TweetFollow Us on Twitter

Apr 01 Challenge Volume Number: 17 (2001)
Issue Number: 4
Column Tag: Programmer's Challenge

Programmer's Challenge

By Bob Boonstra, Westford, MA

Crossword II

Several years ago we held a Programmers Challenge based on crossword puzzles. So when my son came home from school with an idea for a crossword Challenge, my first thought was that we had been there and done that. The old Challenge required readers to solve a crossword puzzle, fitting the available words into a predefined pattern, without the benefit of clues. My son's problem, to generate a crossword puzzle, is sufficiently different to make a potentially interesting Challenge.

The prototype for the code you should write is:

typedef struct Words {
   char *theWord;      /* null terminated string */
   short value;         /* points value for theWord */
} Words;

typedef struct WordPositions {
   short whichWord;            /* index in Words array of word being placed */
   short row;                     /* row in which the first letter of the word is placed */
   short col;                     /* col in which the first letter of the word is placed */
   short orientation;         /* 0==down, 1==across */
} WordPositions;

long /* numberOfWordPositions */ CrosswordII  (
   short puzzleSize,            /* puzzle has puzzleSize rows and columns */
   const Words words[],      /* words to be used to form the puzzle */
   short numWords,               /* number of words[] available */
   WordPositions positions[]      /* placement of words in puzzle */
);

The homework assignment that inspired this Challenge was from Chemistry class. Students were required to generate a 20x20 crossword puzzle using the names of the first 103 elements from the periodic table. Each word placed had a value equal to the atomic number for that element. So placing the word "lawrencium" earns you 103 points, "molybdenum" is worth only 42, but "lead" is worth 82. The assignment was to generate a crossword puzzle worth as many points as possible.

For the Challenge, we'll generalize the problem to work with an arbitrary list of words and arbitrarily assigned values. The puzzle dimension will be puzzleSize x puzzleSize instead of 20x20. You should decide which words to place where in the puzzle and return your word placements in the positions array, specifying in positions[].whichWord the index in words of the word being placed, the cell in which the first letter of the word is placed in positions[].row and positions[].col, and the direction the word is being placed in positions[].orientation. Your CrosswordII routine should return the number of words placed in the puzzle.

A few constraints: Each of the words will be at least 3 letters long and terminated with a zero byte. Every pair of adjacent letters in the puzzle you form must be part of some word. No word may occur more than once in the puzzle. Words may be placed horizontally or vertically, but not diagonally.

The winner will be the solution that earns the most points. Points will be based on the value of the words you place in your crossword puzzle, minus a penalty of 1% for each minute of execution time. The Challenge prize will be divided between the overall winner and the best scoring entry from a contestant that has not won the Challenge recently.

This will be a native PowerPC Challenge, using the CodeWarrior Pro 6 environment. Solutions may be coded in C, C++, or Pascal. You may provide a solution in Java instead, provided you also provide a test driver equivalent to the C code provided on the web for this problem.

Three Months Ago Winner

Congratulations to Willeke Rieken for winning the January Tetris Challenge. The Tetris Challenge required readers to provide a player for the classic Tetris game. Willeke actually won by default, as his was the only entry. As I've said before, you can't win if you don't play. With this win, Willeke vaults into second place in our Challenge points standings.

Willeke describes his solution as "low tech". The heavy lifting is done in his MovePiece routine, where he determines the position and orientation of the current piece that provides the best fit. His heuristic for best fit takes into consideration the number of unreachable empty spaces created by placing a piece, with special weighting against placements that create "deep pits". The solution does not take advantage of the opportunity to move a piece after it has been dropped, nor does it use the information provided about the next piece to be placed.

Top Contestants...

Listed here are the Top Contestants for the Programmer's Challenge, including everyone who has accumulated 20 or more points during the past two years. The numbers below include points awarded over the 24 most recent contests, including points earned by this month's entrants.

Rank Name Points
1. Munter, Ernst 281
2. Rieken, Willeke 85
3. Saxton, Tom 76
4. Maurer, Sebastian 68
5. Boring, Randy 52
6. Shearer, Rob 48
7. Taylor, Jonathan 36
8. Wihlborg, Charles 29

... and the Top Contestants Looking For a Recent Win

Starting this month, in order to give some recognition to other participants in the Challenge, we are also going to list the high scores for contestants who have accumulated points without taking first place in a Challenge. Listed here are all of those contestants who have accumulated 6 or more points during the past two years.

9. Downs, Andrew 12
10. Jones, Dennis 12
11. Day, Mark 10
12. Duga, Brady 10
13. Fazekas, Miklos 10
14. Flowers, Sue 10
15. Sadetsky, Gregory 10
16. Selengut, Jared 10
17. Strout, Joe 10
18. Hala, Ladislav 7
19. Miller, Mike 7
20. Nicolle, Ludovic 7
21. Schotsman, Jan 7
22. Widyyatama, Yudhi 7
23. Heithcock, JG 6

There are three ways to earn points: (1) scoring in the top 5 of any Challenge, (2) being the first person to find a bug in a published winning solution or, (3) being the first person to suggest a Challenge that I use. The points you can win are:

1st place 20 points
2nd place 10 points
3rd place 7 points
4th place 4 points
5th place 2 points
finding bug 2 points
suggesting Challenge 2 points

Here is Willeke's winning Tetris solution:

tetris.cp
Copyright © 2001
Willeke Rieken
/*
   a piece is dropped at each column and points are given for
   creating empty cells and adding height. points are subtracted
   for fitting in existing holes. the column with the lowest
   score wins. the moves to drop the piece in the winning
   column are placed in an array. in subsequent calls of Tetris
   the next move is returned.
   this is a low tech solution without using the next piece or
   the possibility to move a piece after it dropped. 
*/

#include <stdio.h>
#include <string.h>

#include "Tetris.h"

#define kPieceSize 7
#define kHalfPieceSize 3
#define kMaxBoardSizeSize 256
#define kMaxNrRotations 4

typedef struct PieceInfo {
   long pieceLeft, pieceRight, pieceTop, pieceBottom;
   long nrOfRorations;
} PieceInfo;

static const Piece *gGamePieces;
static MoveType gMovesToDo[(kMaxBoardSizeSize / 2) + 3];
   // (max board size/2) lefts or rights + 2 rotations + drop
static PieceInfo *gPieceInfo;
static long gNrMovesToDo, gMoveNr;
static long gLastPieceIndex, glastNextPieceIndex;
static long gNumRows, gNumCols;
static long gNumPieceTypes, gMaxPieceSize;

PieceFits

static short PieceFits(const Board gameBoard, long *theTopOfPieces,
                                    Piece theActivePiece,
                              long thePieceLeft, long thePieceRight,
                              long thePieceTop, long thePieceBottom,
                                    long theRow, long theCol,
                                    short theMustFitInBoard)
// check if the piece will fit on the board at
// position (theRow,theCol), if theMustFitInBoard then
// the total piece has to be on the board
{
   long   aRowOffset, aColOffset;
   long   aRow, aCol;

   aRowOffset = theRow - thePieceBottom - 1;
   aColOffset = theCol - kHalfPieceSize;
   for (aRow = thePieceTop; aRow <= thePieceBottom; aRow++)
      for (aCol = thePieceLeft; aCol <= thePieceRight; aCol++)
      {
         if (theActivePiece[aRow][aCol])
         {
            if (aRowOffset + aRow < 0)
               if (theMustFitInBoard)
                  return 0;
               else
                  break;
            if (theMustFitInBoard)
               if (aRowOffset + aRow >= 
                           theTopOfPieces[aColOffset + aCol])
                  return 0;
   if (gameBoard[aRowOffset + aRow][aColOffset + aCol] >= 0)
               return 0;
         }
      }
   return 1;
}

RotatePiece90

static void RotatePiece90(Piece theActivePiece,
                                       long *aPieceLeft, long *aPieceRight,
                                       long *aPieceTop, long *aPieceBottom)
// rotates the piece 90° clockwise
{
   Piece   aRotatedPiece;
   long   aRow, aCol;
   
   for (aRow = 0; aRow < kPieceSize; aRow++)
      for (aCol = 0; aCol < kPieceSize; aCol++)
         aRotatedPiece[aCol][kPieceSize - 1 - aRow] =
               theActivePiece[aRow][aCol];
   memcpy(theActivePiece, aRotatedPiece, sizeof(Piece));
         
   aRow = *aPieceLeft;
   *aPieceLeft = kPieceSize - 1 - *aPieceBottom;
   *aPieceBottom = *aPieceRight;
   *aPieceRight = kPieceSize - 1 - *aPieceTop;
   *aPieceTop = aRow;
}

RotatePiece180
static void RotatePiece180(Piece theActivePiece,
                                       long *aPieceLeft, long *aPieceRight,
                                       long *aPieceTop, long *aPieceBottom)
// rotates the piece 180°
{
   Piece   aRotatedPiece;
   long   aRow, aCol;
   
   for (aRow = 0; aRow < kPieceSize; aRow++)
      for (aCol = 0; aCol < kPieceSize; aCol++)
         aRotatedPiece[kPieceSize - 1 - aRow][kPieceSize - 1 - aCol] 
                  =   theActivePiece[aRow][aCol];
   memcpy(theActivePiece, aRotatedPiece, sizeof(Piece));
         
   aRow = *aPieceTop;
   *aPieceTop = kPieceSize - 1 - *aPieceBottom;
   *aPieceBottom = kPieceSize - 1 - aRow;
   aRow = *aPieceLeft;
   *aPieceLeft = kPieceSize - 1 - *aPieceRight;
   *aPieceRight = kPieceSize - 1 - aRow;
}

RotatePiece270
static void RotatePiece270(Piece theActivePiece,
                                       long *aPieceLeft, long *aPieceRight,
                                       long *aPieceTop, long *aPieceBottom)
// rotates the piece 90° counter clockwise
{
   Piece   aRotatedPiece;
   long   aRow, aCol;
   
   for (aRow = 0; aRow < kPieceSize; aRow++)
      for (aCol = 0; aCol < kPieceSize; aCol++)
         aRotatedPiece[kPieceSize - 1 - aCol][aRow] =
               theActivePiece[aRow][aCol];
   memcpy(theActivePiece, aRotatedPiece, sizeof(Piece));
         
   aRow = *aPieceTop;
   *aPieceTop = kPieceSize - 1 - *aPieceRight;
   *aPieceRight = *aPieceBottom;
   *aPieceBottom = kPieceSize - 1 - *aPieceLeft;
   *aPieceLeft = aRow;
}

FindCompletedLines
static void FindCompletedLines(const Board gameBoard,
                                             short theCompletedLines[kPieceSize],
                                             long *theNrCompletedLines,
                                             Piece theActivePiece,
                                             long thePieceLeft, long thePieceRight,
                                             long thePieceTop, long thePieceBottom,
                                             long theRow, long theCol)
// find the lines that are completed and will disappear after the piece dropped
{
   long   aRowOffset, aColOffset;
   long   aRow, aCol;

   aRowOffset = theRow - thePieceBottom - 1;
   aColOffset = theCol - kHalfPieceSize;

   for (aRow = 0; aRow < kPieceSize; aRow++)
      theCompletedLines[aRow] = 0;
   *theNrCompletedLines = 0;
      
   for (aRow = thePieceTop; aRow <= thePieceBottom; aRow++)
   {
      theCompletedLines[aRow] = 1;
      for (aCol = thePieceLeft; aCol <= thePieceRight; aCol++)
         if ((!theActivePiece[aRow][aCol]) &&
               (gameBoard[aRowOffset + aRow][aColOffset + aCol] == -1))
         {
            theCompletedLines[aRow] = 0;
            break;
         }
      if (theCompletedLines[aRow])
      {
         for (aCol = 0; aCol < aColOffset + thePieceLeft; aCol++)
            if (gameBoard[aRowOffset + aRow][aCol] == -1)
            {
               theCompletedLines[aRow] = 0;
               break;
            }
      }
      if (theCompletedLines[aRow])
      {
         for (aCol = aColOffset + thePieceRight + 1; 
                     aCol < gNumCols; aCol++)
            if (gameBoard[aRowOffset + aRow][aCol] == -1)
            {
               theCompletedLines[aRow] = 0;
               break;
            }
      }
      if (theCompletedLines[aRow])
         (*theNrCompletedLines)++;
   }
}

CountEmptySpaces
static long CountEmptySpaces(long *theTopOfPieces,
                                             short theCompletedLines[kPieceSize],
                                             Piece theActivePiece,
                                             long thePieceLeft, long thePieceRight,
                                             long thePieceTop, long thePieceBottom,
                                             long theRow, long theCol)
// count the empty cells as a result of the piece being dropped
// at theCol. don't include the empty cells that will be part
// of the big space at the top after de completed lines are removed
{
   long   aRowOffset, aColOffset;
   long   aRow, aCol, aNrOfEmptySpaces;

   aRowOffset = theRow - thePieceBottom - 1;
   aColOffset = theCol - kHalfPieceSize;
   aNrOfEmptySpaces = 0;
   for (aCol = thePieceLeft; aCol <= thePieceRight; aCol++)
   {
      short   aPieceInColumn = 0;
      
      for (aRow = thePieceTop; aRow <= thePieceBottom; aRow++)
         if (theActivePiece[aRow][aCol] && 
                     (!theCompletedLines[aRow]))
         {
            aPieceInColumn = 1;
            break;
         }
      if (aPieceInColumn)
      {
         aRow = thePieceTop;
         while ((!theActivePiece[aRow][aCol]) && 
                           (aRow <= thePieceBottom))
            aRow++;
         while ((aRow + aRowOffset < 
                           theTopOfPieces[aColOffset + aCol]) &&
                     (aRow <= thePieceBottom))
         {
            if (!theActivePiece[aRow][aCol])
               aNrOfEmptySpaces++;
            aRow++;
         }
         if (aRow + aRowOffset < theTopOfPieces[aColOffset + aCol])
            if ((theTopOfPieces[aColOffset + aCol] - aRow - aRowOffset) 
                              > gMaxPieceSize)
               aNrOfEmptySpaces += gMaxPieceSize;
            else
               aNrOfEmptySpaces += (theTopOfPieces[aColOffset + aCol] - 
                                                            aRow - aRowOffset);
      }
   }
   return aNrOfEmptySpaces;
}

CountTouches
static long CountTouches(const Board gameBoard,
                                    long *theTopOfPieces, Piece theActivePiece,
                                    long thePieceLeft, long thePieceRight,
                                    long thePieceTop, long thePieceBottom,
                                    long theRow, long theCol)
// count at how many cells the piece will touch the pieces on
// the board, subtract points for creating deep pits
{
   long   aRowOffset, aColOffset;
   long   aRow, aCol, aNrOfTouches;

   aRowOffset = theRow - thePieceBottom - 1;
   aColOffset = theCol - kHalfPieceSize;
   aNrOfTouches = 0;
   for (aRow = thePieceTop; aRow <= thePieceBottom; aRow++)
      for (aCol = thePieceLeft; aCol <= thePieceRight; aCol++)
         if (theActivePiece[aRow][aCol])
         {
            // touches on the left
            if (aColOffset + aCol == 0)
               aNrOfTouches++;
            else
               if (((aCol == thePieceLeft) ||
                        (!theActivePiece[aRow][aCol - 1])) &&
                     (gameBoard[aRowOffset + aRow][aColOffset + aCol - 1] 
                                                != -1))
                  aNrOfTouches++;
            // touches on the right
            if (aColOffset + aCol == gNumCols - 1)
               aNrOfTouches++;
            else
               if (((aCol == thePieceRight) ||
                        (!theActivePiece[aRow][aCol + 1])) &&
                     (gameBoard[aRowOffset + aRow][aColOffset + aCol + 1] 
                                                != -1))
                  aNrOfTouches++;
            // touches on the bottom
            if (aRowOffset + aRow == gNumRows - 1)
               aNrOfTouches++;
            else
               if (((aRow == thePieceBottom) ||
                        (!theActivePiece[aRow + 1][aCol])) &&
                     (gameBoard[aRowOffset + aRow + 1][aColOffset + aCol] 
                                                != -1))
                  aNrOfTouches++;
         }
   // check for deep pits
   if ((aColOffset + thePieceLeft > 0) &&
      (theTopOfPieces[aColOffset + thePieceLeft - 1] >
            aRowOffset + thePieceBottom + 1))
   {
      aNrOfTouches -= 
            ((theTopOfPieces[aColOffset + thePieceLeft - 1]) -
               (aRowOffset + thePieceTop + 1));
      aRow = thePieceTop;
      while (!theActivePiece[aRow][thePieceLeft])
      {
         aRow-;
         aNrOfTouches++;
      }
   }
   if ((aColOffset + thePieceRight < gNumCols - 1) &&
      (theTopOfPieces[aColOffset + thePieceRight + 1] >
            aRowOffset + thePieceBottom + 1))
   {
      aNrOfTouches -= ((theTopOfPieces[aColOffset + 
                                          thePieceRight + 1]) -
                                          (aRowOffset + thePieceTop + 1));
      aRow = thePieceTop;
      while (!theActivePiece[aRow][thePieceRight])
      {
         aRow-;
         aNrOfTouches++;
      }
   }
   return aNrOfTouches;
}

ValidMove
static short ValidMove(const Board gameBoard,
                                 short activePieceTypeIndex,
                                 long *theTopOfPieces, long theTopTopOfPieces,
                                 long theCol, long theRotation)
// check if the piece can reach its column without
// colliding with pieces on the board
{
   long   aCol, aRow, aNrMovesToDo;
   Piece   anActivePiece;
   long   aPieceLeft, aPieceRight, aPieceTop, aPieceBottom;

   memcpy(anActivePiece, gGamePieces[activePieceTypeIndex], 
                              sizeof(Piece));
   aPieceLeft = gPieceInfo[activePieceTypeIndex].pieceLeft;
   aPieceRight = gPieceInfo[activePieceTypeIndex].pieceRight;
   aPieceTop = gPieceInfo[activePieceTypeIndex].pieceTop;
   aPieceBottom = gPieceInfo[activePieceTypeIndex].pieceBottom;

   aRow = 1 - aPieceBottom;

   // count moves
   aNrMovesToDo = 0;
   switch (theRotation)
   {
      case 0:
         break;
      case 1:
         aNrMovesToDo++;
         break;
      case 2:
         aNrMovesToDo++;
         aNrMovesToDo++;
         break;
      case 3:
         aNrMovesToDo++;
         break;
   }
   if (theCol > gNumCols / 2)
      aNrMovesToDo += theCol - gNumCols / 2;
   else
      aNrMovesToDo += gNumCols / 2 - theCol;
      
   // check if the piece can move without hitting pieces on the board
   if (aNrMovesToDo >= theTopTopOfPieces)
   {
      switch (theRotation)
      {
         case 0:
            break;
         case 1:
            RotatePiece90(anActivePiece,
                                 &aPieceLeft, &aPieceRight,
                                 &aPieceTop, &aPieceBottom);
            aRow++;
            break;
         case 2:
            RotatePiece180(anActivePiece, &aPieceLeft,
                                 &aPieceRight, &aPieceTop,
                                 &aPieceBottom);
            aRow++;
            aRow++;
            break;
         case 3:
            RotatePiece270(anActivePiece,
                                 &aPieceLeft, &aPieceRight,
                                 &aPieceTop, &aPieceBottom);
            aRow++;
            break;
      }
      aRow += aPieceBottom;
      for (aCol = gNumCols / 2 + 1; aCol < theCol; aCol++)
         if (!PieceFits(gameBoard, theTopOfPieces, anActivePiece,
                              aPieceLeft, aPieceRight, aPieceTop, aPieceBottom,
                              aRow + (aCol - (gNumCols / 2 + 1)), aCol, 0))
            return 0;
      for (aCol = gNumCols / 2 - 1; aCol > theCol; aCol-)
         if (!PieceFits(gameBoard, theTopOfPieces, anActivePiece,
                              aPieceLeft, aPieceRight, aPieceTop, aPieceBottom,
                              aRow + ((gNumCols / 2 - 1) - aCol), aCol, 0))
            return 0;
   }
   return 1;
}

MovePiece
static void MovePiece(const Board gameBoard,
                                 short activePieceTypeIndex)
// determine the column for the piece and prepare the moves
{
   Piece   anActivePiece;
   long   aPieceLeft, aPieceRight, aPieceTop, aPieceBottom;
   long   aRow, aCol, aRotation;
   long   aTopOfPieces[kMaxBoardSizeSize];
   long   aBottomTopRow, aTopTopRow;
   long   aColScore[kMaxNrRotations][kMaxBoardSizeSize];
   long   aBestScore, aBestCol, aBestRotation;
   long   anExtraScore, aNrCompletedLines;
   short   aCompletedLines[kPieceSize];
   short   aValidMove;

   memcpy(anActivePiece, gGamePieces[activePieceTypeIndex],
             sizeof(Piece));
   
   aPieceLeft = gPieceInfo[activePieceTypeIndex].pieceLeft;
   aPieceRight = gPieceInfo[activePieceTypeIndex].pieceRight;
   aPieceTop = gPieceInfo[activePieceTypeIndex].pieceTop;
   aPieceBottom = gPieceInfo[activePieceTypeIndex].pieceBottom;

   // find top of pieces in board
   aBottomTopRow = 0;
   aTopTopRow = gNumCols;
   for (aCol = 0; aCol < gNumCols; aCol++)
   {
      aRow = 0;
      while ((aRow < gNumRows) &&
                  (gameBoard[aRow][aCol] == -1)) aRow++;
      aTopOfPieces[aCol] = aRow;
      if (aBottomTopRow < aRow)
         aBottomTopRow = aRow;
      if (aTopTopRow > aRow)
         aTopTopRow = aRow;
   }

   // find where the piece fits best
   for (aRotation = 0;
            aRotation < gPieceInfo[activePieceTypeIndex].nrOfRorations;
            aRotation++)
   {
      for (aCol = 0; aCol < gNumCols; aCol++)
      {
         aColScore[aRotation][aCol] = 1000000;
         if ((aCol >= kHalfPieceSize - aPieceLeft) &&
               (aCol < gNumCols - aPieceRight + kHalfPieceSize))
         {
            aRow = aTopOfPieces[aCol] + kPieceSize - 1;
            if (aRow > aBottomTopRow)
               aRow = aBottomTopRow;
      while ((!PieceFits(gameBoard, aTopOfPieces, anActivePiece,
                  aPieceLeft, aPieceRight, aPieceTop, aPieceBottom,
                              aRow, aCol, 1)) &&
                  (aRow >= 0))
               aRow-;
            if (aRow > (aPieceBottom - aPieceTop - 1))
            {
               aColScore[aRotation][aCol] =
                  ((aBottomTopRow - aRow) + 
                  (aPieceBottom - aPieceTop)) * 2;
               FindCompletedLines(gameBoard, aCompletedLines,
                        &aNrCompletedLines, anActivePiece,
                  aPieceLeft, aPieceRight, aPieceTop, aPieceBottom,
                        aRow, aCol);
               anExtraScore = CountEmptySpaces(aTopOfPieces,
                        aCompletedLines, anActivePiece,
                  aPieceLeft, aPieceRight, aPieceTop, aPieceBottom,
                        aRow, aCol);
               aColScore[aRotation][aCol] += anExtraScore * 5;
               anExtraScore = CountTouches(gameBoard,
                     aTopOfPieces, anActivePiece,
               aPieceLeft, aPieceRight, aPieceTop, aPieceBottom,
                        aRow, aCol);
               aColScore[aRotation][aCol] -= anExtraScore;
            }
         }
      }
      RotatePiece90(anActivePiece,
                  &aPieceLeft, &aPieceRight, &aPieceTop, &aPieceBottom);
   }
   aBestCol = 0;
   aBestRotation = 0;
   aValidMove = 0;
   while (!aValidMove)
   {
      aBestScore = 1000000;
      for (aRotation = 0;
            aRotation < gPieceInfo[activePieceTypeIndex].nrOfRorations;
            aRotation++)
         for (aCol = 0; aCol < gNumCols; aCol++)
            if (aColScore[aRotation][aCol] < aBestScore)
            {
               aBestScore = aColScore[aRotation][aCol];
               aBestCol = aCol;
               aBestRotation = aRotation;
            }
      if (aBestScore < 1000000)   // found valid move
      {
         if (ValidMove(gameBoard, activePieceTypeIndex,
                  aTopOfPieces, aTopTopRow, aBestCol, aBestRotation))
            aValidMove = 1;
         else
            aColScore[aBestRotation][aBestCol] = 1000000;
      }
      else
      {
         // no valid moves, give up
         aBestCol = gNumCols / 2;
         aBestRotation = 0;
         aValidMove = 1;
      }
   }
   
   // prepare moves
   gNrMovesToDo = 0;
   switch (aBestRotation)
   {
      case 1:
         gMovesToDo[gNrMovesToDo] = kRotateClockwise;
         gNrMovesToDo++;
         break;
      case 2:
         gMovesToDo[gNrMovesToDo] = kRotateClockwise;
         gNrMovesToDo++;
         gMovesToDo[gNrMovesToDo] = kRotateClockwise;
         gNrMovesToDo++;
         break;
      case 3:
         gMovesToDo[gNrMovesToDo] = kRotateCounterClockwise;
         gNrMovesToDo++;
         break;
   }
   if (aBestCol > gNumCols / 2)
      for (aCol = gNumCols / 2; aCol < aBestCol; aCol++)
      {
         gMovesToDo[gNrMovesToDo] = kMoveRight;
         gNrMovesToDo++;
      }
   else
      for (aCol = aBestCol; aCol < gNumCols / 2; aCol++)
      {
         gMovesToDo[gNrMovesToDo] = kMoveLeft;
         gNrMovesToDo++;
      }
   gMovesToDo[gNrMovesToDo] = kDrop;
   gNrMovesToDo++;
   gMovesToDo[gNrMovesToDo] = kNoMove;
   gNrMovesToDo++;
}

GetPieceInfo
static void GetPieceInfo()
// determine the bounds of the piece and if rotating
// the piece results in the same piece 
{
   long   i;

   for (i = 0; i < gNumPieceTypes; i++)
   {
      long   aPieceLeft = kPieceSize - 1, aPieceRight = 0;
      long   aPieceTop = kPieceSize - 1, aPieceBottom = 0;
      Piece   anActivePiece;
      long   aRow, aCol, aRowOffset, aColOffset;
      short   aPiecesMatch;

      memcpy(anActivePiece, gGamePieces[i], sizeof(Piece));
      for (aRow = 0; aRow < kPieceSize; aRow++)
         for (aCol = 0; aCol < kPieceSize; aCol++)
            if (anActivePiece[aRow][aCol])
            {
               if (aRow < aPieceTop)
                  aPieceTop = aRow;
               if (aRow > aPieceBottom)
                  aPieceBottom = aRow;
               if (aCol < aPieceLeft)
                  aPieceLeft = aCol;
               if (aCol > aPieceRight)
                  aPieceRight = aCol;
            }
      gPieceInfo[i].pieceLeft = aPieceLeft;
      gPieceInfo[i].pieceRight = aPieceRight;
      gPieceInfo[i].pieceTop = aPieceTop;
      gPieceInfo[i].pieceBottom = aPieceBottom;
      
      if (aPieceRight - aPieceLeft > gMaxPieceSize)
         gMaxPieceSize = aPieceRight - aPieceLeft;
      if (aPieceBottom - aPieceTop > gMaxPieceSize)
         gMaxPieceSize = aPieceBottom - aPieceTop;
      
      gPieceInfo[i].nrOfRorations = kMaxNrRotations;

      RotatePiece90(anActivePiece,
                  &aPieceLeft, &aPieceRight, &aPieceTop, &aPieceBottom);
      if ((aPieceRight - aPieceLeft) == (aPieceBottom - aPieceTop))
      {
         aPiecesMatch = 1;
         aRowOffset = gPieceInfo[i].pieceTop - aPieceTop;
         aColOffset = gPieceInfo[i].pieceLeft - aPieceLeft;
         for (aRow = aPieceTop; aRow <= aPieceBottom; aRow++)
            for (aCol = aPieceLeft; aCol <= aPieceRight; aCol++)
               if ((anActivePiece[aRow][aCol] &&
                        !gGamePieces[i][aRow + aRowOffset][aCol + 
                                    aColOffset]) ||
                     (!anActivePiece[aRow][aCol] &&
                        gGamePieces[i][aRow + 
                              aRowOffset][aCol + aColOffset]))
                  aPiecesMatch = 0;
         if (aPiecesMatch)
            gPieceInfo[i].nrOfRorations = 1;
      }
      if (gPieceInfo[i].nrOfRorations == kMaxNrRotations)
      {
         RotatePiece90(anActivePiece,
                  &aPieceLeft, &aPieceRight, &aPieceTop, &aPieceBottom);
         aPiecesMatch = 1;
         aRowOffset = gPieceInfo[i].pieceTop - aPieceTop;
         aColOffset = gPieceInfo[i].pieceLeft - aPieceLeft;
         for (aRow = aPieceTop; aRow <= aPieceBottom; aRow++)
            for (aCol = aPieceLeft; aCol <= aPieceRight; aCol++)
               if ((anActivePiece[aRow][aCol] &&
                        !gGamePieces[i][aRow + 
                                       aRowOffset][aCol + aColOffset]) ||
                     (!anActivePiece[aRow][aCol] &&
                        gGamePieces[i][aRow + 
                                       aRowOffset][aCol + aColOffset]))
                  aPiecesMatch = 0;
         if (aPiecesMatch)
            gPieceInfo[i].nrOfRorations = 2;
      }
   }
}

InitTetris
void InitTetris(
  short boardWidth,            /* width of board in cells */
  short boardHeight,         /* height of board in cells */
  short numPieceTypes,      /* number of types of pieces */
  const Piece gamePieces[],   /* pieces to play */
  long timeToPlay               /* game time, in milliseconds */
) {
   gNumRows = boardHeight;
   gNumCols = boardWidth;
   gNumPieceTypes = numPieceTypes;
   gGamePieces = gamePieces;
   gNrMovesToDo = 0;
   gMoveNr = 0;
   gLastPieceIndex = -1;
   glastNextPieceIndex = -1;
   gPieceInfo = new PieceInfo[gNumPieceTypes];
   gMaxPieceSize = 0;
   GetPieceInfo();
   gMaxPieceSize++;
}

Tetris
MoveType /* move active piece */ Tetris(
  const Board gameBoard,      
  /* current state of the game board,
     bottom row is [boardHeight-1], left column is [0] */
  short activePieceTypeIndex,   /* index into gamePieces of active piece */
  short nextPieceTypeIndex,      /* index into gamePieces of next piece */
  long pointsEarned,                     /* number of points earned thus far */
  long timeToGo                              /* time remaining, in milliseconds */
) {
   // try to detect a new piece,
   // will fail when a piece appears three times in a row
   if ((gLastPieceIndex != activePieceTypeIndex) ||
         (glastNextPieceIndex != nextPieceTypeIndex))
      gMoveNr = gNrMovesToDo;
   gLastPieceIndex = activePieceTypeIndex;
   glastNextPieceIndex = nextPieceTypeIndex;

   if (gMoveNr >= gNrMovesToDo)
   {
      // calculate the moves for a new piece
      MovePiece(gameBoard, activePieceTypeIndex);
      gMoveNr = 0;
   }
   // return next move
   return gMovesToDo[gMoveNr++];
}

TermTetris
void TermTetris(void) {
   delete[] gPieceInfo;
}
 
AAPL
$517.96
Apple Inc.
+0.00
MSFT
$39.75
Microsoft Corpora
+0.00
GOOG
$536.44
Google Inc.
+0.00

MacTech Search:
Community Search:

Software Updates via MacUpdate

Starcraft II: Wings of Liberty 1.1.1.180...
Download the patch by launching the Starcraft II game and downloading it through the Battle.net connection within the app. Starcraft II: Wings of Liberty is a strategy game played in real-time. You... Read more
Sibelius 7.5.0 - Music notation solution...
Sibelius is the world's best-selling music notation software for Mac. It is as intuitive to use as a pen, yet so powerful that it does most things in less than the blink of an eye. The demo includes... Read more
Typinator 5.9 - Speedy and reliable text...
Typinator turbo-charges your typing productivity. Type a little. Typinator does the rest. We've all faced projects that require repetitive typing tasks. With Typinator, you can store commonly used... Read more
MYStuff Pro 2.0.16 - Create inventories...
MYStuff Pro is the most flexible way to create detail-rich inventories for your home or small business. Add items to MYStuff by dragging and dropping existing information, uploading new images, or... Read more
TurboTax 2013.r17.002 - Manage your 2013...
TurboTax guides you through your tax return step by step, does all the calculations, and checks your return for errors and overlooked deductions. It lets you file your return electronically to get... Read more
TrailRunner 3.8.769 - Route planning for...
Note: While the software is classified as freeware, it is actually donationware. Please consider making a donation to help support development. TrailRunner is the perfect companion for runners,... Read more
Flavours 1.1.10 - Create and apply theme...
Flavours is a Mac application that allow users to create, apply and share beautifully designed themes. Classy Give your Mac a gorgeous new look by applying delicious themes! Easy Unleash your... Read more
Spotify 0.9.8.296. - Stream music, creat...
Spotify is a streaming music service that gives you on-demand access to millions of songs. Whether you like driving rock, silky R&B, or grandiose classical music, Spotify's massive catalogue... Read more
SlingPlayer Plugin 3.3.20.475 - Browser...
SlingPlayer is the screen interface software that works hand-in-hand with the hardware inside the Slingbox to make your TV viewing experience just like that at home. It features an array of... Read more
S.M.A.R.T. for USB and FireWire Drives 0...
S.M.A.R.T. for USB and FireWire Drives is a kernel driver for OS X external usb or firewire drives. It extends the standard driver behaviour by providing access to drive smart data. The interface to... Read more

Latest Forum Discussions

See All

RollerCoaster Tycoon 4 Mobile Review
RollerCoaster Tycoon 4 Mobile Review By Jennifer Allen on April 16th, 2014 Our Rating: :: DISAPPOINTINGLY WEAKUniversal App - Designed for iPhone and iPad The RollerCoaster Tycoon franchise finally comes to iOS, but it’s a rather... | Read more »
148Apps Live on Twitch: Pivvot’s Looper...
On our latest Twitch stream, we’ll be playing a pair of minimalist arcade games, one that just got a big content update in Pivvot, and another that was inspired by it in 15 Coins. Whitaker Trebella, creator of Pivvot, will discuss the new modes... | Read more »
Word Cubes Review
Word Cubes Review By Jordan Minor on April 15th, 2014 Our Rating: :: SQUARESVILLEUniversal App - Designed for iPhone and iPad Word Cubes is fine, but it is barely any different from any other word game.   | Read more »
PAX East 2014 – Desert Fox: The Battle o...
PAX East 2014 – Desert Fox: The Battle of El Alamein is Coming to iOS Soon Posted by Rob Rich on April 15th, 2014 [ permalink ] Shenandoah Studio has become one of the go-to developers for war games on iOS, with | Read more »
Tank of Tanks Review
Tank of Tanks Review By Carter Dotson on April 15th, 2014 Our Rating: :: TANKS A LOT!iPad Only App - Designed for the iPad This multiplayer game played on a single iPad is simple, chaotic fun.   | Read more »
PAX East 2014 – Dungeon of the Endless J...
PAX East 2014 – Dungeon of the Endless Just Might Have a Shot at an iPad Release Posted by Rob Rich on April 15th, 2014 [ permalink ] I think it’s fair to say that | Read more »
SideSwype Review
SideSwype Review By Carter Dotson on April 15th, 2014 Our Rating: :: ON YOUR SIDEUniversal App - Designed for iPhone and iPad SideSwype is a puzzler that takes inspiration from Threes, but becomes its own incredibly fun game.   | Read more »
PAX East 2014 – Bigfoot Hunter Invites P...
PAX East 2014 – Bigfoot Hunter Invites Players on a Wild and Wooly Photo Safari Posted by Rob Rich on April 15th, 2014 [ permalink ] Yeti. Sasquatch. Wendigo. | Read more »
Dungeon Quest Review
Dungeon Quest Review By Cata Modorcea on April 15th, 2014 Our Rating: :: NO STORY, BUT GOOD FUNUniversal App - Designed for iPhone and iPad Dungeon Quest does a lot of things right, but ultimately forgets about one of the core... | Read more »
Tempo AI and Speek Join Forces to “Kill...
Tempo AI and Speek Join Forces to “Kill the Conference Call PIN” Posted by Rob Rich on April 15th, 2014 [ permalink ] Today Tempo AI, makers of Tempo Smart Calendar, and | Read more »

Price Scanner via MacPrices.net

Download our app, iTracx, for iOS and Android
MacPrices is proud to offer readers a free iOS app (iPhones, iPads, & iPod touch) and Android app (Google Play and Amazon App Store) called iTracx, which allows you to glance at today’s lowest... Read more
Education discounts shave up to $300 off the...
Purchase a new Mac at The Apple Store for Education and take up to $300 off MSRP. All teachers, students, and staff of any educational institution qualify for the discount. Shipping is free, and all... Read more
Save $50 on Mac mini Server
B&H Photo has the 2012 Mac mini Server on sale for $949 including free shipping plus NY sales tax only. Their price is $50 off MSRP. Read more
PhatWare’s “Ultimate Writing App For iOS” Ren...
PhatWare Corp. has announced it has renamed its new WritePro word processing app for iPhone and iPad: WritePad Pro. The decision to change the app’s name to leverages the strong brand awareness and... Read more
Full Resolution Photo Editor Tint Mint 1.0 Re...
California based independent developer, Jeffrey Sun, creator of the iOS app Modern Editor, has released Tint Mint, a new photography app for editing enthusiasts. The app costs a dollar, and it packs... Read more
16GB iPad mini (Apple refurbished) available...
The Apple Store has refurbished 1st generation 16GB iPad minis available for $249 including free shipping. Both black and white models are available. Read more
Save $120 on the 27-inch 3.2GHz Haswell iMac
B&H Photo has the 27″ 3.2GHz iMac on sale for $1679.99 including free shipping plus NY sales tax only. Their price is about $120 off MSRP. Read more
Using a Mac Doesn’t Eliminate The Heartbleed...
Low End Mac’s Dan Knight notes that any time you visit a website with an https: prefix or see that secure lock icon on your browser, some type of security software is busy trying to protect your data... Read more
AirPrint Basics Tutorial Posted
A new Apple Knowledge Base article helps get you started using AirPrint, the Apple protocol that enables instant printing from iPad, iPhone, iPod touch, and Mac without the need to install drivers or... Read more
Speed Tips For Running LibreOffice On The Mac
LibreOffice is my favorite of several free, open-source application suites, and the one I have configured on my Mac as my default app for Word documents that one frequently has to deal with. It also... Read more

Jobs Board

*Apple* Solutions Consultant (ASC) - Apple (...
**Job Summary** The ASC is an Apple employee who serves as an Apple brand ambassador and influencer in a Reseller's store. The ASC's role is to grow Apple Read more
*Apple* Retail - Market Leader - Cincinnati...
…challenges of developing individuals, building teams, and affecting growth across Apple Stores. You demonstrate successful leadership ability - focusing on excellence Read more
*Apple* Retail - Manager - SoHo - Apple (Uni...
Job SummaryKeeping an Apple Store thriving requires a diverse set of leadership skills, and as a Manager, you're a master of them all. In the store's fast-paced, dynamic Read more
Position Opening at *Apple* - Apple (United...
**Job Summary** Every day, business customers come to the Apple Store to discover what powerful, easy-to-use Apple products can do for them. As a Business Leader, Read more
Position Opening at *Apple* - Apple (United...
…challenges of developing individuals, building teams, and affecting growth across Apple Stores. You demonstrate successful leadership ability - focusing on excellence Read more
All contents are Copyright 1984-2011 by Xplain Corporation. All rights reserved. Theme designed by Icreon.