TweetFollow Us on Twitter

Programmer's Challenge

Volume Number: 18 (2002)
Issue Number: 9
Column Tag: Programmer's Challenge

Programmer's Challenge

by Bob Boonstra

PhotoMosaic

Elvis lives. Or so some people have been saying in the 25 years since the reported death of the King. This momentus anniversary would have escaped my notice, had it not been brought to my attention by my spouse. And she probably wouldn't have mentioned it had she not seen some television show that provided the inspiration for this month's Challenge.

It seems some Elvis devotee had discovered a collection of rarely seen images of the Hound Dog, and constructed a portrait of the King using tiny versions of those images. I recall once having put together a jigsaw puzzle of the space shuttle similarly constructed. Viewed from a distance, the mosaic of smaller images took on the appearance of the shuttle on the launch pad, or, in the case of the television show, the swiveling hips of Mr. Love Me Tender. Having recently completed scoring our Jigsaw Puzzle challenge, the two ideas came together in my mind to form this month's Challenge.

The prototype for the code you should write is:

void InitMosaic(
   short numElements,      
      /* number of pixmaps from which the mosaic should be created */
   const PixMapHandle element[]
      /* element[i] is a PixMapHandle to the i-th image used to construct the mosaic */
);
typedef struct MosaicPiece {
   short elementIndex;
      /* index into element[] of the image used to construct this piece of the mosaic */
   Rect elementRect;
      /* which portion of element[elementIndex] was used to construct this piece */
   Rect mosaicRect;
      /* which portion of desiredImage this piece is used to construct */
      /* elementRect and mosaicRect must be the same size */
} MosaicPiece;
void Mosaic(
   const PixMapHandle desiredImage,
      /* PixMapHandle populated with the desired image to be constructed */
   const Rect minPieceSize,
      /* mosaic pieces must be of this size or larger */
   PixMapHandle mosaic,
      /* PixMapHandle to preallocated image in which the mosaic is to be placed */
      /* initialized to black */
   MosaicPiece *piece,
      /* pointer to array of mosaic pieces */
      /* populated by your code */
   long *numMosaicPieces
      /* number of mosaic pieces created by your code */
);
void TermMosaic(void);
   /* deallocate any memory allocated by InitMosaic or multiple Mosaic calls */

Your InitMosaic routine will be given an array of numElements images (elements) from which you will be asked to construct a sequence of mosaics. The image elements are in the form of PixMaps. InitMosaic should perform any analysis on these images that you decide would be useful in the subsequent mosaic construction.

Next, your Mosaic routine will be called multiple times. In each call, you will be given another PixMap, the image (desiredImage) you are being asked to approximate with your mosaic, along with a Rect that defines the minimum size of the pieces of the mosaic you will construct. Your task is to create an array of MosaicPieces that, when combined, form a mosaic that looks something like the desiredImage. Each MosaicPiece identifies the image element being used to create the mosaic piece, the portion (elementRect) of the image being used, and the portion (mosaicRect) of the mosaic being constructed with this piece. The mosaicRect of one piece must not overlap that of another piece. You should return the number of MosaicPieces you create in numMosaicPieces, and you should also create your mosaic image in the mosaic PixMap. Memory for the mosaic PixMap, its constituent members, and for the MosaicPieces will be preallocated.

Your TermMosaic routine will be called once for each call to InitMosaic so that you can return any dynamically allocated memory.

Scoring will be based on execution time and on how close your mosaic image resembles the desired image. For each pixel in the mosaic, I'll calculate the root mean square distance in RGB space between the corresponding values of the mosaic and the desired image. Your raw score will be the sum of those distances over all image pixels. For each second of execution time, I'll add a penalty of 10% to the raw score. Execution time will include the time taken by the Mosaic routine, plus a share of the InitMosaic and TermMosaic time, divided equally among the Mosaic calls. The winner will be the correct solution with the lowest score.

This will be a native PowerPC Carbon C++ Challenge, using the Metrowerks CodeWarrior Pro 7.0 development environment. Please be certain that your code is carbonized, as I may evaluate this Challenge using Mac OS X.

Winner of the June, 2002 Challenge

The June Challenge invited readers to write a player for a modified Matchsticks game. The original game is played by removing one or more matchsticks from a triangular grid, with the object being to force your opponent to take the last matchstick. We modified the game slightly, converting the board from a triangle to a rectangle, allowing matchsticks to be removed from columns as well as rows, leaving some "holes" in the initial array of matchsticks, restricting move possibilities to sequences of consecutive matchsticks, and redefining options for victory to include taking the last matchstick, as well as forcing your opponent to do so.

Unfortunately, we only had one entry for this Challenge, so the tournament to determine the winner was brief. Congratulations to Robin Landsbert for submitting the winning entry. The perceptive reader will recall that Robin was the one who suggested using the Matchstick game as a Challenge problem. This led to some questions about eligibility to participate and fairness of accepting this entry. Since the actual Challenge was significantly different than the one originally suggested, Robin really had no advantage, so I decided to accept the entry.

Robin's code doesn't include much commentary about strategy, so a little explanation is in order. The initialization routine copies the initial board to a "wide" board with a sentinal at the beginning and end of each row. Game strategy is organized around the number of "islands", or sequences of matchsticks, that remain on the board. Game play is based on maintaining the correct parity on the number of these islands, depending on whether the objective is to take or to avoid taking the last matchstick. If the parity is correct, the code takes one island to maintain parity; if it is not, the code attempts to create the right number of new islands to reset the parity. Routine Create1or3Islands attempts to create an odd number of islands to preserve a winning position, while Create2or4Islands tries to maintain parity to reverse a losing position. The diagrams in the Create1or3Islands routine are probably the best way to understand the island creation approach. Aprat from the island count, the code does not attempt to anticipate the play of the opponent. All that said, without having other solutions to test the code against, it is difficult to determine how effective this strategy is...

Top Contestants ...

Listed here are the Top Contestants for the Programmer's Challenge, including everyone who has accumulated 20 or more points during the past two years. The numbers below include points awarded over the 24 most recent contests, including points earned by this month's entrants.

   
Rank    Name              Points     Wins       Total
                          (24 mo)    (24 mo)    Points
                          
 1.   Munter, Ernst          243       8         872
 2.   Saxton, Tom             65       2         230
 3.   Taylor, Jonathan        57       2          83
 4.   Stenger, Allen          53       1         118
 5.   Rieken, Willeke         42       2         134
 6.   Wihlborg, Claes         40       2          49
 8.   Landsbert, Robin        22       1          22
 9.   Gregg, Xan              20       1         140
10.   Mallett, Jeff           20       1         114
11.   Cooper, Tony            20       1          20

Here is Robin's winning MatchSticks solution. The code had been abridged for publication because of page constraints; see http://www.mactech.com for the full version.

    MatchSticks.cp

    Copyright (c) 2002

    Robin Landsbert

#include "Matchsticks.h"
#ifndef DEBUGGING
   #define DEBUGGING !(__option(peephole))
#endif
#if DEBUGGING
   static void Assert_ (bool inTest)
      {
      if (!inTest)
         {
         long x = 0; // just so I can get a break point here
         }
      }
#else
   #define Assert_(x)
   #if __profile__
      #pragma inline_depth(0)
   #else
      #pragma inline_depth(8)
   #endif
#endif
Global declarations
static long      gDimension;                     
   // the width an height of the board in matches
static long      gDimensionMinus1;               
   // one less than the width used in QuickTakeSurroundedMatch
static long      gWideDimension;                  
   // the width an height of the board with one extra blank 
   // space at the start and end of the board
static long      g2WideDimension;               
   // gWideDimension + gWideDimension, used for jumping from 
   // north match to south match quickly
static long      gNumMatches;                  
   // number of matches left
static long      gCriticalCount;                  
   // the number of matches above which the game has no 
   // predetermined outcome so no need to analyse move
static long      gNumIslands;                  
   // the current number of islands
static char*   gBoard;                        
   // pointer to the board of matches
static char*   gLastMatch;                     
   // pointer to the last match when looking backwards
static char*   gWideBoard;                     
   // pointer to my wide board of matches
static char*   gWideBoardStart;               
   // pointer to the first match on my wide board of matches
static char*   gWideBoardStartJumpToFirstMatch;   
   // pointer to the first fully surrounded match on my wide board of matches
static char*   gIslandSaver;                  
   // pointer to where islands were during taking moves so they can 
   // be put back if move is undone
static bool      gLastMatchLoses;               
   // if I take the last match I lose
static bool      gGameOver;                     
   // the games outcome if fully determined, as there are only islands left
static bool      gDoWideMove;                  
   // I already did the move on the wide board during my analysis, 
   // so I do not need to do it again
static bool      gSetIslandSaver;
enum TDirection
   {
   eUnknownDirection,
   eNorth,
   eSouth,
   eEast,
   eWest
   };
IsThisANewIsland
inline bool IsThisANewIsland (register char* cell)
   {
   if (!(*cell))
      return false;
   Assert_(*cell != 2);
   register char* nextMatch = cell - 1;
   if (*nextMatch)
      return false;
   nextMatch += 2;
   if (*nextMatch)
      return false;
   nextMatch = cell - gWideDimension;
   if (*nextMatch)
      return false;
   nextMatch += g2WideDimension;
   if (*nextMatch)
      return false;
   return true; // new island
   }
IsThisANewIslandAndSetIslands
IsThisANewIslandAndSetIslands
inline bool IsThisANewIslandAndSetIslands (register char* cell) 
   // marks any new islands as value 2 so can be detected again quickly
   {
   if (!(*cell))
      return false;
   Assert_(*cell != 2);
   register char* nextMatch = cell - 1;
   if (*nextMatch)
      return false;
   nextMatch += 2;
   if (*nextMatch)
      return false;
   nextMatch = cell - gWideDimension;
   if (*nextMatch)
      return false;
   nextMatch += g2WideDimension;
   if (*nextMatch)
      return false;
   *cell = 2; // mark as an island
   return true; // new island
   }
LookAtCellsAroundThisGoingEast
inline long LookAtCellsAroundThisGoingEast (register char* cell)
// omitted for brevity in publication, see online archive
LookAtCellsAroundThisGoingEastAndSetIslands
inline long LookAtCellsAroundThisGoingEastAndSetIslands (
   register char* cell)
// omitted for brevity in publication, see online archive
LookAtCellsAroundThisGoingSouth
inline long LookAtCellsAroundThisGoingSouth (register char* cell)
   {
   --cell; // look at the cells east and west
   long count = IsThisANewIsland (cell);
   cell += 2;
   if (IsThisANewIsland (cell))
      ++count; // new island
   return count;
   }
LookAtCellsAroundThisGoingSouthAndSetIslands
inline long LookAtCellsAroundThisGoingSouthAndSetIslands (register char* cell)
// omitted for brevity in publication, see online archive
CountIslandsQuick
inline long CountIslandsQuick (bool& outOnlyIslands, bool playingRow, short rowOrColumnNumber, 
short startingColOrRow, short endingColOrRow)

   {
   // only call this after I have removed the matches for testing
   register char* cell;
   register long islandCount = gNumIslands; 
      // this is how many islands there were at last count
   register long count = endingColOrRow - startingColOrRow + 1;
      // this is how many matches he took
   if (playingRow) // going east
      {
      cell = gWideBoardStart + (rowOrColumnNumber * gWideDimension) 
               + startingColOrRow - 1;
      islandCount += IsThisANewIslandAndSetIslands (cell);
      ++cell;
      while (count)
         {
         islandCount += LookAtCellsAroundThisGoingEast (cell);
         ++cell;
         --count;
         }
      }
   else
      {
      cell = gWideBoardStart + rowOrColumnNumber + 
            (startingColOrRow * gWideDimension) - gWideDimension;
      islandCount += IsThisANewIslandAndSetIslands (cell);
      cell += gWideDimension;
      while (count)
         {
         islandCount += LookAtCellsAroundThisGoingSouth (cell);
         cell += gWideDimension;
         --count;
         }
      }
   islandCount += IsThisANewIslandAndSetIslands (cell);
   outOnlyIslands = (islandCount == gNumMatches); 
      // return whether there are only discrete matchsticks
   return islandCount; // return how many discrete matchsticks there are
   }
CountIslands
inline void CountIslands (bool playingRow, 
   short rowOrColumnNumber, short startingColOrRow, 
   short endingColOrRow)
   {
   // only call this after I have removed the matches
// omitted for brevity in publication, see online archive
DoWideMoveAndCountIslands
inline void DoWideMoveAndCountIslands (bool playingRow, 
      short rowOrColumnNumber, short startingColOrRow, 
      short endingColOrRow)
   {
   register char* cell;
   register long islandCount = gNumIslands;
   register long count = endingColOrRow - startingColOrRow + 1; 
      // this is how many matches he took
   gNumMatches -= count;
   if (playingRow) // going east
      {
      cell = gWideBoardStart + (rowOrColumnNumber * gWideDimension) 
                              + startingColOrRow;
      if (*cell == 2)
         --gNumIslands;
      *cell = 0; 
         // need to set this cell to zero first as it may create an island before it
      --cell;
      islandCount += IsThisANewIslandAndSetIslands (cell);
      ++cell;
      while (count)
         {
         if (*cell == 2)
            --gNumIslands;
         *cell = 0;
         islandCount += 
            LookAtCellsAroundThisGoingEastAndSetIslands (cell);
         ++cell;
         --count;
         }
      }
   else
      {
      cell = gWideBoardStart + rowOrColumnNumber + 
         (startingColOrRow * gWideDimension);
      if (*cell == 2)
         --gNumIslands;
      *cell = 0; 
         // need to set this cell to zero first as it may create an island above it
      cell -= gWideDimension;
      islandCount += IsThisANewIslandAndSetIslands (cell);
      cell += gWideDimension;
      while (count)
         {
         if (*cell == 2)
            --gNumIslands;
         *cell = 0;
         islandCount += 
               LookAtCellsAroundThisGoingSouthAndSetIslands (cell);
         cell += gWideDimension;
         --count;
         }
      }
   islandCount += IsThisANewIslandAndSetIslands (cell);
   gNumIslands = islandCount;
   }
TakeAnIsland
inline bool TakeAnIsland (short& outRow, short& outCol)
   {
   if (gNumIslands)
      {
      register char* match = gWideBoardStart;   
      for (register long i = 0; i < gDimension; ++i)
         {
         for (register long j = 0; j < gDimension; ++j)
            {
            if (*match == 2) // this is marked as an island
               {
               outRow = i;
               outCol = j;
               return true;
               }
            ++match;
            }
         // skip the last space at the end of the row and the next space at the 
         // start of the next row
         match += 2;
         }
      Assert_(false);
      }
   return false; // there are no Islands
   }
enum TWinningState // the lower the value the worse state I am in
   {
   eLost,
   eLosing,
   eUnknown,
   eWinning,
   eWon
   };
GetMoveState
inline TWinningState GetMoveState (bool outPlayingRow, 
               short outRowOrColumnNumber, short outStartingColOrRow, 
               short outEndingColOrRow)
   {
   bool winning;
   bool onlyIslands;
   // count how many island matches there are
   const long numIsland = CountIslandsQuick (onlyIslands, 
         outPlayingRow, outRowOrColumnNumber, outStartingColOrRow, 
         outEndingColOrRow);
   if (!numIsland)
      return eUnknown;
   if (gLastMatchLoses)
      winning = (numIsland & 0x00000001) != 0; 
         // if there are an odd number of islands I am currently winning
   else
      winning = (numIsland & 0x00000001) == 0; 
         // if there are an even number of islands I am currently winning
   if (onlyIslands) 
      // I've won or lost, there have no choice, so just take the first island
      {
      if (winning)
         {
         gGameOver = true;
         return eWon;
         }
      return eLost;
      }
   if (winning)
      return eWinning;
   return eLosing;
   }
DoMove
inline void DoMove (bool playingRow, short rowOrColumnNumber, short startingColOrRow, short 
endingColOrRow)

   {
   register char* cell;
   register long count = endingColOrRow - startingColOrRow + 1; 
      // this is how many matches I took
   if (playingRow)
      {
      cell = gBoard + (rowOrColumnNumber * gDimension) + 
                  startingColOrRow;
      while (count)
         {
         Assert_(*cell != 0);
         *cell = 0;
         ++cell;
         --count;
         }
      }
   else
      {
      cell = gBoard + rowOrColumnNumber + 
                     (startingColOrRow * gDimension);
      while (count)
         {
         Assert_(*cell != 0);
         *cell = 0;
         cell += gDimension;
         --count;
         }
      }
   }
DoWideMove
inline void DoWideMove (bool playingRow, short rowOrColumnNumber, 
               short startingColOrRow, short endingColOrRow)
   {
   register char* cell;
   register long count;
   char* p;
   if (startingColOrRow > endingColOrRow) 
      // taking backwards so swap them
      {
      count = startingColOrRow;
      startingColOrRow = endingColOrRow;
      endingColOrRow = count;
      }
   count = endingColOrRow - startingColOrRow + 1; 
      // this is how many matches he took
   gNumMatches -= count;
   if (playingRow)
      {
      cell = gWideBoardStart + (rowOrColumnNumber * gWideDimension) 
                        + startingColOrRow;
      while (count)
         {
         Assert_(*cell != 0);
         if (*cell == 2)
            {
            gSetIslandSaver = true;
            --gNumIslands;
            p = gIslandSaver + count;
            *p = 1; 
         // remember where the island was incase needs to be undone
            }
         *cell = 0;
         ++cell;
         --count;
         }
      }
   else
      {
      cell = gWideBoardStart + rowOrColumnNumber + 
                  (startingColOrRow * gWideDimension);
      while (count)
         {
         Assert_(*cell != 0);
         if (*cell == 2)
            {
            gSetIslandSaver = true;
            --gNumIslands;
            p = gIslandSaver + count;
            *p = 1; // remember where the island was incase needs to be undone
            }
         *cell = 0;
         cell += gWideDimension;
         --count;
         }
      }
   }
UndoWideMove
inline void UndoWideMove (bool playingRow, 
      short rowOrColumnNumber, short startingColOrRow, 
      short endingColOrRow)
// omitted for brevity in publication, see online archive
inline void TakeFirstMatch (short& outRow, short& outCol)
   {
   register char* match = gLastMatch; 
      // start at the last match as that is where they are most 
      // likely to be at the end of the game
   register long i = gDimension;
   while (i)
      {
      --i;
      register long j = gDimension;
      while (j)
         {
         --j;
         if (*match) // there is a matchstick here
            {
            outRow = i;
            outCol = j;
            return;
            }
         --match;
         }
      }
   Assert_(false);
   }
OKMove
inline bool OKMove (bool outPlayingRow, 
      short outRowOrColumnNumber, short outStartingColOrRow, 
      short outEndingColOrRow)
   {
   DoWideMove (outPlayingRow, outRowOrColumnNumber, outStartingColOrRow, outEndingColOrRow); 
      // apply my move to my wide board
   const TWinningState state = GetMoveState (outPlayingRow, 
      outRowOrColumnNumber, outStartingColOrRow, outEndingColOrRow);
   if (state > eLosing) 
      // I either do not know, or I am in a winning state, which is OK
      {
      gDoWideMove = false;
      return true;
      }
   // this move is no good so undo it
   UndoWideMove (outPlayingRow, outRowOrColumnNumber, 
            outStartingColOrRow, outEndingColOrRow);
   return false;
   }
TakeBestMatch
inline void TakeBestMatch (short& outRow, short& outCol)
   {
   long bestCount = -1;
   TWinningState bestState = eLost;
   register char* match = gWideBoardStart;
   
   for (long i = 0; i < gDimension; ++i)
      {
      for (register long j = 0; j < gDimension; ++j)
         {
         if (*match) // there is a matchstick here
            {
            if (*match != 2) // this is NOT an island
               {
               register long count;
               register char* test = match + gWideDimension; // south
               if (*test)
                  count = 1;
               else
                  count = 0;
               test -= g2WideDimension; // north
               if (*test)
                  ++count;
               test = match + 1; // east
               if (*test)
                  ++count;
               test -= 2; // west
               if (*test)
                  ++count;
               if (count == 4) // I'll take this one as it will make a void
                  {
                  // 0 0 0 0 0
                  // 0 0 1 0 0
                  // 0 1 x 1 0
                  // 0 0 1 0 0
                  // 0 0 0 0 0
                  if (OKMove (true, i, j, j)) 
                     // could be a bad move as taking x above leaving 4 
                     // islands when last latch loses
                     {
                     outRow = i;
                     outCol = j;
                     return;
                     }
                  }
               else
               if (count > bestCount)
                  {
                  DoWideMove (true, i, j, j); // apply my move to my wide board
                  TWinningState state = GetMoveState (true, i, j, j);
                  if (state >= eUnknown) 
                     // only do this if it puts me in a winning position
                     {
                     gDoWideMove = false;
                     outRow = i;
                     outCol = j;
                     return;
                     }
                  UndoWideMove (true, i, j, j);
                  if (state > bestState)
                     {
                     bestState = state;
                     bestCount = count;
                     outRow = i;
                     outCol = j;
                     }
                  }
               }
            }
         ++match;
         }
      // skip the last space at the end of the row and the next space at the 
      // start of the next row
      match += 2;
      }
   if (bestCount == -1) 
      // did not find a match, must be all islands (as they were marked as 2s)
      TakeFirstMatch (outRow, outCol);
   }
QuickTakeSurroundedMatch
inline void QuickTakeSurroundedMatch (short& outRow, short& outCol)
// omitted for brevity in publication, see online archive
TakeAllTheMatchesInThisDirection
inline void TakeAllTheMatchesInThisDirection (   TDirection inDir, 
   long i, long j, register char* match,
   bool& outPlayingRow, short& outRowOrColumnNumber,
   short& outStartingColOrRow, short& outEndingColOrRow)
// returns how many matches were taken
   {
   if (inDir == eEast)
      {
      outPlayingRow = true;
      outRowOrColumnNumber = i;
      outStartingColOrRow = j;
      outEndingColOrRow = outStartingColOrRow;
      ++match;
      while (*match) // keep looking east until hit a space
         {
         ++outEndingColOrRow;
         ++match;
         }
      }
   else
   if (inDir == eSouth)
// omitted for brevity in publication, see online archive
   else
   if (inDir == eWest)
// omitted for brevity in publication, see online archive
   else // must be north
// omitted for brevity in publication, see online archive
   }
Create1Or3Islands
inline bool Create1Or3Islands (bool& outPlayingRow, short& outRowOrColumnNumber, short& 
outStartingColOrRow, short& outEndingColOrRow)

   {
   register char* match = gWideBoardStart;
   register char* north;
   register char* south;
   register char* west;
   register char* east;
   register long i;
   register long j;
   for (i = 0; i < gDimension; ++i)
      {
      for (j = 0; j < gDimension; ++j)
         {
         if (*match) // there is a matchstick here
            {
            if (*match == 2) // this is an island
               goto next;
            // see how many matches surround this
            unsigned long count;
            south = match + gWideDimension;
            if (*south)
               count = 1;
            else
               count = 0;
            north = match - gWideDimension;
            if (*north)
               ++count;
            east = match + 1;
            if (*east)
               ++count;
            west = match - 1;
            if (*west)
               ++count;
            if (count == 1) 
               // matches only go in one direction. If I leave this match 
               // and take the rest in this direction I will leave an island
               goto special1MatchCase;
            if (count == 2) 
               // I can create another island if there is only one match 
               // next to me in one of the directions
               goto special2MatchCase;
            if (count == 4) // I can create 3 islands if there is only one 
               // match next to me in all of the directions
               goto special4MatchCase;
            }
      next:
         ++match;
         }
      match += 2; // skip blank space at the end of the row and at beginning of next row
      }
   return false;
   register char* nextMatch;
special4MatchCase: // this can create 3 islands, which is OK
   // X = this match
   // | = another match
   // ? = dont care whether there is a match or not
   // * = must be empty
   //
   // ? ? * ? ?
   // ? * | * ?
   // * | X | --> as may matches as you like
   // ? * | * ?
   // ? ? * ? ?
   // you can rotate the above setup in 4 directions
   TDirection dir = eUnknownDirection;
   nextMatch = north - gWideDimension;
   if (*nextMatch)
      dir = eNorth;
   nextMatch = south + gWideDimension;
   if (*nextMatch)
      {
      if (dir) // matches go off in two directions from this match which is no good
         goto next;
      dir = eSouth;
      }
   nextMatch = east + 1;
   if (*nextMatch)
      {
      if (dir)
         goto next;
      dir = eEast;
      }
   nextMatch = west - 1;
   if (*nextMatch)
      {
      if (dir)
         goto next;
      dir = eWest;
      }
   if (!dir) // happens with vertical cross shape surrounded entirely by white space
      dir = eEast; // so just take the east match
   // ? ? * ? ?
   // ? 0 | 0 ?
   // * | X | --> as may matches as you like
   // ? 0 | 0 ?
   // ? ? * ? ?
   // look for the matches marked zero above
   nextMatch = north - 1;
   if (*nextMatch)
      goto next;
   nextMatch += 2;
   if (*nextMatch)
      goto next;
   nextMatch = south - 1;
   if (*nextMatch)
      goto next;
   nextMatch += 2;
   if (*nextMatch)
      goto next;
   // we are ok
   TakeAllTheMatchesInThisDirection (dir, i, j, match, 
      outPlayingRow, outRowOrColumnNumber, outStartingColOrRow, 
      outEndingColOrRow);
   if (OKMove (outPlayingRow, outRowOrColumnNumber, 
               outStartingColOrRow, outEndingColOrRow)) 
      // check that taking this does not create more islands than I want
      return true;
   goto next;
   
special2MatchCase:
   // X = this match
   // | = another match
   // ? = dont care whether there is a match or not
   // * = must be empty   
   // Check two matches in opposite directions
   if (*north && *south) // otherwise it is just in the middle of a north-south line
      {
      // ? ^ ?
      // ? | ?
      // * X *
      // 1 | 2
      // ? 3 ?
      // or layout 2
      // ? 2 ?
      // 1 | 3
      // * X *
      // ? | ?
      // ? v ?
      nextMatch = south + gWideDimension;
      if (*nextMatch) // must be layout 2
         {
         nextMatch = north - 1; // test 1
         if (*nextMatch)
            goto next;
         nextMatch += 2; // test 2
         if (*nextMatch)
            goto next;
         nextMatch = north - gWideDimension; // test 3
         if (*nextMatch)
            goto next;
         // OK take all the match south from match
         TakeAllTheMatchesInThisDirection (eSouth, i, j, match, 
            outPlayingRow, outRowOrColumnNumber, outStartingColOrRow, 
            outEndingColOrRow);
         if (OKMove (outPlayingRow, outRowOrColumnNumber, 
                     outStartingColOrRow, outEndingColOrRow))
            return true;
         goto next;
         }
      else
         {
         nextMatch = south - 1; // test 1
         if (*nextMatch)
            goto next;
         nextMatch += 2; // test 2
         if (*nextMatch)
            goto next;
         nextMatch = south + gWideDimension; // test 3
         if (*nextMatch)
            goto next;
         // OK take all the match south from match
         TakeAllTheMatchesInThisDirection (eNorth, i, j, match, 
            outPlayingRow, outRowOrColumnNumber, outStartingColOrRow, 
            outEndingColOrRow);
         if (OKMove (outPlayingRow, outRowOrColumnNumber, 
                  outStartingColOrRow, outEndingColOrRow))
            return true;
         }
      goto next;
      }
   if (*east && *west) // otherwise it is just in the middle of an east-west line
      {
      //   ? 1 * ? ?
      //   3 | X | --> Take from match to the end of the row
      //   ? 2 * ? ?
      // or layout 2
      //   ? ? * 1 ?
      // <-- | X | 3
      //   ? ? * 2 ?
      
      nextMatch = west - 1;
      if (*nextMatch) // must be layout 2
         {
         nextMatch = east - gWideDimension; // test 1
         if (*nextMatch)
            goto next;
         nextMatch += g2WideDimension; // test 2
         if (*nextMatch)
            goto next;
         nextMatch = east + 1; // test 3
         if (*nextMatch)
            goto next;
         // OK take all the match south from match
         TakeAllTheMatchesInThisDirection (eWest, i, j, match,
            outPlayingRow, outRowOrColumnNumber, outStartingColOrRow, 
            outEndingColOrRow);
         if (OKMove (outPlayingRow, outRowOrColumnNumber, 
                  outStartingColOrRow, outEndingColOrRow))
            return true;
         goto next;
         }
      else // layout 1
         {
         nextMatch = west - gWideDimension; // test 1
         if (*nextMatch)
            goto next;
         nextMatch += g2WideDimension; // test 2
         if (*nextMatch)
            goto next;
         nextMatch = west - 1; // test 3
         if (*nextMatch)
            goto next;
         // OK take all the match south from match
         TakeAllTheMatchesInThisDirection (eEast, i, j, match, 
            outPlayingRow, outRowOrColumnNumber, outStartingColOrRow, 
            outEndingColOrRow);
         if (OKMove (outPlayingRow, outRowOrColumnNumber, 
                  outStartingColOrRow, outEndingColOrRow))
            return true;
         }
      goto next;
      }
   //     ? * ?
   //     * X | --> as may matches as you like
   //     3 | 2
   //     ? 1 ?
   // or
   //     ? * ?
   // <-- | X * as may matches as you like
   //     3 | 2
   //     ? 1 ?
   // you can rotate the above setup in 4 directions
   // and reflect it in 2 directions
   // making 8 cases
   if (*south) // other match MUST be East or West
      {
      nextMatch = south + gWideDimension;
      if (!(*nextMatch)) // good, it is blank in south direction, test 1
         {
         // east AND west from here have to be blank too
         nextMatch = south + 1; // east, test 2
         if (*nextMatch)
            goto next;
         nextMatch -= 2; // west, test 3
         if (*nextMatch)
            goto next;
         // found it
         // find the other direction and take all the matches from match in that direction
         if (*east)
            TakeAllTheMatchesInThisDirection (eEast, i, j, match, 
               outPlayingRow, outRowOrColumnNumber, outStartingColOrRow, 
               outEndingColOrRow);
         else // must be west
            TakeAllTheMatchesInThisDirection (eWest, i, j, match, 
               outPlayingRow, outRowOrColumnNumber, outStartingColOrRow, 
               outEndingColOrRow);
         if (OKMove (outPlayingRow, outRowOrColumnNumber, 
                     outStartingColOrRow, outEndingColOrRow))
            return true;
         goto next;
         }
      else // must be blank in east or west direction with south as the direction to take
         {
         //     ? ? * 2 ?
         //     ? * X | 1
         //     ? ? | 3 ?
         //     ? ? v ? ?
         // or
         //     ? 2 * ? ?
         //     1 | X * ?
         //     ? 3 | ? ?
         //     ? ? v ? ?
         if (*east)
            {
            nextMatch = east + 1; // test 1
            if (*nextMatch)
               goto next;
            nextMatch = east - gWideDimension; // test 2
            if (*nextMatch)
               goto next;
            nextMatch += g2WideDimension; // test 3
            if (*nextMatch)
               goto next;
            TakeAllTheMatchesInThisDirection (eSouth, i, j, match, 
               outPlayingRow, outRowOrColumnNumber, outStartingColOrRow, 
               outEndingColOrRow);
            if (OKMove (outPlayingRow, outRowOrColumnNumber, 
                     outStartingColOrRow, outEndingColOrRow))
               return true;
            goto next;
            }
         else // must be west, case 2
               // omitted for brevity in publication, see online archive
         }
      goto next;
      }
   //     ? 1 ?
   //     3 | 2
   //     * X | --> as may matches as you like
   //     ? * ?
   // or case 2
   //     ? 1 ?
   //     3 | 2
   //   <-- X * as may matches as you like
   //     ? * ?
   //if (*north) // no need to test
   // other match MUST be West or East
   // omitted for brevity in publication, see online archive
   goto next;
special1MatchCase:
   // just one direction of matches, leave this one alone but take all others in this 
   // direction to create a single matchstick surrounded by white space
   if (*south)
      {
      outPlayingRow = false;
      outRowOrColumnNumber = j;
      outStartingColOrRow = i + 1;
      outEndingColOrRow = outStartingColOrRow;
      south += gWideDimension;
      while (*south) // keep looking south until get a space
         {
         ++outEndingColOrRow;
         south += gWideDimension;
         }
      }
   else
   if (*east)
// omitted for brevity in publication, see online archive
   else
   if (*west)
// omitted for brevity in publication, see online archive
   else
   if (*north)
// omitted for brevity in publication, see online archive
   if (OKMove (outPlayingRow, outRowOrColumnNumber, 
         outStartingColOrRow, outEndingColOrRow))
      return true;
   goto next;
   }
Create2Or4Islands
inline bool Create2Or4Islands (bool& outPlayingRow, 
      short& outRowOrColumnNumber, short& outStartingColOrRow, 
      short& outEndingColOrRow)
// omitted for brevity in publication, see online archive
   }
TakeARowOrColumn
inline bool TakeARowOrColumn (bool& outPlayingRow, 
      short& outRowOrColumnNumber, short& outStartingColOrRow, 
      short& outEndingColOrRow)
   {
   register char* match = gWideBoardStart;
   register char* north;
   register char* south;
   register char* west;
   register char* east;
   register long i;
   register long j;
   for (i = 0; i < gDimension; ++i)
      {
      for (j = 0; j < gDimension; ++j)
         {
         if (*match) // there is a matchstick here
            {
            if (*match != 2) // this is NOT an island
               {
               // see how many matches surround this, I'm looking for one 
               // direction only to be able to take a row
               south = match + gWideDimension;
               north = match - gWideDimension;
               east = match + 1;
               west = match - 1;
               if (*south)
                  {
                  if (*north) // at least two matches surround this match
                     goto next;
                  if (*east)
                     goto next;
                  if (*west)
                     goto next;
                  // only south set
                  TakeAllTheMatchesInThisDirection (eSouth, i, j, match, 
                     outPlayingRow, outRowOrColumnNumber, 
                     outStartingColOrRow, outEndingColOrRow);
                  if (OKMove (outPlayingRow, outRowOrColumnNumber, 
                              outStartingColOrRow, outEndingColOrRow))
                     return true;
                  goto next;
                  }
               if (*east)
                  {
                  if (*west)
                     goto next;
                  if (*north)
                     goto next;
                  // only east set
                  TakeAllTheMatchesInThisDirection (eEast, i, j, match, 
                     outPlayingRow, outRowOrColumnNumber, 
                     outStartingColOrRow, outEndingColOrRow);
                  if (OKMove (outPlayingRow, outRowOrColumnNumber, 
                        outStartingColOrRow, outEndingColOrRow))
                     return true;
                  goto next;
                  }
               if (*west)
                  // omitted for brevity in publication, see online archive
               if (*north)
                  // omitted for brevity in publication, see online archive
                  }
               }
            }
      next:
         ++match;
         }
      match += 2; 
         // skip blank space at the end of the row and at beginning of next row
      }
   return false;
   }
InitMatchsticks
/*=========================================================*/
/* game is played on a square board of size dimension x dimension */
/* board[row*dimension + col] is board cell (row,col) */
/* board[] == 1 represents a matchstick, == 0 represents an empty cell */
/* true if you will play first in this game */
/* true if taking the last matchstick loses the game, 
      false if taking the last one wins the game */
/* identifier for your opponent in this game */
/*=========================================================*/
void InitMatchsticks (short dimension, const char* board, bool, 
               bool lastMatchstickLoses, short)
   {
   // copy the initial parameters into my globals
   gDimension = dimension;
   gDimensionMinus1 = dimension - 1;
   gBoard = (char*)board;
   gLastMatch = gBoard + (gDimension * gDimension) - 1;
   gLastMatchLoses = lastMatchstickLoses;
   gGameOver = false;
   gSetIslandSaver = false;
   
   gNumIslands = 0;
   gNumMatches = 0;
   gWideDimension = gDimension + 2; 
      // the wide board is bounded by a ring of empty positions
   g2WideDimension = gWideDimension + gWideDimension;
   long wideBoardSize = gWideDimension * gWideDimension;
      // make gWideDimension a multiple of 4 for speed
   wideBoardSize = ((wideBoardSize + 15) >> 4) << 4; 
      // make multiple of 16 so clears very quickly
   gWideBoard = ::NewPtrClear (wideBoardSize); // clear the entire board
   if (!gWideBoard)
      ::ExitToShell ();
   // this board has a row and column of empty spaces round it so 
   // I can always look east, west, north or south at the edge of the board
   gIslandSaver = ::NewPtrClear (gDimension); 
      // can only take a maximum of a whole row
   if (!gIslandSaver)
      ::ExitToShell ();
   
   const long widePlus1 = gWideDimension + 1;
   // Remember the initial position of the first match
   gWideBoardStart = gWideBoard + widePlus1;
   // and the match one in and one row down for quick search 
   // for totally surrounded matches
   gWideBoardStartJumpToFirstMatch = gWideBoardStart + widePlus1;
   
   // copy the input board to my wide board
   register char* source = (char*)(board);
   register char* dest = gWideBoard + gWideDimension; 
      // start one row down as first row is already clear with NewPtrClear
   for (register long i = gDimension; i; --i)
      {
      // add an empty space at the start of the row. no need to 
      // set to zero as was done by NewPtrClear
      ++dest;
      for (register long col = gDimension; col; --col)
         {
         if (*source)
            {
            ++gNumMatches;
            *dest = 1;
            }
         // otherwise no need to set to zero as was set with NewPtrClear
         ++dest;
         ++source;
         }
      // add an empty space at the end of the row. no need to set to 
      // zero as was done by NewPtrClear
      ++dest;
      }
   // last row is already clear with NewPtrClear
   gCriticalCount = gNumMatches;
   gCriticalCount -= (gNumMatches >> 2); // take off a quarter of the matches
   }
OpponentMove
/*==========================================================*/
/* true if opponent played along a row, false if along a column */
/* number of the (origin zero) row (playingRow==true) or column (playingRow==false) that the 
opponent played */

/* if playingRow == true, the opponent played from (row,col) == 
      (rowOrColumnNumber,startingColOrRow) to (row,col) == 
      (rowOrColumnNumber,endingColOrRow) */
/* if playingRow == false, the opponent played from (row,col) == 
      (startingColOrRow,rowOrColumnNumber) to (row,col) == 
      (endingColOrRow,rowOrColumnNumber) */
/* board after your opponent's move */
/*==========================================================*/
void OpponentMove (bool playingRow, short rowOrColumnNumber, 
      short startingColOrRow, short endingColOrRow, 
      const char* /*board*/)
   {
   if (gGameOver) // don't care about my wide board anymore as I am no longer using it
      return;
   if (startingColOrRow > endingColOrRow) // taking backwards so swap them
      {
      short swap = startingColOrRow;
      startingColOrRow = endingColOrRow;
      endingColOrRow = swap;
      }
   DoWideMoveAndCountIslands (playingRow, rowOrColumnNumber, 
         startingColOrRow, endingColOrRow);
   }
YourMove
/*=======================================================*/
/* true if you played along a row, false if along a column */
/* number of the (origin zero) row (playingRow==true) or column 
      (playingRow==false) that you played */
/* if *playingRow == true, you played from (row,col) == 
      (*rowOrColumnNumber,*startingColOrRow) to (row,col) == 
      (*rowOrColumnNumber,*endingColOrRow) */
/* if *playingRow == false, you played from (row,col) == 
      (*startingColOrRow,*rowOrColumnNumber) to (row,col) == 
      (*endingColOrRow,*rowOrColumnNumber) */
/* return value is a pointer to a board after your move */
/*========================================================*/
const char* YourMove (bool* outPlayingRow, 
      short* outRowOrColumnNumber, short* outStartingColOrRow, 
      short* outEndingColOrRow)
   {
   bool playingRow;
   short rowOrColumnNumber;
   short startingColOrRow;
   short endingColOrRow;
   
   if (gGameOver) 
         // I may have actually lost, but I may also have won. Fast exit
      {
      TakeFirstMatch (rowOrColumnNumber, startingColOrRow);
      DoMove (true, rowOrColumnNumber, startingColOrRow, 
         startingColOrRow); 
         // apply my move to the main board
      *outPlayingRow = true;
      *outRowOrColumnNumber = rowOrColumnNumber;
      *outStartingColOrRow = startingColOrRow;
      *outEndingColOrRow = startingColOrRow;
      return gBoard;
      }
   
   if (gNumMatches > gCriticalCount)
      {
      QuickTakeSurroundedMatch (rowOrColumnNumber, 
            startingColOrRow);
      DoMove (true, rowOrColumnNumber, startingColOrRow, 
            startingColOrRow); 
         // apply my move to the main board
      DoWideMoveAndCountIslands (true, rowOrColumnNumber, 
            startingColOrRow, startingColOrRow); 
         // apply my move to my wide board and count new islands
      *outPlayingRow = true;
      *outRowOrColumnNumber = rowOrColumnNumber;
      *outStartingColOrRow = startingColOrRow;
      *outEndingColOrRow = startingColOrRow;
      return gBoard;
      }
   
   if (gNumIslands == gNumMatches) 
      // I've won or lost, I have no choice, so just take the first island
      {
      gGameOver = true; 
         // so will no longer get down this low in the routine as the game 
         // is basically finished
      TakeFirstMatch (rowOrColumnNumber, startingColOrRow);
      DoMove (true, rowOrColumnNumber, startingColOrRow, 
                  startingColOrRow); 
         // apply my move to the main board
         // no need to do anything more to my wide board as the game is over. 
         // Always take the first match in the main board
      *outPlayingRow = true;
      *outRowOrColumnNumber = rowOrColumnNumber;
      *outStartingColOrRow = startingColOrRow;
      *outEndingColOrRow = startingColOrRow;
      return gBoard;
      }
   
   gDoWideMove = true;
   bool winning;
   if (gLastMatchLoses)
      winning = (gNumIslands & 0x00000001) == 0; 
         // if there are an even number of islands I am currently winning
   else
      winning = (gNumIslands & 0x00000001) != 0; 
         // if there are an odd number of islands I am currently winning
   if (winning)
      {
      if (TakeAnIsland (rowOrColumnNumber, startingColOrRow)) 
         // taking an island will put me back into a winning position
         {
         playingRow = true;
         endingColOrRow = startingColOrRow;
         }
      else 
         // if I create another island I will be in a winning 
         // position as if I had taken an island
      if (!Create1Or3Islands (playingRow, rowOrColumnNumber, 
               startingColOrRow, endingColOrRow)) // could not create another island
         {
         TakeBestMatch (rowOrColumnNumber, startingColOrRow); 
            // still losing, just take one
         playingRow = true;
         endingColOrRow = startingColOrRow;
         }
      }
   else 
      // if I'm losing, keeping the same number of islands to KEEP it odd (or even) will 
      // then put me in a winning position at the END of my go
   if (!Create2Or4Islands (playingRow, rowOrColumnNumber, 
               startingColOrRow, endingColOrRow))
      { 
         // else taking a whole row or column might not create any more islands
      if (!TakeARowOrColumn (playingRow, rowOrColumnNumber, 
                  startingColOrRow, endingColOrRow)) 
            // only fails if taking any row still makes me lose
         {
         TakeBestMatch (rowOrColumnNumber, startingColOrRow);
         playingRow = true;
         endingColOrRow = startingColOrRow;
         }
      }
   // apply the move to my wide board
   if (gDoWideMove)
      DoWideMoveAndCountIslands (playingRow, rowOrColumnNumber, 
               startingColOrRow, endingColOrRow); 
      // apply my move to my wide board and count new islands
   else 
         // only need to look for new islands as I have already 
         // applied the move to the wide board during my analysis
      {
      if (gSetIslandSaver) // only left unset if gDoWideMove and did not undo
         {
         gSetIslandSaver = false;
         long count = endingColOrRow - startingColOrRow + 1; 
            // this is how many matches I took
         char* p = gIslandSaver; // clear any islands that I saved for undo
         while (count)
            {
            *p = 0;
            ++p;
            --count;
            }
         }
      CountIslands (playingRow, rowOrColumnNumber, startingColOrRow, 
               endingColOrRow); 
   // just count the number of new islands
      }
   // apply the move to the main board
   DoMove (playingRow, rowOrColumnNumber, startingColOrRow, 
               endingColOrRow); 
   
   // return the values of my move
   *outPlayingRow = playingRow;
   *outRowOrColumnNumber = rowOrColumnNumber;
   *outStartingColOrRow = startingColOrRow;
   *outEndingColOrRow = endingColOrRow;
   
   return gBoard;
   }
TermMatchsticks
/*====================================================*/
/* Clean up */
/*====================================================*/
void TermMatchsticks ()
   {
   ::DisposePtr (gWideBoard);
   ::DisposePtr (gIslandSaver);
   }

 
AAPL
$102.21
Apple Inc.
+0.08
MSFT
$44.65
Microsoft Corpora
-0.22
GOOG
$569.70
Google Inc.
-1.31

MacTech Search:
Community Search:

Software Updates via MacUpdate

Get Lyrical 3.8 - Auto-magically adds ly...
Get Lyrical auto-magically add lyrics to songs in iTunes. You can choose either a selection of tracks, or the current track. Or turn on "Active Tagging" to get lyrics for songs as you play them.... Read more
Viber 4.2.2 - Send messages and make cal...
Viber lets you send free messages and make free calls to other Viber users, on any device and network, in any country! Viber syncs your contacts, messages and call history with your mobile device,... Read more
Cocktail 7.6 - General maintenance and o...
Cocktail is a general purpose utility for OS X that lets you clean, repair and optimize your Mac. It is a powerful digital toolset that helps hundreds of thousands of Mac users around the world get... Read more
LaunchBar 6.1 - Powerful file/URL/email...
LaunchBar is an award-winning productivity utility that offers an amazingly intuitive and efficient way to search and access any kind of information stored on your computer or on the Web. It provides... Read more
Maya 2015 - Professional 3D modeling and...
Maya is an award-winning software and powerful, integrated 3D modeling, animation, visual effects, and rendering solution. Because Maya is based on an open architecture, all your work can be scripted... Read more
BBEdit 10.5.12 - Powerful text and HTML...
BBEdit is the leading professional HTML and text editor for the Mac. Specifically crafted in response to the needs of Web authors and software developers, this award-winning product provides a... Read more
Microsoft Office 2011 14.4.4 - Popular p...
Microsoft Office 2011 helps you create professional documents and presentations. And since Office for Mac 2011 is compatible with Office for Windows, you can work on documents with virtually anyone... Read more
TextWrangler 4.5.10 - Free general purpo...
TextWrangler is the powerful general purpose text editor, and Unix and server administrator's tool. Oh, and also, like the best things in life, it's free. TextWrangler is the "little brother" to... Read more
BitTorrent Sync 1.4.72 - Sync files secu...
BitTorrent Sync allows you to sync unlimited files between your own devices, or share a folder with friends and family to automatically sync anything. File transfers are encrypted. Your information... Read more
Cyberduck 4.5.2 - FTP and SFTP browser....
Cyberduck is a robust FTP/FTP-TLS/SFTP browser for the Mac whose lack of visual clutter and cleverly intuitive features make it easy to use. Support for external editors and system technologies such... Read more

Latest Forum Discussions

See All

Addnum Review
Addnum Review By Rob Thomas on August 28th, 2014 Our Rating: :: ADDICTIVE ADDINGUniversal App - Designed for iPhone and iPad Simple, fast, and fun. Addnum is a free number puzzler that doesn’t disappoint.   | Read more »
Aliens Drive Me Crazy has Received a Hug...
Aliens Drive Me Crazy has Received a Huge Content Update Posted by Jessica Fisher on August 28th, 2014 [ permalink ] Universal App - Designed for iPhone and iPad | Read more »
MLB Perfect Inning’s Grand Slam Update A...
MLB Perfect Inning’s Grand Slam Update Adds Head-2-Hea​d, Trading, and More Posted by Jessica Fisher on August 28th, 2014 [ permalink ] < | Read more »
ALONE... (Games)
ALONE... 1.0.1 Device: iOS Universal Category: Games Price: $1.99, Version: 1.0.1 (iTunes) Description: ALONE is a handcrafted, intense survival journey through space. Navigate caves, rip through rocky debris, dodge rocks and comets... | Read more »
Almightree: The Last Dreamer (Games)
Almightree: The Last Dreamer 1.0 Device: iOS Universal Category: Games Price: $1.99, Version: 1.0 (iTunes) Description: The world is shattering and you are the only hope to restore the balance. A thrilling and challenging 3D puzzle... | Read more »
The Nightmare Cooperative (Games)
The Nightmare Cooperative 1.1 Device: iOS Universal Category: Games Price: $3.99, Version: 1.1 (iTunes) Description: Fiendishly difficult! Adorably cute! Utterly engrossing!How much gold can you get before your entire team is... | Read more »
Mobile Convolution (Music)
Mobile Convolution 1.0.0 Device: iOS Universal Category: Music Price: $9.99, Version: 1.0.0 (iTunes) Description: | Read more »
Invaders! From Outer Space Review
Invaders! From Outer Space Review By Rob Thomas on August 27th, 2014 Our Rating: :: RETRO NOSTALGIAUniversal App - Designed for iPhone and iPad It’s a shame that Invaders! doesn’t offer deeper gameplay, as this retro-inspired... | Read more »
Spooklands Review
Spooklands Review By Jennifer Allen on August 27th, 2014 Our Rating: :: ONE-TOUCH SHOOTERUniversal App - Designed for iPhone and iPad One-touch simultaneously controls your direction and your weapon in this unique arena shooter.   | Read more »
Heroes of Order & Chaos Add Twitch I...
Heroes of Order & Chaos Add Twitch Integration, New Heroes, and More Posted by Ellis Spice on August 27th, 2014 [ permalink ] | Read more »

Price Scanner via MacPrices.net

12-Inch MacBook Air Coming in 4Q14 or 2015 –...
Digitimes’ Aaron Lee and Joseph Tsai report that according to Taiwan-based upstream supply chain insiders, Apple plans to launch a thinner MacBook model either at year end 2014 or in 2015, and that... Read more
Sapphire Screen “Most Wanted” iPhone 6 New Fe...
According to the ‘uSell.com iPhone Most Wanted Survey’ — a representative survey of 1,000 U.S. smartphone users conducted by used iPhone marketplace uSell.com — close to half of all smartphone users... Read more
The iPad’s Real Competitive Challenger (Not S...
It’s been my contention for some time that the iPad is suffering from something of an identity crisis, and I suspect that may be a factor in slackening sales this year. Apple can’t seem to decide... Read more
13-inch 2.6GHz/256GB Retina MacBook Pro on sa...
B&H Photo has the 13″ 2.6GHz/256GB Retina MacBook Pro on sale for $1379 including free shipping plus NY sales tax only. Their price is $120 off MSRP. Read more
Life Inventory iOS Apps – Learn to Know Thyse...
James Hollender’s Life Inventory apps s are now on sale with 20% off thru Labor Day, 09/01/2014. This is a great opportunity to get started on that Moral Inventory you’ve been putting off doing for... Read more
Pocket Watch, LLC. Reveals Cloud Server For P...
Beaumont, Texas based Pocket Watch, LLC. has announced the availability of its new ActivePrint Cloud Server Powered by Raspberry Pi. With this small standalone box almost any USB printer or available... Read more
902it Simplifies Area Code Changes For Nova S...
The east coast Canadian provinces of Nova Scotia and Prince Edward Island are phasing in 10 digit telephone dialing, to be fully in place by November, in order to accommodate a second area code to... Read more
Boomerang iPad Stand Mounts Your iPad Anywher...
Boomerang, a Mountable Stand with Multiple Viewing Angles, is now available for iPad Air. Boomerang combines several functions that aim to expand your iPad’s potential in one, elegant product. The... Read more
Retina MacBook Pros available starting at $10...
The Apple Store has Apple Certified Refurbished 13″ and 15″ MacBook Pros available starting at $929. Apple’s one-year warranty is standard, and shipping is free: - 13″ 2.5GHz MacBook Pros (4GB RAM/... Read more
Apple 27-inch Thunderbolt Display (refurbishe...
The Apple Store has Apple Certified Refurbished 27″ Thunderbolt Displays available for $799 including free shipping. That’s $200 off the cost of new models. Read more

Jobs Board

*Apple* Retail - Multiple Positions (US) - A...
Sales Specialist - Retail Customer Service and Sales Transform Apple Store visitors into loyal Apple customers. When customers enter the store, you're also the Read more
Senior Event Manager, *Apple* Retail Market...
…This senior level position is responsible for leading and imagining the Apple Retail Team's global event strategy. Delivering an overarching brand story; in-store, Read more
*Apple* Solutions Consultant (ASC) - Apple (...
**Job Summary** The ASC is an Apple employee who serves as an Apple brand ambassador and influencer in a Reseller's store. The ASC's role is to grow Apple Read more
Project Manager / Business Analyst, WW *Appl...
…a senior project manager / business analyst to work within our Worldwide Apple Fulfillment Operations and the Business Process Re-engineering team. This role will work Read more
Position Opening at *Apple* - Apple (United...
…customers purchase our products, you're the one who helps them get more out of their new Apple technology. Your day in the Apple Store is filled with a range of Read more
All contents are Copyright 1984-2011 by Xplain Corporation. All rights reserved. Theme designed by Icreon.