TweetFollow Us on Twitter

Performance Sampling

Volume Number: 20 (2004)
Issue Number: 5
Column Tag: Programming

Performance Sampling

by John A. Vink

Making code faster through introspection

Do It

Profiling your code is essential. You can't speed up your code if you don't know what is taking so long. You might think you know where the slowdown is, but most likely you'd be surprised. Engineers from the Safari team recount that they had a perfect record of incorrectly predicting what was slowing down their code. Only after doing some profiling, they discovered the real bottlenecks.

The process of profiling is:

    1. profile your code

    2. find the parts of the profile that belong to you and take significant amounts of time

    3. optimize

    4. lather, rinse, repeat

Here I am going to discuss the first two steps of profiling. You should already be familiar with "repeat". The second and following times through this loop you also need to see if the changes you made really did make things faster.

What are you talking about?

Sampling can be done from a command line tool or from a GUI application.

First, let's talk about what sampling actually does.

Sampling is finding out what your application is doing at any given time. About every 10 ms your application is asked, "What are you doing now? How about now? And now?" Your application responds by giving a stack trace each time. These are called samples. When the sampling period has completed, the results are summarized into a call graph.

Actually, that's just a simple way to conceptualize it. What's really happening is that the sampling application suspends the sampled application at periodic times. While the sampled app is suspended, the sampling app walks the stack for each of the sampled process' threads to ascertain the stack trace.

As an aside, sampling is very useful when your application appears hung. You can sample your hung application to see exactly where it is hung, giving you clues about how to fix it.

So let's imagine you sampled for 5 seconds, which would mean 500 samples when sampling every 10 ms. When sampling the main thread, the main() function is going to appear near the top of the stack since it's part of that thread's entry point. So it'll show up 500 times. Let's say you only have 2 functions in main - KindaQuick() and KindaLong(). KindaQuick() might show up 100 times, and KindaLong() 400 times. So your sample log will show main at 500 samples, and inside that, it will show KindaLong() at 400 samples and KindaQuick() at 100 samples. It would look something like this:

    500 main
      400 KindaLong
      100 KindaQuick

Some things to note about samples is that if you have a function that can complete between two samples and you call it just once, then it might not show up in your sample log. Because it started after sample n, and completed before sample n + 1, no samples will show this function. But if you call that function a bunch of times, then chances are it will show up in your sample. This shouldn't be of much concern since if your function runs so quickly to be invisible to samples, there probably isn't much opportunity for optimization.

If your thread is sleeping, it is still being sampled. Sampling doesn't concern itself with actual CPU time used. It will look like a function is being really inefficient because it shows up in so many samples, but that's because the thread is just sitting around waiting for a reason to wake up. Sleeping threads are a good thing since they don't take up any CPU time. Your application would be really efficient if all its threads were always sleeping, although your application wouldn't do much.

Sampling doesn't tell you when a function appeared in a stack trace - only how often. The only "when" information you can learn is which function called the function you're interested in at a particular point in the sample. You also can't tell how many times a function was called, only the number of times that the function appeared in a stack trace. However, you can learn much of this from gprof, described later.

Sampler

Sampler is the GUI sampling application that lives in /Developer/Applications. You can attach to a running application, or specify an application you want launched and sampled.

Give it a whirl. Run Sampler. Pick Attach... from the File menu. You'll get a list of applications that Sampler is able to attach to. Typically these are applications that are running as the same uid as you. If you need to sample something that is running as another user, you can try running Sampler as root or that other user.

Pick an application and hit OK. You'll get a sampling window which lets you choose the sampling interval. Actual sampling doesn't start until you hit the Start Sampling button. Hit the start button, then play around in the application for a few seconds. Then come back to Sampler and hit the stop button. After a few seconds of processing, it displays the result of your sampling. Look at Figure 1 for an example.


Figure 1. Main Sampler window.

As you click on function names in the left column view, the next column to the right will populate showing all the functions called by the function you just clicked along with the number of samples for each. The right scroller will show you the stack trace up to that function, and the highest sampling functions after that. You can see in this figure that we've drilled down to __CFRunLoopDoSources(). You can see exactly where its parent, __CFRunLoopRun, spent all of its 534 samples. 202 samples were in mach_msg, which, if that path were followed, would reveal that the thread was sleeping. All of the time spent in __CFRunLoopDoSources() was spent in _sendCallbacks. The remaining 104 samples from __CFRunLoopRun were shared among __CFRunLoopDoObservers, __CFRunLoopDoTimers, __CFRunLoopDoSource1, and __CFRunLoopRun.

If you were tracking performance problems, you want to investigate the functions that are taking the most time, ignoring the samples that are sleeping. Keep drilling down until you see something that surprises you. 534 samples in __CFRunLoopRun is not surprising, and neither is 228 samples in __CFRunLoopDoSources, but perhaps 97 samples in WebIconLoader might be, so if that's the case, that's what you want to check out.

sample

sample is the command line tool that allows you to sample a process. This can be useful if you're remotely connected to the machine.

To sample a process, you invoke sample with the PID of the process you're interested in, and the number of seconds to sample for. You can optionally provide the duration between samples. So, first get the PID of the process you're interested in:

[vinkjo:~] jav% ps -aux | grep MyApp
jav    452   0.0  2.2    99616  22624  ??  S    Sun03PM   2:55.17 MyApp
jav   1696   0.0  0.0     1416    308 std  S+    5:49PM   0:00.00 grep MyApp

So now you know the PID you are interested in is 452. Now run the sample command:

[vinkjo:~] jav% sample 452 5
Sampling process 452 each 10 msecs 500 times
Sample analysis of process 452 written to file /tmp/MyApp_452.sample.txt

Opening the resulting sample file will reveal that it looks something like this:

Analysis of sampling pid 452 every 10 milliseconds
Call graph:
    500 main
      400 KindaLong
        400  BlockMoveData [STACK TOP]
      100 KindaQuick
        100  memcpy [STACK TOP]

Sort by top of stack, same collapsed (when >= 5):
        BlockMoveData [STACK TOP]        400
        memcpy [STACK TOP]        100

In this hypothetical example we see that KindaLong took 4 times longer than KindaQuick. Perhaps this surprises us since both functions copy the same amount of data. If that's true, we can see that memcpy is much faster than BlockMoveData for the type and size of data we're giving it.

The sample shows [STACK TOP] to show when a sample shows that particular function at the top of the stack. This means, at the time the sample was taken, the code in that function was executing - not code in any other function that might be called from it.

You can open the result of the sample command line tool in the Sampler 2.0 GUI application. You can select the sample file from the Open... dialog in Sampler, or open it from the command line like this:

[vinkjo:~] jav% open -a Sampler /tmp/MyApp_452.sample.txt

gprof

Sampler and sample watch your code while it's running. For gprof, you run your code with profiling compiled and linked in, and when you're done, you use gprof to analyze the results. This allows you to profile command line tools and quickly running applications.

Using gprof requires you to rebuild your code. Because you need to have your code recompiled to take advantage of gprof, it might not be suitable when you're using a lot of third party frameworks whose code you can't recompile. Make a new build style and set the OTHER_CFLAGS and OTHER_LDFLAGS as shown in Figure 2.


Figure 2. Setting compiler options in Project Builder

When your program completes, a file named gmon.out will be created in the current working folder from where you launched the application. This can be confusing, since if you launched it from the Finder, the gmon.out file will appear at /.

After you get your gmon.out file, you need to process it with gprof into something readable. To do that, run gprof something like this:

> gprof /BuildResults/MyApp.app/Contents/MacOS/MyApp gmon.out > gprof.out

This will give you a report in the file gprof.out. There are two main sections to this report - the Call Graph and the Flat Profile.

The Flat Profile looks something like this:

granularity: each sample hit covers 4 byte(s) for 1.56% of 0.64 seconds
  %   cumulative   self              self     total           
 time   seconds   seconds    calls  ms/call  ms/call  name    
 12.5       0.08     0.08                             _objc_msgSend [1]
  4.7       0.11     0.03                             _DoLigatureXSubtable [2]
  3.1       0.13     0.02                             _CFHash [3]
  3.1       0.15     0.02                             __class_lookupMethodAndLoadCache [4]
  3.1       0.17     0.02                             _objc_getNilObjectMsgHandler [5]
  3.1       0.19     0.02                             _pthread_getspecific [6]
  1.6       0.20     0.01                             +[NSDictionary 
                                                         dictionaryWithObjectsAndKeys:] [7]
  1.6       0.21     0.01                             -[NSLayoutManager 
                                                         defaultLineHeightForFont:] [8]
  1.6       0.24     0.01                             -[NSString isEqual:] [11]
  1.6       0.25     0.01                             -[NSUnarchiver 
                                                         decodeValuesOfObjCTypes:] [12]
  1.6       0.27     0.01                             _CFAllocatorDeallocate [14]
  1.6       0.28     0.01                             _CFDictionaryGetValue [15]
  1.6       0.29     0.01                             _CFRelease [16]
  1.6       0.30     0.01                             _CFRetain [17]
.
.
.
  0.0       0.64     0.00       20     0.00     0.00  __ZN13BaseConverter15GenericSetValueEtPc 
                                                         [18043]
  0.0       0.64     0.00       10     0.00     0.00  -[ConverterView textFieldType:] [52]
  0.0       0.64     0.00        5     0.00     0.00  -[ConverterView textDidChange:] [53]
  0.0       0.64     0.00        5     0.00     0.00  -[ConverterView 
                                                         updateFieldsWithNewNumbers:] [54]

This shows the amount of time spent in each function, sorted in decreasing order by the number of seconds actually spent in each function (as opposed to time spent in it and the functions that it calls). Then it is sorted by the number of calls (this is only available for sources compiled with the -pg flag. So, your sources, not the frameworks), and then alphabetically by name.

The % time is the percentage of total execution time that your program spent in this function. The cumulative seconds is the amount of time that was spent running this function plus any function that it calls. If the number of calls for a function are available, you can discover the number of milliseconds spent in just this function per call (self ms/call), and the number of milliseconds spent in this function plus any functions it calls per call (total ms/call).

Here I can see that the C++ function BaseConverter::GenericSetValue() gets called 20 times. If this is more than I expect, then I should look into why it's being called so many times. You can see that the flat profile can tell you how many times a particular function was called, which is not easy to do with the output from sample, and you can also see the amount of time spent in an individual function compared to how long was spent in the functions that that function called.

It's important to note when a function appears to take a long time to execute because the function itself is slow or because it is called a large number of times. In the above example, _objc_msgSend comes out as the biggest "time sink", which may lead you to believe that it is the performance issue. When in fact, it probably isn't. The performance issue, if any, is likely to be that some code gets executed too much that happens to call _objc_msgSend a lot, and instead of focussing on speeding up the leaf routine, one should find out why the leaf routine is called so much. In your sources that you compile with the -pg flag, this will be more obvious since you get the call count, but keep this in mind for functions that you don't get the call count.

The other part of the gprof report is the Call Graph, which looks something like this:

granularity: each sample hit covers 4 byte(s) for 1.56% of 0.64 seconds
                                  called/total       parents 
index  %time    self descendents  called+self    name           index
                                  called/total       children
                0.00        0.00       5/10          -[ConverterView textDidChange:] [53]
                0.00        0.00       5/10          -[ConverterView 
                                                       updateFieldsWithNewNumbers:] [54]
[52]     0.0    0.00        0.00      10         -[ConverterView textFieldType:] [52]
-----------------------------------------------
                0.00        0.00       5/5           __nsNotificationCenterCallBack [85241]
[53]     0.0    0.00        0.00       5         -[ConverterView textDidChange:] [53]
                0.00        0.00       5/10          -[ConverterView textFieldType:] [52]
                0.00        0.00       5/5           __ZN13BaseConverter14SetUnsignedDecEm 
                                                        [18045]
                0.00        0.00       5/5           -[ConverterView 
                                                         updateFieldsWithNewNumbers:] [54]
-----------------------------------------------
                0.00        0.00       1/1           __start [85480]
[18052   0.0    0.00        0.00       1         _main [18052]
-----------------------------------------------

Using the call graph, you can see which functions call a particular function, and also see what functions a particular function calls. Looking at the first entry, we can see that -[ConverterView textFieldType:] is called a total of 10 times - 5 times from -[ConverterView textDidChange:] and 5 times from -[ConverterView updateFieldsWithNewNumbers:]. Either -[ConverterView textFieldType:] did not call any other functions, or the functions that it did call were not compiled and linked with the -pg flag.

In the next entry, we can see the functions that -[ConverterView textDidChange:] called. It called -[ConverterView textFieldType:] 5 times out of the 10 times that the function was called throughout the program execution. It also called BaseConverter::SetUnsignedDec and -[ConverterView updateFieldsWithNewNumbers:] each 5 times.

With the results you get from gprof, here are some of the things you should be looking for:

    1. Look for functions that use up a lot of self ms/call in the flat profile. A lot of time is spent in these functions, and the amount of time can not be blamed on other functions that it calls.

    2. Take a look at the number of calls that your functions get. If they are larger than you expect, track down why they are larger than you expect. Some functions may be called redundantly.

    3. Scan over the numbers and see if anything looks surprising or slightly unexpected. A big part of optimization entails looking for things that do not look right.

Which Functions to Optimize

Here are some ideas for finding which functions you should spend some attention on:

    1. If a function takes a long time to execute but only executes once, then tuning that function's code is the best thing you can do. If a function gets run millions of times but spends little time executing, then the best thing you can do is get rid of the need to call it millions of times.

    2. Scan your results to find "things that make you go hmmmm..." Surprising results means things aren't operating the way you had anticiapted. This could mean some design issues with your algorithm, some functions are more expensive than you had anticipated, or just implementation mishaps.

    3. Go for the biggest bang. You may have a terribly inefficient function, but if it only takes up 0.1% of the time, then the biggest gain you can possibly get is 0.1%. Go after the function that takes 10% instead.

Summary

Don't postulate at what's wrong. Look at what's wrong.

References

For additional information, see Inside Mac OS X : Performance. More information on gprof is available at <http://www.gnu.org/manual/gprof-2.9.1>. Thanks to Yan Arrouye, Robert Bowdidge, Scott Boyd, and John Wendt for reviewing this article.


John A. Vink is one of Apple's most gifted engineers. He currently does performance analysis on code that you, the user, run constantly every day. He hopes you'll read this and make his job easier. It's possible to email him at vink@apple.com.

 

Community Search:
MacTech Search:

Software Updates via MacUpdate

Apple iTunes 12.2 - Play Apple Music...
Apple iTunes lets you organize and stream Apple Music, download and watch video and listen to Podcasts. It can automatically download new music, app, and book purchases across all your devices and... Read more
Apple Security Update 2015-005 - For OS...
Apple Security Update 2015-005 is recommended for all users and improves the security of OS X. For detailed information about the security content of this update, please visit: http://support.apple.... Read more
Apple HP Printer Drivers 3.1 - For OS X...
Apple HP Printer Drivers includes the latest HP printing and scanning software for OS X Lion or later. For information about supported printer models, see this page. Version 3.1: The latest printing... Read more
Epson Printer Drivers 3.1 - For OS X 10....
Epson Printer Drivers installs the latest software for your EPSON printer or scanner for OS X Yosemite, OS X Mavericks, OS X Mountain Lion, and OS X Lion. For more information about printing and... Read more
Xcode 6.4 - Integrated development envir...
Xcode provides everything developers need to create great applications for Mac, iPhone, and iPad. Xcode brings user interface design, coding, testing, and debugging into a united workflow. The Xcode... Read more
OS X Yosemite 10.10.4 - Apple's lat...
OS X Yosemite is Apple's newest operating system for Mac. An elegant design that feels entirely fresh, yet inherently familiar. The apps you use every day, enhanced with new features. And a... Read more
Dash 3.0.2 - Instant search and offline...
Dash is an API Documentation Browser and Code Snippet Manager. Dash helps you store snippets of code, as well as instantly search and browse documentation for almost any API you might use (for a full... Read more
FontExplorer X Pro 5.0 - Font management...
FontExplorer X Pro is optimized for professional use; it's the solution that gives you the power you need to manage all your fonts. Now you can more easily manage, activate and organize your... Read more
Typinator 6.6 - Speedy and reliable text...
Typinator turbo-charges your typing productivity. Type a little. Typinator does the rest. We've all faced projects that require repetitive typing tasks. With Typinator, you can store commonly used... Read more
Arq 4.12.1 - Online backup to Google Dri...
Arq is super-easy online backup for the Mac. Back up to your own Google Drive storage (15GB free storage), your own Amazon Glacier ($.01/GB per month storage) or S3, or any SFTP server. Arq backs up... Read more

Hands-On With Raceline CC
Set for release soon, Rebellion’s motorbike racing game, Raceline CC certainly looks stylish. But how does it play? I got my hands on a preview build to answer exactly that. | Read more »
Siegefall - Tips, Tricks, and Strategies...
So, you fancy establishing a base and ruling the world again. Siegefall is a convenient place to do that, but how about some great tips and tricks on how best to go about it? Here are a few ideas on how to get ahead as a beginner to this medieval... | Read more »
The WWE Comes to Racing Rivals - Because...
Racing Rivals is a racing game that's all about, well, rivalry. And who knows rivalry better than WWE superstars (shhhh, that was rhetorical)? [Read more] | Read more »
Hey, Who Put Apple Music in My SoundHoun...
One of the App Store's popular music discovery sources - SoundHound - has already been updated to include Apple's own music discovery source - Apple Music. That was fast! [Read more] | Read more »
Arcane Legends has a New Expansion Calle...
Arcane Legends has been going strong since it debuted at the tail end of 2012. So well, in fact, that it's already up to its sixth expansion. [Read more] | Read more »
Vector 2 is Officially a Thing and it...
Vector is a pretty cool parkour-driven runner that's gotten a pretty decent following since it first came out - although personally I think more people could stand to show it some love. Anyway, Nekki has announced that a sequel isofficially on its... | Read more »
Get Ready to Trucksform and Roll Out (an...
It looks like NuOxygen is bringing the truck-transforming racer Trucksform (get it?) to iOS in a couple of weeks. Although really it's more of an auto-driver than a racer. But still, transforming trucks! [Read more] | Read more »
This Week at 148Apps:June 22-26, 2015
June's Summer Journey Continues With 148Apps How do you know what apps are worth your time and money? Just look to the review team at 148Apps. We sort through the chaos and find the apps you're looking for. The ones we love become Editor’s Choice,... | Read more »
LEGO® Minifigures Online (Games)
LEGO® Minifigures Online 1.0.1 Device: iOS iPhone Category: Games Price: $4.99, Version: 1.0.1 (iTunes) Description: | Read more »
World of Tanks Blitz celebrates its firs...
Today marks the first anniversary of the launch of World of Tanks Blitz, the mobile version of the PC tank battler, World of Tanks. World of Tanks Blitz launched on iOS and Android on June 26th last year and to celebrate, Wargaming is giving all... | Read more »

Price Scanner via MacPrices.net

Apple Releases OS X 10.10.4 With WIFi Fix, iO...
On Tuesday, Apple released final versions of OS X 10.10.4 and iOS 8.4, as well as updates for the Safari browser for OS X Yosemite, Mavericks, and Mountain Lion. The OS X 10.10.4 update focuses on... Read more
Dual-Band High-Gain Antennas for Home Wi-Fi N...
Linksys has announced what it claims are the first dual-band, omni-directional high-gain antennas for the consumer market. The new Linksys high-gain antennas available in a 2- and 4-pack (WRT004ANT... Read more
Apple refurbished 2014 15-inch Retina MacBook...
The Apple Store has Apple Certified Refurbished 2014 15″ 2.2GHz Retina MacBook Pros available for $1609, $390 off original MSRP. Apple’s one-year warranty is included, and shipping is free. They have... Read more
Clearance 2014 MacBook Airs available for up...
Adorama has 2014 MacBook Airs on sale for up to $301 off original MSRP including NY + NJ sales tax and free shipping: - 11″ 256GB MacBook Air: $798 $301 off original MSRP - 13″ 128GB MacBook Air: $... Read more
5K iMacs on sale for $100 off MSRP, free ship...
B&H Photo has the new 27″ 3.3GHz 5K iMac on sale for $1899.99 including free shipping plus NY tax only. Their price is $100 off MSRP. They have the 27″ 3.5GHz 5K iMac on sale for $2199, also $100... Read more
27-inch 3.2GHz iMac on sale for $1679, save $...
B&H Photo has the 27″ 3.2GHz iMac on sale for $1679.99 including free shipping plus NY sales tax only. Their price is $120 off MSRP. Read more
12-inch 1.2GHz Gray MacBook on sale for $1487...
Amazon.com has the new 12″ 1.2GHz Gray MacBook in stock and on sale for $1487 including free shipping. Their price is $102 off MSRP, and it’s the lowest price available for this model. We expect... Read more
15-inch 2.2GHz Retina MacBook Pro on sale for...
Amazon.com has the 15″ 2.2GHz Retina MacBook Pro on sale for $1819 including free shipping. Their price is $180 off MSRP, and it’s the lowest price available for this model. Read more
OtterBox Releases New Symmetry Series Metalli...
Otterbox’s new Symmetry Series of smartphone cases flaunts the best of both both street style and street smarts with their new metallic finishes and trusted OtterBox protection for iPhone 6 and... Read more
Eliminate Cable Chaos with New GE Branded Wra...
GE licensee Jasco Products has introduced a new line of GE branded Wrap-n-Charge USB wall chargers with built-in cable management. “We are always working to combine great technology with innovative... Read more

Jobs Board

*Apple* TV Live Streaming Frameworks Test En...
**Job Summary** Work and contribute towards the engineering of Apple 's state-of-the-art products involving video, audio, and graphics in Interactive Media Group (IMG) at Read more
Project Manager, WW *Apple* Fulfillment Ope...
…a senior project manager / business analyst to work within our Worldwide Apple Fulfillment Operations and the Business Process Re-engineering team. This role will work Read more
Senior Data Scientist, *Apple* Retail - Onl...
**Job Summary** Apple Retail - Online sells Apple products to customers around the world. In addition to selling Apple products with unique services such as iPad Read more
*Apple* Music Producer - Apple (United State...
**Job Summary** Apple Music seeks a Producer to help shepherd some of the most important content and editorial initiatives within the music app, with a particular focus Read more
Sr. Technical Services Consultant, *Apple*...
**Job Summary** Apple Professional Services (APS) has an opening for a senior technical position that contributes to Apple 's efforts for strategic and transactional Read more
All contents are Copyright 1984-2011 by Xplain Corporation. All rights reserved. Theme designed by Icreon.