Read more »
Kpressor (Utilities)
Kpressor 1.0.0 Device: iOS Universal Category: Utilities Price: $4.99, Version: 1.0.0 (iTunes) Description: The ultimate ZIP compression application for iPhone and iPad. - Full integration of iOS 11 with support for multitasking.-... | Read more »
Find out how you can save £35 and win a...
Nothing raises excitement like a good competition, and we’re thrilled to announce our latest contest. We’ll be sending one lucky reader and a friend to the Summoners War World Arena Championship at Le Comedia in Paris on October 7th. It’s the... | Read more »
Another Lost Phone: Laura's Story...
Another Lost Phone: Laura's Story 1.0 Device: iOS Universal Category: Games Price: $2.99, Version: 1.0 (iTunes) Description: Another Lost Phone is a game about exploring the social life of a young woman whose phone you have just... | Read more »
The Witness (Games)
The Witness 1.0 Device: iOS Universal Category: Games Price: $9.99, Version: 1.0 (iTunes) Description: You wake up, alone, on a strange island full of puzzles that will challenge and surprise you. You don't remember who you are, and... | Read more »

Price Scanner via MacPrices.net

Snag a Certified Refurbished Apple Pencil for...
Apple has Certified Refurbished Apple Pencils available for $85 including free shipping. Their price is $14 off MSRP, and it’s the lowest price available for a Pencil. Read more
12-inch 64GB iPad Pro on sale for $749, save...
Adorama has 12″ 64GB iPad Pros on sale today for $749 including free shipping plus NY & NJ sales tax only. Their price is $50 off MSRP. Read more
Apple Certified Refurbished iPad minis availa...
Apple has Certified Refurbished 128GB iPad minis available today for $339 including free shipping. Apple’s standard one-year warranty is included. Their price is $60 off MSRP. Read more
12-inch 1.2GHz Retina MacBook Pros on sale fo...
B&H Photo has 2017 12″ 1.2GHz Retina MacBooks on sale for $100 off MSRP. Shipping is free, and B&H charges sales tax in NY & NJ only: 12″ 1.2GHz Space Gray MacBook: $1199 $100 off MSRP 12... Read more
Sunday sale: 13-inch 3.1GHz MacBook Pros for...
Amazon has 2017 13″ 3.1GHz MacBook Pros on sale today for up to $150 off MSRP, each including free shipping: – 13″ 3.1GHz/256GB Space Gray MacBook Pro (MPXV2LL/A): $1649.99 $150 off MSRP – 13″ 3.1GHz... Read more
Looking for a 2017 12″ Retina MacBook? Save $...
Apple has Certified Refurbished 2017 12″ Retina MacBooks available for $200-$240 off the cost of new models. Apple will include a standard one-year warranty with each MacBook, and shipping is free.... Read more
Apple Offering Up To $455 Credit Toward iPhon...
iPhone 8 and 8 Plus are now available at the Apple Store, and you can receive up to $375 credit toward a new iPhone purchase when you trade in your eligible smartphone. Photo Courtesy Apple Just... Read more
AnyTrans Offers iOS Users Three Ways For Movi...
iMobie Inc. today announceed AnyTrans v6.0.1, which now can help iOS users move all data to iPhone 8/8 Plus seamlessly. The software is available both on Mac and Windows and fully able to move all... Read more
Snag a 13-inch 2.3GHz MacBook Pro for $100 of...
B&H Photo has 2017 13″ 2.3GHz MacBook Pros in stock today and on sale for $100 off MSRP, each including free shipping plus NY & NJ sales tax only: – 13-inch 2.3GHz/128GB Space Gray MacBook... Read more
Verizon offers new iPhone 8 for $100-$300 off...
Verizon is offering the new iPhone 8 for up to $300 off MSRP with an eligible trade-in: • $300 off: iPhone 6S/6S Plus/7/7 Plus, Google Pixel XL, LG G6, Moto Z2 Force, Samsung Galaxy S7/S7 edge/S8/S8... Read more

Jobs Board

Data Engineer - *Apple* Media Products - Ap...
Job Summary Apple is seeking a highly skilled data engineer to join the Data Engineering team within Apple Media Products. AMP (home to Apple Music, App Read more
Development Operations and Site Reliability E...
Development Operations and Site Reliability Engineer, Apple Payment Gateway Job Number: 57572631 Santa Clara Valley, California, United States Posted: Jul. 27, 2017 Read more
Development Operations and Site Reliability E...
Development Operations and Site Reliability Engineer, Apple Payment Gateway Job Number: 57572631 Santa Clara Valley, California, United States Posted: Jul. 27, 2017 Read more
*Apple* Retail - Multiple Positions - Apple,...
Job Description: Sales Specialist - Retail Customer Service and Sales Transform Apple Store visitors into loyal Apple customers. When customers enter the store, Read more
Instructional Designer, *Apple* Product Doc...
Job Summary The Apple Product Documentation team is looking for an instructional designer or a video editor to write user documentation for its professional video Read more
All contents are Copyright 1984-2011 by Xplain Corporation. All rights reserved. Theme designed by Icreon.