TweetFollow Us on Twitter

Oct 01 Challenge

Volume Number: 17 (2001)
Issue Number: 10
Column Tag: Programmer's Challenge

by Bob Boonstra, Westford, MA

Programmer's Assistant

How often has this happened to you? You're working on a piece of code, perhaps even a piece of Challenge code, you add a couple of lines, you compile, and you get some bizarre error. Something nothing near where you were editing. Perhaps an "Illegal function definition ..." in a routine you weren't even working on. And then you realize, eventually if you are slow, or immediately if you are less slow, that you added an "if (condition) {" statement and omitted the closing brace. Or some other simple syntax error.

Well, I happen to think that computers ought to be able to help us with this. My editor ought to do more to help me avoid mistakes. Yes, I know that some editors will balance parentheses for you, assuming you remembered to type the closing paren. But I want more. And this month's Challenge asks you to write such an editor for C/C++.

The first required feature is auto-completion of key words and user-defined names. For example, if I have defined variables "loop_index" and "loop_counter", then, after I type enough characters to uniquely identify a variable name (e.g., "loop_i"), my programmer's assistant should supply the remaining letters "ndex". The automatically supplied characters should be selected so that they are replaced in the event I continue typing. As a highly desirable optional feature, the assistant should offer me an auto-completion key (e.g., the option key, or a menu item with a keyboard equivalent), which, when pressed, offers me a popup menu of possible completions for the word currently being typed, even when the completion is not uniquely identified.

The second required feature is auto-completion of syntactic elements. If I start a conditional by typing "if", my programmer's assistant should, when prompted by an auto-completion key, complete the conditional by inserting parentheses, braces, and an "else" clause, leaving something like this:

if () {
} else {
}

In this example, the cursor ought to be left between the parentheses, so that I can insert the conditional. You ought to provide some convenient way for me to move the cursor from the conditional (between the parentheses) to the TRUE branch (between the first pair of braces) to the FALSE branch (between the second pair of braces).

You would provide similar auto-completion for while loops, do loops, for loops:

while () {
}

for ( ; ; ) {
}

do {
} while ();

Other required auto-completions include case statements, struct declarations, enum declarations, and function declarations. Additional auto-completion features may be incorporated at your option. Other options (e.g., indentation styles) will also earn extra feature points.

A significant amount of extra consideration will be given to any solution that allow support for other languages, through use of a configuration file, provided such a configuration file is provided for C/C++ and at least one other language.

This will be a native PowerPC Challenge, using any of the following environments: CodeWarrior, REALbasic (version 3.2.1 or earlier), MetaCard (version 2.3.2 or earlier), Revolution (version 1.0), or Project Builder. You may use another development environment if I can arrange to obtain a copy - email progchallenge@mactech.com to check before you use something else. You can develop for Mac OS 9 or Mac OS X. This will be another Challenge based on a subjective evaluation of which entry best satisfies the required features, provides the most attractive set of optional features, and provides the best general usability and look-and-feel. Your solution should be a complete Macintosh application, so there is no prototype and no test code for this Challenge. Your submission should provide everything needed to build your application, as well as documentation of the features you have implemented, to ensure that I don't overlook anything.

Three Months Ago Winner

Only two people chose to enter the July DownNOut Challenge, and many-time champion Ernst Munter is once again our winner. The object of this Challenge was score as many points as possible while removing colored cells from a rectangular board. Cells are removed when they match the color of a selected cell and are connected to that cell via cells of the same color that are adjacent horizontally or vertically. The number of points earned for each move is the square of the number of cells removed, so there is an incentive to remove cells in the largest blocks possible. Solutions were required to display and update the game state after each move.

Ernst observes in his commentary that the time penalty discourages spending a lot of time searching alternative moves, so his solution relies on heuristics. His first step for each move is to identify all contiguous areas of cells (CreateAreas) and calculate their size. Next, he picks a target color for the move, with the objective of removing a large number of cells for that color in a later move. Ernst selects the color which has the smallest score based on the initial position of contiguous areas of cells, on the theory that removing the colors with larger initial contiguous areas will both score points and allow the smaller areas to coalesce. Once the target color is selected, Ernst tries to remove the smallest area of another color (GetSmallestArea1) that is nearest the top of the game board, and which has cells of the same color below it (a "shadow"). Failing that, he removes the smallest area of the target color. If no such areas are available, he chooses another target color and begins again.

I used a total of six test cases to evaluate the solutions, ranging in size from 8x25 to 20x40 cells, with 3, 4, or 5 cell colors. The table below lists, for each of the solutions submitted, the total number of points earned by removing cells over all test cases, the execution time in milliseconds, and the score. The score subtracts from the points earned a penalty of 1% for each millisecond of execution time, calculated individually for each test case. The table also lists the code size, data size, and programming language used for each entry. As usual, the number in parentheses after the entrant's name is the total number of Challenge points earned in all Challenges prior to this one.

Name Points Time Score
(msec)
Ernst Munter (758) 91632 236 25337
J. T. 52666 4536 -561692
Name Code Data Lang
Ernst Munter 10028 458 C++
J. T. 7192 340 C

Top Contestants ...

Listed here are the Top Contestants for the Programmer's Challenge, including everyone who has accumulated 20 or more points during the past two years. The numbers below include points awarded over the 24 most recent contests, including points earned by this month's entrants.

Rank Name Points
(24 mo)
1. Munter, Ernst 271
2. Rieken, Willeke 73
3. Saxton, Tom 71
4. Taylor, Jonathan 56
5. Wihlborg, Claes 49
6. Shearer, Rob 48
7. Maurer, Sebastian 38
10. Mallett, Jeff 20
11. Truskier, Peter 20
Name Wins Total Points
(24 mo)
Munter, Ernst 10 778
Rieken, Willeke 3 134
Saxton, Tom 2 189
Taylor, Jonathan 2 56
Wihlborg, Claes 2 49
Shearer, Rob 1 62
Maurer, Sebastian 1 108
Mallett, Jeff 1 114
Truskier, Peter 1 20

...and the Top Contestants Looking for a Recent Win

In order to give some recognition to other participants in the Challenge, we also list the high scores for contestants who have accumulated points without taking first place in a Challenge during the past two years. Listed here are all of those contestants who have accumulated 6 or more points during the past two years.

Rank Name Points Total
(24 mo) Points
8. Boring, Randy 32 144
9. Sadetsky, Gregory 22 24
12. Schotsman, Jan 14 14
13. Nepsund, Ronald 10 57
14. Day, Mark 10 30
15. Downs, Andrew 10 12
16. Desch, Noah 10 10
17. Duga, Brady 10 10
18. Fazekas, Miklos 10 10
19. Flowers, Sue 10 10
20. Strout, Joe 10 10
21. Nicolle, Ludovic 7 55
22. Hala, Ladislav 7 7
23. Leshner, Will 7 7
24. Miller, Mike 7 7

There are three ways to earn points: (1) scoring in the top 5 of any Challenge, (2) being the first person to find a bug in a published winning solution or, (3) being the first person to suggest a Challenge that I use. The points you can win are:

1st place 20 points
2nd place 10 points
3rd place 7 points
4th place 4 points
5th place 2 points
finding bug 2 points
suggesting Challenge 2 points

Here is Ernst's winning DownNOut solution:

DownNOut.cpp
Copyright © 2001
Ernst Munter

/*
Copyright © 2001, Ernst Munter, Kanata, ON, Canada.
 
      "Down-N-Out"
      
A solitaire game where colored stones are placed in a vertical grid of rows and
columns. Adjacent stones of the same color form groups which can be removed as
long as a group contains at least two stones. After each move, consisting of the 
removal of a group of stones from one or more columns, remaining stones slide down 
in each column. Empty columns are filled by shifting ajacent columns towards the 
center. The score is the sum of the squares of the number of stones in each move. 

The standard game will have three colors with 100 stones each, on a board of 10 rows 
and 30 columns.

Strategy
————
I select a target color and aim to make all the stones of of this color into a 
single contiguous group, by removing all groups of the other colors first.

As stones are removed, and others slide down, some groups may be separated and 
others newly formed. Hence, by careful play, and with some luck in picking the
right candidate, one can almost always assemble most of the stones of one color 
into one large group - when playing manually.

The time penalty in this challenge is 1% per millisecond of time. Hence, there is
not a lot of time for searches or backtracking. I have chosen to go with a few
heuristics which captures most of the stones in a single big move at the end (yielding 
a score of near 10,000), in about half of the games played. Just as often, however, 
it fails to provide a bridge, and the final pay-off is considerably less:

   ideally, 100 * 100 = 10,000, for a single move of all 100 stones of a color
   but 50 * 50 + 50 * 50 = 5,000 if two moves of 50 stones each are needed.
   
Display and Timing
—————————
The display of the board uses ColorQuickDraw PaintRect(), directly to the window.
A number of experiments with off-screen GWorlds did not result in any improvements.
The time to compute all the moves of a typical game is on the order of 2.5 msec, 
for a 2.5% penalty (display disabled); with the display on, the time increases
to 12.5msec overall. 
*/
#define NDEBUG
#include <assert.h>
#include <stdlib.h>
#include "DownNout.h"

#define SHOWCELLS 1   // May be set to 0 for timing without the display

enum {
   kMaxNumColors   = 18,   // 16 cell colors + white + black
   kMaxCellSize   = 8,   // dont draw them larger than this
   kMinCellSize   = 2      //           or smaller than this
};

const RGBColor myColors[kMaxNumColors]={
   {0xFF00,0xFF00,0xFF00},   //white
   {0xFFFF,0x0000,0x0000},   //red
   {0x0000,0xFFFF,0x0000},   //green
   {0x0000,0x0000,0xFFFF},   //blue
   
   {0xFFFF,0xFFFF,0x0000},   //yellow
   {0xFFFF,0x0000,0xFFFF},   //pink
   {0x0000,0xFFFF,0xFFFF},   //light blue-1
   
   {0xFFFF,0x9999,0x3333},   //brown-1
   {0xFFFF,0x3333,0x9999},   //light purple
   {0x9999,0xFFFF,0x3333},   //light green
   {0x9999,0x3333,0xFFFF},   //violet
   {0x3333,0xFFFF,0x9999},   //emerald
   {0x3333,0x9999,0xFFFF},   //light blue-2
   
   {0xCCCC,0x9999,0x6666},   //brown-2
   {0x6666,0xCCCC,0xCCCC},   //blue-3
   {0xCCCC,0x6666,0xCCCC},   //purple
   {0x5F00,0x5F00,0x5F00},   //gray
   {0x0000,0x0000,0x0000}   //black
};

static long gCellSize;   // final size of squares for drawing
static WindowPtr win;   // the window provided by caller during InitDownNOut()

typedef long MyCellColor;   // faster than CellColor=char

/*******************************************************************
/
/                     Class MyCell
/
/*******************************************************************/

class ColorSquare
// Defines the screen location and color of each cell, and draws it.
{
   Rect      rect;
   MyCellColor   color;
public:
   void Init(const Point& spt,const MyCellColor cc,long cellSize)

   {
      rect.top=spt.v+1;      // leave a 1-pixel white margin
      rect.left=spt.h+1;
      rect.bottom=spt.v+cellSize;
      rect.right=spt.h+cellSize;
      color=cc;
   }
   MyCellColor Color() const {return color;}
   
   void CopyColor(const MyCellColor xcolor) {color=xcolor;}
   
   void ClearColor() {color=0;}
   
   void Show()
   {
      RGBForeColor(myColors+color);
      PaintRect(&rect);
   }
};

/*******************************************************************
/
/                     Class MyCell
/
/*******************************************************************/

class MyCell:public ColorSquare
// Defines the logical position on the board, and a few flags 
{

private:
   long      tag;   // unique tag for each area
   short      row;   
   short      col;
   bool      seen;   // semaphore for recursive search
   bool      touch;   // indicates need to redraw this square
public:

   void Init(const Point& spot,const MyCellColor cc,
          long rrow,long ccol,long cellSize)
   {
      ColorSquare::Init(spot,cc,cellSize);
      row=rrow;
      col=ccol;
      tag=0;
      seen=false;
      touch=true;
   }

   long    Row() const {return row;}
   long    Col() const {return col;}
   
   void Tag(long t) {tag=t;}
   bool IsTagged(const long t) const {return (tag==t);}
   
   void See() {seen=true;}
   bool IsSeen() const {return seen;}
   void UnSee() {seen=false;}
   
   void Touch() {touch=true;}
   
   bool IsBlank() const {return (Color()==0);}
   
   void CopyBack(CellColor* b) {*b=Color();}
   
   void CopyColor(const MyCell* x) 
   { 
      if (Color() != x->Color())
      {
         touch=true;   
         ColorSquare::CopyColor(x->Color());
      } // else no change in color, no need to reassign or redraw
   }
   
   void ClearColor() {
      if (Color() != 0)
      {
         touch=true;
         ColorSquare::ClearColor();
      } // else no change in color, no need to reassign or redraw
   }
   
   int CompPosition(MyCell* x)
// Comparison member function for qsort
   {
      int dCol=col - x->col;// sort left to right
      if (dCol==0)
         return x->row - row;// and top to bottom
      return dCol;
   }
   
   void   Show()
// Draws the cell if it has changed
   {
      if (touch)
      {
         ColorSquare::Show();
         touch=false;

      }

   }

};

typedef MyCell* MyCellPtr;

static int CompCells(const void* a,const void* b)
// Comparison function for qsort
{
   MyCellPtr* ah=(MyCellPtr*)a;
   MyCellPtr* bh=(MyCellPtr*)b;
   MyCell* ap=*ah;
   MyCell* bp=*bh;
   return ap->CompPosition(bp);

}

/*******************************************************************
/
/                     Class Area
/
/*******************************************************************/

class Area
// An area is identified with one of its cells, and describes the size
// of the area, i.e. the number of contiguous equal-colored cells.
{
   MyCell*   ref;      // pointer to one cell in the area
   long   size;      // number of cells in area
public:
   void Init(MyCell* C,long areaSize)
   {
      ref=C;
      size=areaSize;
   }
   long Size() const {return size;}
   
   MyCellColor Color() const {return ref->Color();}
   
   MyCell* Cell() const {return ref;}
   
   void GetMove(short *moveRow,short *moveCol)
// The move is represented by the row/col coordinates of any area cell
   {
      *moveRow=ref->Row();
      *moveCol=ref->Col();
   }

};

typedef Area* AreaPtr;


/*******************************************************************
/
/                     Class Player
/
/*******************************************************************/

class Player
// Player is the main structure holding data from initialization through moves
// Player also implements almost all the game logic, calling upon MyCell and Area
// classes for utility functions.
{
private:
   long   nRows;
   long   nCols;
   long   nColors;

// My cells are stored in an array myBoard[col*nRows + row], arranged
//       to have sequential memory access for all cells in a column 

   MyCell*   myBoard;
   Area*   areas;
   long   numAreas;
// The cell list is allocated as a scratch pad for collecting the cells

//      to be removed at each move.

   MyCellPtr*   cellList;
   long   numInList;
// Move Number only serves as a source of unique tags for each move

   long    moveNr;
// A color is designated, to govern cell selection

   MyCellColor designatedColor;
   
public:
   Player(long boardSizeRows,long boardSizeCols,long numColors,

         const CellColor board[],WindowPtr wdw) :
      nRows(boardSizeRows),
      nCols(boardSizeCols),
      nColors(numColors),
      myBoard(
         new MyCell[sizeof(MyCell)*boardSizeRows*boardSizeCols]),
      areas(new Area[sizeof(Area)*(boardSizeRows*boardSizeCols)]),
      numAreas(0),
      cellList(
         new MyCellPtr[sizeof(MyCellPtr)*
                     (1+boardSizeRows*boardSizeCols/nColors)]),
      numInList(0),
      moveNr(0),
      designatedColor(0)
   {   
      win=wdw;

      long windowWidth=win->portRect.right-win->portRect.left;
      long windowHeight=win->portRect.bottom-win->portRect.top;
      long squareWidth=windowWidth/nCols;
      long squareHeight=windowHeight/nRows;

      gCellSize=(squareWidth < squareHeight) ? 
                              squareWidth : squareHeight;
      if (gCellSize>kMaxCellSize)
         gCellSize=kMaxCellSize;
      else if (gCellSize<kMinCellSize)
         gCellSize=kMinCellSize;
         
      InitCells(board);
      ShowRange(0,nCols);
   }
   
   ~Player()
   {
      delete [] cellList;
      delete [] areas;
      delete [] myBoard;
   }
   
   void InitCells(const CellColor board[])

// Copies the CellColors of board[] to MyCells in myBoard[]

//   while rearranging the row/column sequence to be more convenient

   {
      const CellColor* B=board;
      long cellSize=gCellSize;
      long   bottomRow=cellSize*(nRows-1);
      Point   spot={0,0};
      // will display row 0 at the bottom
      // will display col 0 at left
      for (long col=0;col<nCols;col++)
      {
         spot.v=bottomRow;
         for (long row=0;row<nRows;row++)
         {
            const CellColor* B=&board[row*nCols + col];
            MyCell* C=&myBoard[col*nRows + row];
            C->Init(spot,*B,row,col,cellSize);
            spot.v    -=   cellSize;
         }
         spot.h   +=   cellSize;
      }
   }
   
   void UpdateEvent(EventRecord theEvent)

// Checks validity of the event, and shows the entire board.

// Relies on caller to call BeginUpdate(..) and EndUpdate(..).

   {
      if ((theEvent.what==updateEvt) && 
               (win==(WindowPtr)theEvent.message))
      {
         // Touch all cells to ensure they are drawn
         for (int i=0;i<nRows*nCols;i++)
            myBoard[i].Touch();

         // Draw the board

         ShowRange(0,nCols);
      }
   }
   
   void RemoveCells(long row,long col,long numToRemove)

// Shifts one column down; row 0 is at the bottom

   {
      MyCell* dest=myBoard+col*nRows+row;
      MyCell* src=dest+numToRemove;
      MyCell* end=myBoard+(col+1)*nRows;
      while (src<end)
         (dest++)->CopyColor(src++);
      
      while (dest<end)
         (dest++)->ClearColor();
   }
   
   void ShowRange(long firstCol,long numColsToShow)

// Shows all cells which have been touched

   {
      if (!SHOWCELLS)
         return;
      GrafPtr   savePort;
      GetPort (&savePort);
      
      SetPort(win);      
      
      MyCell* C=myBoard + firstCol*nRows;
      for (int i=0;i<numColsToShow*nRows;i++)
         (C++)->Show();
      
      SetPort (savePort);
    }
    
   Area* GetSmallestArea1(const MyCellColor avoidColor)

// Returns the smallest area, not of "avoidColor", nearest the top, and which has a 

// shadow. 

   {
      long smallestSize=nCols*nRows;
      Area* bestArea=0;
      long topRow=-1;
      for (int i=0;i<numAreas;i++)
      {
         Area* A=&areas[i];
         if    (    (A->Size() <= smallestSize)
            &&   (A->Color() != avoidColor)
            && (A->Cell()->Row() > topRow) 
            &&   (Shadow(A->Cell(),A->Color()))
            )
         {
            bestArea=A;
            smallestSize=A->Size();
            topRow=A->Cell()->Row();
         }
      }
      UnSeeAll();
      return bestArea;
   }
   
   bool Shadow(MyCell* C,const MyCellColor theColor) 

// Returns true if the area containing C is in the "shadow" of a cell of theColor,

// i.e. there is at least one cell of theColor above the area. 

   {
      if (C->IsSeen())
         return false;
      long row=C->Row();
      long col=C->Col();
      C->See();
      if (Shade(C+1,C-row+nRows,theColor))
         return true;
         
      if ((row>0) 
         && ((-1)[C].Color()==theColor) 
         && Shadow(C-1,theColor))
            return true; 
            
      if ((row<nRows-1) 
         && ((1)[C].Color()==theColor)
         && Shadow(C+1,theColor))
            return true; 
            
      if ((col>0) 
         && ((-nRows)[C].Color()==theColor)
         && Shadow(C-nRows,theColor))
            return true; 
            
      if ((col<nCols-1)
         && ((nRows)[C].Color()==theColor)
         && Shadow(C+nRows,theColor))
            return true; 
         
      return false;
   }
   
   bool Shade(MyCell* C,MyCell* end,const MyCellColor theColor)

// Checks the column of C and above.

// Returns true if it encounters a cell of theColor. 

   {
      while ((C<end) && (C->Color()!=0))
      {
         if ((C->Color()!=theColor))
            return true;
         C++;
      }
      return false;
   }
   
   void UnSeeAll()
// Clears all "seen" flags.
   {
      for (long i=0;i<nRows*nCols;i++)
         myBoard[i].UnSee();
   }
   

   Area* GetSmallestArea2(const MyCellColor chosenColor)

// Returns the smallest area of the chosen color.

   {

      long smallestSize=nCols*nRows;
      Area* bestArea=0;
      long bottomRow=nRows;
      for (int i=0;i<numAreas;i++)
      {
         Area* A=&areas[i];
         if   (    (A->Size() < smallestSize) 
            &&   (A->Color() == chosenColor)
            )
         {
            bestArea=A;
            smallestSize=A->Size();
         }
      }
      return bestArea;
   }
   
   long MeasureArea(MyCell* C,const MyCellColor theColor)

// All cells connected to C, and of the same color, are counted and tagged.

// Recursively collects all cells of one area and returns the size of the area.

   {   

      C->Tag(moveNr);   // uses the current move number as a unique tag

      long areaSize=1;
      
      long row=C->Row();
      long col=C->Col();
      
      if ((row>0) 
         && ((-1)[C].Color()==theColor) 
         && !(-1)[C].IsTagged(moveNr))
            areaSize+=MeasureArea(C-1,theColor);    
      
      if ((row<nRows-1) 
         && ((1)[C].Color()==theColor) 
         && !(1)[C].IsTagged(moveNr))
            areaSize+=MeasureArea(C+1,theColor);       
      
      if ((col>0) 
         && ((-nRows)[C].Color()==theColor) 
         && !(-nRows)[C].IsTagged(moveNr))
            areaSize+=MeasureArea(C-nRows,theColor);        
      
      if ((col<nCols-1) 
         && ((nRows)[C].Color()==theColor) 
         && !(nRows)[C].IsTagged(moveNr))
            areaSize+=MeasureArea(C+nRows,theColor);       
      
      return areaSize;
   }
      
   long CreateAreas()

// The board is scanned and all contiguous areas are identified.

   {
      long num=0;
      MyCell* C0=myBoard;
      for (long col=0;col<nCols;col++,C0+=nRows)
      {
         MyCell* C=C0;
         for (long row=0;row<nRows;row++,C++)
         {
            if (C->IsTagged(moveNr))
               continue;   
            
            if (C->IsBlank())   // reached top of active row
               break;
               
            long areaSize=MeasureArea(C,C->Color());
            if (areaSize >= 2)
               areas[num++].Init(C,areaSize);
         }

      }   

      return num;
   }
   
   long Play(CellColor board[],short *moveRow,short *moveCol)

// The main Play() function, called once per move.

// Plays one move and returns the number of cells removed.

   {   
      moveNr++;
      
// Identify all areas.
      numAreas=CreateAreas();
      
      if (numAreas==0) // game over !
         return 0;

// Ensure we have a target color.

choose_a_color:      
      if (designatedColor==0)
         designatedColor=ChooseColor();
      
// First choice: remove a small area of another color.
        Area* area=GetSmallestArea1(designatedColor);
                              //minimum area of unreserved color
      if (0==area)
      {
// Second choice: remove smallest area of the chosen color.
         area=GetSmallestArea2(designatedColor);
                           //minimum area of reserved color
         if (0==area)
         {
// Third choice: find a new color.
            designatedColor=0;
            goto choose_a_color;
         }
      }
      
// .. and do the removal.
      long numCellsRemoved=Execute(area,board,moveRow,moveCol);
      
      return numCellsRemoved;
   }
   
   const MyCellColor ChooseColor()

// Chooses a color which we hope can be the color of a large area.

// The heuristic is to first remove all areas of other colors which are already more 
// coherent. This should then allow the smaller areas and single cells of the chosen 
// color to coalesce and form a larger single area.

   {
      long score[kMaxNumColors];
      for (int i=1;i<=nColors;i++)
         score[i]=0;
      for (int i=0;i<numAreas;i++)
      {
         long color=areas[i].Color();
         long size=areas[i].Size();
         score[color]+=size*size;
      }
      
      long lowestScore=nRows*nRows*nCols*nCols;
      MyCellColor chosenColor=0;
      for (int i=1;i<=nColors;i++)
      {
          if ((score[i] > 0) && (score[i] < lowestScore))
         {
            lowestScore=score[i];
            chosenColor=i;
         }
      }
      
      return chosenColor;
   }
   
   long Execute(Area* area,CellColor board[],
                     short *moveRow,short *moveCol)
// Removes the selected area and returns its size.
   {
      area->GetMove(moveRow,moveCol);
      numInList=0;
      MyCellColor theColor=area->Color();
      
// Collect all cells of the area into a single list
      MakeList(area->Cell(),theColor);
      
      assert(numInList==area->Size());
      
// Sort the list, so that whole clumns can be removed if possible
      qsort(cellList,numInList,sizeof(MyCellPtr),CompCells);
      
// cells in list are sorted by col,row
// we'll remove cells by col, row, num rows in col
      long minCol=nCols;
      long maxCol=-1;
      for (int i=0;i<numInList;i++)
      {
         MyCell* C=cellList[i];
         long row=C->Row();
         long col=C->Col();
         long n=1;
         // count number of contiguous cells in column for removal
         for (int k=i+1;k<numInList;k++,n++)
         {
            long nextRow=row-1;
            if ((cellList[k]->Col() != col) || 
                        (cellList[k]->Row() != nextRow))
               break;
            
            i++;
            row=nextRow;
         }
         assert(row>=0);
         assert(row+n<=nRows);
         assert(col>=0);
         assert(col<nCols);
         RemoveCells(row,col,n);

// Remember column range
         if (maxCol < col) maxCol=col;
         if (minCol > col) minCol=col;
      }
      
      assert(maxCol<nCols);
      assert(minCol>=0);

// If any empty cols result, move cols towards center, extend range
//      .. from the right

      for (long col=maxCol;(col>=(nCols-nCols/2)) && 
                        (col>=minCol);col—)
      {
         if (IsEmptyColumn(col))
         {
            ShiftLeft(col);
            maxCol=nCols-1;
         }
      }
//      .. and from the left
      for (long col=minCol;(col<=nCols/2) && (col<=maxCol);col++)
      {
         if (IsEmptyColumn(col))
         {
            ShiftRight(col);
            minCol=0;
         }
      }

// Display all touched cells in range
      ShowRange(minCol,maxCol-minCol+1);

// Let the caller know what happened: update his board[]
      CopyBackBoard(board,minCol,maxCol-minCol+1);

//    .. and return the number of cells removed.

      return numInList;
   }
   
   void CopyBackBoard(CellColor board[],long firstCol,long numColsToShow)

// Copies the cell colors of myBoard[] to the callers board[]

// Note the different array indexing.

   {
      MyCell* C=&myBoard[firstCol*nRows];
      for (long col=firstCol;col<firstCol+numColsToShow;col++)
      {
         for (long row=0;row<nRows;row++,C++)
         {
            CellColor* B=&board[row*nCols + col];
            C->CopyBack(B);
         }
      }
   }
   
   bool IsEmptyColumn(long col)
// Returns true if the first cell in a column is blank (white)
   {
      return (myBoard[col*nRows].IsBlank());
   }
   
   void ShiftRight(long destCol)
// Shifts all columns left of destCol to the right by one position
   {
      long minCol=0;
      for (;minCol<destCol;minCol++)
         if (!IsEmptyColumn(minCol))
            break;
      for (long srcCol=destCol-1;srcCol>=minCol;srcCol—,destCol—)
      {
         CopyColumn(destCol,srcCol);
      }
      ClearColumn(minCol);
   }
   
   void ShiftLeft(long destCol)
// Shifts all columns right of destCol to the left by one position
   {
      long maxCol=nCols-1;
      for (;maxCol>destCol;maxCol—)
         if (!IsEmptyColumn(maxCol))
            break;
      for (long srcCol=destCol+1;srcCol<=maxCol;srcCol++,destCol++)
      {
         CopyColumn(destCol,srcCol);
      }
      ClearColumn(maxCol);
   }
   
   void CopyColumn(long destCol,long srcCol)
// Copies one column from bottom row up, stopping when both are blank 
   {
      MyCell* dest=&myBoard[destCol*nRows];
      MyCell* src=&myBoard[srcCol*nRows];
      for (long row=0;row<nRows;row++)
      {
         if ((dest[row].IsBlank()) && (src[row].IsBlank()))
            break;
         dest[row].CopyColor(src+row);
      }
   }
   
   void ClearColumn(long col)
// Clears a column from bottom row up, stopping at first blank row
   {
      MyCell* dest=&myBoard[col*nRows];
      MyCell* end=dest+nRows;
      while (dest<end)
      {
         if (dest->IsBlank())
            break;
         (dest++)->ClearColor();
      }
   }
   
   void MakeList(MyCell* C,const MyCellColor theColor)
// Scans an area recursively, and puts a reference to each cell into cellList.
   {
      C->Tag(0);
      cellList[numInList++]=C;
      
      long row=C->Row();
      long col=C->Col();
      if ((row>0) 
         && ((-1)[C].Color()==theColor) 
         && !(-1)[C].IsTagged(0))
            MakeList(C-1,theColor); 
            
      if ((row<nRows-1) 
         && ((1)[C].Color()==theColor) 
         && !(1)[C].IsTagged(0))
            MakeList(C+1,theColor);
             
      if ((col>0) 
         && ((-nRows)[C].Color()==theColor) 
         && !(-nRows)[C].IsTagged(0))
            MakeList(C-nRows,theColor);
             
      if ((col<nCols-1) 
         && ((nRows)[C].Color()==theColor) 
         && !(nRows)[C].IsTagged(0))
            MakeList(C+nRows,theColor); 
   }
};

static Player*    P=0;

/*******************************************************************
/
/                  External Functions
/
/*******************************************************************/

void InitDownNOut(
 short boardSizeRows, /* number of rows in the game */
 short boardSizeCols, /* number of columns in the game */
 short numColors,   /* number of colors in the game */
 const CellColor board[],
  /* board[row*boardSizeCols + col] is color of cell at [row][col] */
 WindowPtr gameWindow
  /* window where results of your moves should be displayed */
)
{
   if ((boardSizeRows>0) 
      && (boardSizeCols>0) 
      && (numColors>=1)
      && (numColors+2<=kMaxNumColors) )
   P=new Player(boardSizeRows,boardSizeCols,numColors,board,gameWindow);
}

void HandleUpdateEvent(EventRecord theEvent)
{
   if (P) P->UpdateEvent(theEvent);
}

Boolean /* able to play */ PlayOneDownNOutMove(
   long score,         /* points earned prior to this move */
   CellColor board[],   /* board[row*boardSizeCols + col] is color of cell at [row][col] */
   short *moveRow,      /* return row of your next move */
   short *moveCol,      /* return col of your next move */
   long *numberOfCellsRemoved   /* self explanatory */
)
{
#pragma unused(score)
   if (P)
   {
      long numCellsRemoved=
         P->Play(board,moveRow,moveCol);
      
      if (numCellsRemoved>0)
      {
         *numberOfCellsRemoved=numCellsRemoved;
         return true;
      }
   }
   *numberOfCellsRemoved=0;
   return false;
}

void TermDownNOut(void) 
{
   delete P; 
// Deletes the only visible variable which in turn destroys its allocated data members.
   P=0;
}
 

Community Search:
MacTech Search:

Software Updates via MacUpdate

Capture One 11.0.1.40 - RAW workflow sof...
Capture One is a professional RAW converter offering you ultimate image quality with accurate colors and incredible detail from more than 400 high-end cameras -- straight out of the box. It offers... Read more
Capture One 11.0.1.40 - RAW workflow sof...
Capture One is a professional RAW converter offering you ultimate image quality with accurate colors and incredible detail from more than 400 high-end cameras -- straight out of the box. It offers... Read more
GraphicConverter 10.5.4 - $39.95
GraphicConverter is an all-purpose image-editing program that can import 200 different graphic-based formats, edit the image, and export it to any of 80 available file formats. The high-end editing... Read more
Dash 4.1.3 - Instant search and offline...
Dash is an API documentation browser and code snippet manager. Dash helps you store snippets of code, as well as instantly search and browse documentation for almost any API you might use (for a full... Read more
Microsoft OneNote 16.9 - Free digital no...
OneNote is your very own digital notebook. With OneNote, you can capture that flash of genius, that moment of inspiration, or that list of errands that's too important to forget. Whether you're at... Read more
DEVONthink Pro 2.9.17 - Knowledge base,...
Save 10% with our exclusive coupon code: MACUPDATE10 DEVONthink Pro is your essential assistant for today's world, where almost everything is digital. From shopping receipts to important research... Read more
OmniGraffle 7.6 - Create diagrams, flow...
OmniGraffle helps you draw beautiful diagrams, family trees, flow charts, org charts, layouts, and (mathematically speaking) any other directed or non-directed graphs. We've had people use Graffle to... Read more
iFinance 4.3.7 - Comprehensively manage...
iFinance allows you to keep track of your income and spending -- from your lunchbreak coffee to your new car -- in the most convenient and fastest way. Clearly arranged transaction lists of all your... Read more
Opera 50.0.2762.58 - High-performance We...
Opera is a fast and secure browser trusted by millions of users. With the intuitive interface, Speed Dial and visual bookmarks for organizing favorite sites, news feature with fresh, relevant content... Read more
Microsoft Office 2016 16.9 - Popular pro...
Microsoft Office 2016 - Unmistakably Office, designed for Mac. The new versions of Word, Excel, PowerPoint, Outlook and OneNote provide the best of both worlds for Mac users - the familiar Office... Read more

Latest Forum Discussions

See All

Around the Empire: What have you missed...
Around this time every week we're going to have a look at the comings and goings on the other sites in Steel Media's pocket-gaming empire. We'll round up the very best content you might have missed, so you're always going to be up to date with the... | Read more »
Everything about Hero Academy 2: Part 4...
In this part of our Hero Academy 2 guide, we're going to have a look at some of the tactics you're going to need to learn if you want to rise up the ranks. We're going to start off slow, then get more advanced in the next section. [Read more] | Read more »
All the best games on sale for iPhone an...
Another week has flown by. Sometimes it feels like the only truly unstoppable thing is time. Time will make dust of us all. But before it does, we should probably play as many awesome mobile videogames as we can. Am I right, or am I right? [Read... | Read more »
The 7 best games that came out for iPhon...
Well, it's that time of the week. You know what I mean. You know exactly what I mean. It's the time of the week when we take a look at the best games that have landed on the App Store over the past seven days. And there are some real doozies here... | Read more »
Popular MMO Strategy game Lords Mobile i...
Delve into the crowded halls of the Play Store and you’ll find mobile fantasy strategy MMOs-a-plenty. One that’s kicking off the new year in style however is IGG’s Lords Mobile, which has beaten out the fierce competition to receive Google Play’s... | Read more »
Blocky Racing is a funky and fresh new k...
Blocky Racing has zoomed onto the App Store and Google Play this week, bringing with it plenty of classic kart racing shenanigans that will take you straight back to your childhood. If you’ve found yourself hooked on games like Mario Kart or Crash... | Read more »
Cytus II (Games)
Cytus II 1.0.1 Device: iOS Universal Category: Games Price: $1.99, Version: 1.0.1 (iTunes) Description: "Cytus II" is a music rhythm game created by Rayark Games. It's our fourth rhythm game title, following the footsteps of three... | Read more »
JYDGE (Games)
JYDGE 1.0.0 Device: iOS Universal Category: Games Price: $4.99, Version: 1.0.0 (iTunes) Description: Build your JYDGE. Enter Edenbyrg. Get out alive. JYDGE is a lawful but awful roguehate top-down shooter where you get to build your... | Read more »
Tako Bubble guide - Tips and Tricks to S...
Tako Bubble is a pretty simple and fun puzzler, but the game can get downright devious with its puzzle design. If you insist on not paying for the game and want to manage your lives appropriately, check out these tips so you can avoid getting... | Read more »
Everything about Hero Academy 2 - The co...
It's fair to say we've spent a good deal of time on Hero Academy 2. So much so, that we think we're probably in a really good place to give you some advice about how to get the most out of the game. And in this guide, that's exactly what you're... | Read more »

Price Scanner via MacPrices.net

Deals on clearance 15″ Apple MacBook Pros wit...
B&H Photo has clearance 2016 15″ MacBook Pros available for up to $800 off original MSRP. Shipping is free, and B&H charges NY & NJ sales tax only: – 15″ 2.7GHz Touch Bar MacBook Pro... Read more
Apple restocked Certified Refurbished 13″ Mac...
Apple has restocked a full line of Certified Refurbished 2017 13″ MacBook Airs starting at $849. An Apple one-year warranty is included with each MacBook, and shipping is free: – 13″ 1.8GHz/8GB/128GB... Read more
How to find the lowest prices on 2017 Apple M...
Apple has Certified Refurbished 13″ and 15″ 2017 MacBook Pros available for $200 to $420 off the cost of new models. Apple’s refurbished prices are the lowest available for each model from any... Read more
The lowest prices anywhere on Apple 12″ MacBo...
Apple has Certified Refurbished 2017 12″ Retina MacBooks available for $200-$240 off the cost of new models. Apple will include a standard one-year warranty with each MacBook, and shipping is free.... Read more
Apple now offering a full line of Certified R...
Apple is now offering Certified Refurbished 2017 10″ and 12″ iPad Pros for $100-$190 off MSRP, depending on the model. An Apple one-year warranty is included with each model, and shipping is free: –... Read more
27″ iMacs on sale for $100-$130 off MSRP, pay...
B&H Photo has 27″ iMacs on sale for $100-$130 off MSRP. Shipping is free, and B&H charges sales tax for NY & NJ residents only: – 27″ 3.8GHz iMac (MNED2LL/A): $2199 $100 off MSRP – 27″ 3.... Read more
2.8GHz Mac mini on sale for $899, $100 off MS...
B&H Photo has the 2.8GHz Mac mini (model number MGEQ2LL/A) on sale for $899 including free shipping plus NY & NJ sales tax only. Their price is $100 off MSRP. Read more
Apple offers Certified Refurbished iPad minis...
Apple has Certified Refurbished 128GB iPad minis available today for $339 including free shipping. Apple’s standard one-year warranty is included. Their price is $60 off MSRP. Read more
Amazon offers 13″ 256GB MacBook Air for $1049...
Amazon has the 13″ 1.8GHz/256B #Apple #MacBook Air on sale today for $150 off MSRP including free shipping: – 13″ 1.8GHz/256GB MacBook Air (MQD42LL/A): $1049.99, $150 off MSRP Read more
9.7-inch 2017 WiFi iPads on sale starting at...
B&H Photo has 9.7″ 2017 WiFi #Apple #iPads on sale for $30 off MSRP for a limited time. Shipping is free, and pay sales tax in NY & NJ only: – 32GB iPad WiFi: $299, $30 off – 128GB iPad WiFi... Read more

Jobs Board

*Apple* Data Center Site Selection and Strat...
# Apple Data Center Site Selection and Strategy Research Analyst Job Number: 83708609 Santa Clara Valley, California, United States Posted: 18-Jan-2018 Weekly Hours: Read more
Security Engineering Coordinator, *Apple* R...
# Security Engineering Coordinator, Apple Retail Job Number: 113237456 Santa Clara Valley, California, United States Posted: 18-Jan-2018 Weekly Hours: 40.00 **Job Read more
Firmware Engineer - *Apple* Accessories - A...
# Firmware Engineer - Apple Accessories Job Number: 113422485 Santa Clara Valley, California, United States Posted: 18-Jan-2018 Weekly Hours: 40.00 **Job Summary** Read more
*Apple* Retail - Multiple Positions - Apple,...
Job Description: Sales Specialist - Retail Customer Service and Sales Transform Apple Store visitors into loyal Apple customers. When customers enter the store, Read more
*Apple* Store Leader - Retail District Manag...
Job Description:Job SummaryAs more and more people discover Apple , they visit our retail stores seeking ways to incorporate our products into their lives. It's your Read more
All contents are Copyright 1984-2011 by Xplain Corporation. All rights reserved. Theme designed by Icreon.