TweetFollow Us on Twitter

Apr 01 Challenge Volume Number: 17 (2001)
Issue Number: 4
Column Tag: Programmer's Challenge

Programmer's Challenge

By Bob Boonstra, Westford, MA

Crossword II

Several years ago we held a Programmers Challenge based on crossword puzzles. So when my son came home from school with an idea for a crossword Challenge, my first thought was that we had been there and done that. The old Challenge required readers to solve a crossword puzzle, fitting the available words into a predefined pattern, without the benefit of clues. My son's problem, to generate a crossword puzzle, is sufficiently different to make a potentially interesting Challenge.

The prototype for the code you should write is:

typedef struct Words {
   char *theWord;      /* null terminated string */
   short value;         /* points value for theWord */
} Words;

typedef struct WordPositions {
   short whichWord;            /* index in Words array of word being placed */
   short row;                     /* row in which the first letter of the word is placed */
   short col;                     /* col in which the first letter of the word is placed */
   short orientation;         /* 0==down, 1==across */
} WordPositions;

long /* numberOfWordPositions */ CrosswordII  (
   short puzzleSize,            /* puzzle has puzzleSize rows and columns */
   const Words words[],      /* words to be used to form the puzzle */
   short numWords,               /* number of words[] available */
   WordPositions positions[]      /* placement of words in puzzle */
);

The homework assignment that inspired this Challenge was from Chemistry class. Students were required to generate a 20x20 crossword puzzle using the names of the first 103 elements from the periodic table. Each word placed had a value equal to the atomic number for that element. So placing the word "lawrencium" earns you 103 points, "molybdenum" is worth only 42, but "lead" is worth 82. The assignment was to generate a crossword puzzle worth as many points as possible.

For the Challenge, we'll generalize the problem to work with an arbitrary list of words and arbitrarily assigned values. The puzzle dimension will be puzzleSize x puzzleSize instead of 20x20. You should decide which words to place where in the puzzle and return your word placements in the positions array, specifying in positions[].whichWord the index in words of the word being placed, the cell in which the first letter of the word is placed in positions[].row and positions[].col, and the direction the word is being placed in positions[].orientation. Your CrosswordII routine should return the number of words placed in the puzzle.

A few constraints: Each of the words will be at least 3 letters long and terminated with a zero byte. Every pair of adjacent letters in the puzzle you form must be part of some word. No word may occur more than once in the puzzle. Words may be placed horizontally or vertically, but not diagonally.

The winner will be the solution that earns the most points. Points will be based on the value of the words you place in your crossword puzzle, minus a penalty of 1% for each minute of execution time. The Challenge prize will be divided between the overall winner and the best scoring entry from a contestant that has not won the Challenge recently.

This will be a native PowerPC Challenge, using the CodeWarrior Pro 6 environment. Solutions may be coded in C, C++, or Pascal. You may provide a solution in Java instead, provided you also provide a test driver equivalent to the C code provided on the web for this problem.

Three Months Ago Winner

Congratulations to Willeke Rieken for winning the January Tetris Challenge. The Tetris Challenge required readers to provide a player for the classic Tetris game. Willeke actually won by default, as his was the only entry. As I've said before, you can't win if you don't play. With this win, Willeke vaults into second place in our Challenge points standings.

Willeke describes his solution as "low tech". The heavy lifting is done in his MovePiece routine, where he determines the position and orientation of the current piece that provides the best fit. His heuristic for best fit takes into consideration the number of unreachable empty spaces created by placing a piece, with special weighting against placements that create "deep pits". The solution does not take advantage of the opportunity to move a piece after it has been dropped, nor does it use the information provided about the next piece to be placed.

Top Contestants...

Listed here are the Top Contestants for the Programmer's Challenge, including everyone who has accumulated 20 or more points during the past two years. The numbers below include points awarded over the 24 most recent contests, including points earned by this month's entrants.

Rank Name Points
1. Munter, Ernst 281
2. Rieken, Willeke 85
3. Saxton, Tom 76
4. Maurer, Sebastian 68
5. Boring, Randy 52
6. Shearer, Rob 48
7. Taylor, Jonathan 36
8. Wihlborg, Charles 29

... and the Top Contestants Looking For a Recent Win

Starting this month, in order to give some recognition to other participants in the Challenge, we are also going to list the high scores for contestants who have accumulated points without taking first place in a Challenge. Listed here are all of those contestants who have accumulated 6 or more points during the past two years.

9. Downs, Andrew 12
10. Jones, Dennis 12
11. Day, Mark 10
12. Duga, Brady 10
13. Fazekas, Miklos 10
14. Flowers, Sue 10
15. Sadetsky, Gregory 10
16. Selengut, Jared 10
17. Strout, Joe 10
18. Hala, Ladislav 7
19. Miller, Mike 7
20. Nicolle, Ludovic 7
21. Schotsman, Jan 7
22. Widyyatama, Yudhi 7
23. Heithcock, JG 6

There are three ways to earn points: (1) scoring in the top 5 of any Challenge, (2) being the first person to find a bug in a published winning solution or, (3) being the first person to suggest a Challenge that I use. The points you can win are:

1st place 20 points
2nd place 10 points
3rd place 7 points
4th place 4 points
5th place 2 points
finding bug 2 points
suggesting Challenge 2 points

Here is Willeke's winning Tetris solution:

tetris.cp
Copyright © 2001
Willeke Rieken
/*
   a piece is dropped at each column and points are given for
   creating empty cells and adding height. points are subtracted
   for fitting in existing holes. the column with the lowest
   score wins. the moves to drop the piece in the winning
   column are placed in an array. in subsequent calls of Tetris
   the next move is returned.
   this is a low tech solution without using the next piece or
   the possibility to move a piece after it dropped. 
*/

#include <stdio.h>
#include <string.h>

#include "Tetris.h"

#define kPieceSize 7
#define kHalfPieceSize 3
#define kMaxBoardSizeSize 256
#define kMaxNrRotations 4

typedef struct PieceInfo {
   long pieceLeft, pieceRight, pieceTop, pieceBottom;
   long nrOfRorations;
} PieceInfo;

static const Piece *gGamePieces;
static MoveType gMovesToDo[(kMaxBoardSizeSize / 2) + 3];
   // (max board size/2) lefts or rights + 2 rotations + drop
static PieceInfo *gPieceInfo;
static long gNrMovesToDo, gMoveNr;
static long gLastPieceIndex, glastNextPieceIndex;
static long gNumRows, gNumCols;
static long gNumPieceTypes, gMaxPieceSize;

PieceFits

static short PieceFits(const Board gameBoard, long *theTopOfPieces,
                                    Piece theActivePiece,
                              long thePieceLeft, long thePieceRight,
                              long thePieceTop, long thePieceBottom,
                                    long theRow, long theCol,
                                    short theMustFitInBoard)
// check if the piece will fit on the board at
// position (theRow,theCol), if theMustFitInBoard then
// the total piece has to be on the board
{
   long   aRowOffset, aColOffset;
   long   aRow, aCol;

   aRowOffset = theRow - thePieceBottom - 1;
   aColOffset = theCol - kHalfPieceSize;
   for (aRow = thePieceTop; aRow <= thePieceBottom; aRow++)
      for (aCol = thePieceLeft; aCol <= thePieceRight; aCol++)
      {
         if (theActivePiece[aRow][aCol])
         {
            if (aRowOffset + aRow < 0)
               if (theMustFitInBoard)
                  return 0;
               else
                  break;
            if (theMustFitInBoard)
               if (aRowOffset + aRow >= 
                           theTopOfPieces[aColOffset + aCol])
                  return 0;
   if (gameBoard[aRowOffset + aRow][aColOffset + aCol] >= 0)
               return 0;
         }
      }
   return 1;
}

RotatePiece90

static void RotatePiece90(Piece theActivePiece,
                                       long *aPieceLeft, long *aPieceRight,
                                       long *aPieceTop, long *aPieceBottom)
// rotates the piece 90° clockwise
{
   Piece   aRotatedPiece;
   long   aRow, aCol;
   
   for (aRow = 0; aRow < kPieceSize; aRow++)
      for (aCol = 0; aCol < kPieceSize; aCol++)
         aRotatedPiece[aCol][kPieceSize - 1 - aRow] =
               theActivePiece[aRow][aCol];
   memcpy(theActivePiece, aRotatedPiece, sizeof(Piece));
         
   aRow = *aPieceLeft;
   *aPieceLeft = kPieceSize - 1 - *aPieceBottom;
   *aPieceBottom = *aPieceRight;
   *aPieceRight = kPieceSize - 1 - *aPieceTop;
   *aPieceTop = aRow;
}

RotatePiece180
static void RotatePiece180(Piece theActivePiece,
                                       long *aPieceLeft, long *aPieceRight,
                                       long *aPieceTop, long *aPieceBottom)
// rotates the piece 180°
{
   Piece   aRotatedPiece;
   long   aRow, aCol;
   
   for (aRow = 0; aRow < kPieceSize; aRow++)
      for (aCol = 0; aCol < kPieceSize; aCol++)
         aRotatedPiece[kPieceSize - 1 - aRow][kPieceSize - 1 - aCol] 
                  =   theActivePiece[aRow][aCol];
   memcpy(theActivePiece, aRotatedPiece, sizeof(Piece));
         
   aRow = *aPieceTop;
   *aPieceTop = kPieceSize - 1 - *aPieceBottom;
   *aPieceBottom = kPieceSize - 1 - aRow;
   aRow = *aPieceLeft;
   *aPieceLeft = kPieceSize - 1 - *aPieceRight;
   *aPieceRight = kPieceSize - 1 - aRow;
}

RotatePiece270
static void RotatePiece270(Piece theActivePiece,
                                       long *aPieceLeft, long *aPieceRight,
                                       long *aPieceTop, long *aPieceBottom)
// rotates the piece 90° counter clockwise
{
   Piece   aRotatedPiece;
   long   aRow, aCol;
   
   for (aRow = 0; aRow < kPieceSize; aRow++)
      for (aCol = 0; aCol < kPieceSize; aCol++)
         aRotatedPiece[kPieceSize - 1 - aCol][aRow] =
               theActivePiece[aRow][aCol];
   memcpy(theActivePiece, aRotatedPiece, sizeof(Piece));
         
   aRow = *aPieceTop;
   *aPieceTop = kPieceSize - 1 - *aPieceRight;
   *aPieceRight = *aPieceBottom;
   *aPieceBottom = kPieceSize - 1 - *aPieceLeft;
   *aPieceLeft = aRow;
}

FindCompletedLines
static void FindCompletedLines(const Board gameBoard,
                                             short theCompletedLines[kPieceSize],
                                             long *theNrCompletedLines,
                                             Piece theActivePiece,
                                             long thePieceLeft, long thePieceRight,
                                             long thePieceTop, long thePieceBottom,
                                             long theRow, long theCol)
// find the lines that are completed and will disappear after the piece dropped
{
   long   aRowOffset, aColOffset;
   long   aRow, aCol;

   aRowOffset = theRow - thePieceBottom - 1;
   aColOffset = theCol - kHalfPieceSize;

   for (aRow = 0; aRow < kPieceSize; aRow++)
      theCompletedLines[aRow] = 0;
   *theNrCompletedLines = 0;
      
   for (aRow = thePieceTop; aRow <= thePieceBottom; aRow++)
   {
      theCompletedLines[aRow] = 1;
      for (aCol = thePieceLeft; aCol <= thePieceRight; aCol++)
         if ((!theActivePiece[aRow][aCol]) &&
               (gameBoard[aRowOffset + aRow][aColOffset + aCol] == -1))
         {
            theCompletedLines[aRow] = 0;
            break;
         }
      if (theCompletedLines[aRow])
      {
         for (aCol = 0; aCol < aColOffset + thePieceLeft; aCol++)
            if (gameBoard[aRowOffset + aRow][aCol] == -1)
            {
               theCompletedLines[aRow] = 0;
               break;
            }
      }
      if (theCompletedLines[aRow])
      {
         for (aCol = aColOffset + thePieceRight + 1; 
                     aCol < gNumCols; aCol++)
            if (gameBoard[aRowOffset + aRow][aCol] == -1)
            {
               theCompletedLines[aRow] = 0;
               break;
            }
      }
      if (theCompletedLines[aRow])
         (*theNrCompletedLines)++;
   }
}

CountEmptySpaces
static long CountEmptySpaces(long *theTopOfPieces,
                                             short theCompletedLines[kPieceSize],
                                             Piece theActivePiece,
                                             long thePieceLeft, long thePieceRight,
                                             long thePieceTop, long thePieceBottom,
                                             long theRow, long theCol)
// count the empty cells as a result of the piece being dropped
// at theCol. don't include the empty cells that will be part
// of the big space at the top after de completed lines are removed
{
   long   aRowOffset, aColOffset;
   long   aRow, aCol, aNrOfEmptySpaces;

   aRowOffset = theRow - thePieceBottom - 1;
   aColOffset = theCol - kHalfPieceSize;
   aNrOfEmptySpaces = 0;
   for (aCol = thePieceLeft; aCol <= thePieceRight; aCol++)
   {
      short   aPieceInColumn = 0;
      
      for (aRow = thePieceTop; aRow <= thePieceBottom; aRow++)
         if (theActivePiece[aRow][aCol] && 
                     (!theCompletedLines[aRow]))
         {
            aPieceInColumn = 1;
            break;
         }
      if (aPieceInColumn)
      {
         aRow = thePieceTop;
         while ((!theActivePiece[aRow][aCol]) && 
                           (aRow <= thePieceBottom))
            aRow++;
         while ((aRow + aRowOffset < 
                           theTopOfPieces[aColOffset + aCol]) &&
                     (aRow <= thePieceBottom))
         {
            if (!theActivePiece[aRow][aCol])
               aNrOfEmptySpaces++;
            aRow++;
         }
         if (aRow + aRowOffset < theTopOfPieces[aColOffset + aCol])
            if ((theTopOfPieces[aColOffset + aCol] - aRow - aRowOffset) 
                              > gMaxPieceSize)
               aNrOfEmptySpaces += gMaxPieceSize;
            else
               aNrOfEmptySpaces += (theTopOfPieces[aColOffset + aCol] - 
                                                            aRow - aRowOffset);
      }
   }
   return aNrOfEmptySpaces;
}

CountTouches
static long CountTouches(const Board gameBoard,
                                    long *theTopOfPieces, Piece theActivePiece,
                                    long thePieceLeft, long thePieceRight,
                                    long thePieceTop, long thePieceBottom,
                                    long theRow, long theCol)
// count at how many cells the piece will touch the pieces on
// the board, subtract points for creating deep pits
{
   long   aRowOffset, aColOffset;
   long   aRow, aCol, aNrOfTouches;

   aRowOffset = theRow - thePieceBottom - 1;
   aColOffset = theCol - kHalfPieceSize;
   aNrOfTouches = 0;
   for (aRow = thePieceTop; aRow <= thePieceBottom; aRow++)
      for (aCol = thePieceLeft; aCol <= thePieceRight; aCol++)
         if (theActivePiece[aRow][aCol])
         {
            // touches on the left
            if (aColOffset + aCol == 0)
               aNrOfTouches++;
            else
               if (((aCol == thePieceLeft) ||
                        (!theActivePiece[aRow][aCol - 1])) &&
                     (gameBoard[aRowOffset + aRow][aColOffset + aCol - 1] 
                                                != -1))
                  aNrOfTouches++;
            // touches on the right
            if (aColOffset + aCol == gNumCols - 1)
               aNrOfTouches++;
            else
               if (((aCol == thePieceRight) ||
                        (!theActivePiece[aRow][aCol + 1])) &&
                     (gameBoard[aRowOffset + aRow][aColOffset + aCol + 1] 
                                                != -1))
                  aNrOfTouches++;
            // touches on the bottom
            if (aRowOffset + aRow == gNumRows - 1)
               aNrOfTouches++;
            else
               if (((aRow == thePieceBottom) ||
                        (!theActivePiece[aRow + 1][aCol])) &&
                     (gameBoard[aRowOffset + aRow + 1][aColOffset + aCol] 
                                                != -1))
                  aNrOfTouches++;
         }
   // check for deep pits
   if ((aColOffset + thePieceLeft > 0) &&
      (theTopOfPieces[aColOffset + thePieceLeft - 1] >
            aRowOffset + thePieceBottom + 1))
   {
      aNrOfTouches -= 
            ((theTopOfPieces[aColOffset + thePieceLeft - 1]) -
               (aRowOffset + thePieceTop + 1));
      aRow = thePieceTop;
      while (!theActivePiece[aRow][thePieceLeft])
      {
         aRow-;
         aNrOfTouches++;
      }
   }
   if ((aColOffset + thePieceRight < gNumCols - 1) &&
      (theTopOfPieces[aColOffset + thePieceRight + 1] >
            aRowOffset + thePieceBottom + 1))
   {
      aNrOfTouches -= ((theTopOfPieces[aColOffset + 
                                          thePieceRight + 1]) -
                                          (aRowOffset + thePieceTop + 1));
      aRow = thePieceTop;
      while (!theActivePiece[aRow][thePieceRight])
      {
         aRow-;
         aNrOfTouches++;
      }
   }
   return aNrOfTouches;
}

ValidMove
static short ValidMove(const Board gameBoard,
                                 short activePieceTypeIndex,
                                 long *theTopOfPieces, long theTopTopOfPieces,
                                 long theCol, long theRotation)
// check if the piece can reach its column without
// colliding with pieces on the board
{
   long   aCol, aRow, aNrMovesToDo;
   Piece   anActivePiece;
   long   aPieceLeft, aPieceRight, aPieceTop, aPieceBottom;

   memcpy(anActivePiece, gGamePieces[activePieceTypeIndex], 
                              sizeof(Piece));
   aPieceLeft = gPieceInfo[activePieceTypeIndex].pieceLeft;
   aPieceRight = gPieceInfo[activePieceTypeIndex].pieceRight;
   aPieceTop = gPieceInfo[activePieceTypeIndex].pieceTop;
   aPieceBottom = gPieceInfo[activePieceTypeIndex].pieceBottom;

   aRow = 1 - aPieceBottom;

   // count moves
   aNrMovesToDo = 0;
   switch (theRotation)
   {
      case 0:
         break;
      case 1:
         aNrMovesToDo++;
         break;
      case 2:
         aNrMovesToDo++;
         aNrMovesToDo++;
         break;
      case 3:
         aNrMovesToDo++;
         break;
   }
   if (theCol > gNumCols / 2)
      aNrMovesToDo += theCol - gNumCols / 2;
   else
      aNrMovesToDo += gNumCols / 2 - theCol;
      
   // check if the piece can move without hitting pieces on the board
   if (aNrMovesToDo >= theTopTopOfPieces)
   {
      switch (theRotation)
      {
         case 0:
            break;
         case 1:
            RotatePiece90(anActivePiece,
                                 &aPieceLeft, &aPieceRight,
                                 &aPieceTop, &aPieceBottom);
            aRow++;
            break;
         case 2:
            RotatePiece180(anActivePiece, &aPieceLeft,
                                 &aPieceRight, &aPieceTop,
                                 &aPieceBottom);
            aRow++;
            aRow++;
            break;
         case 3:
            RotatePiece270(anActivePiece,
                                 &aPieceLeft, &aPieceRight,
                                 &aPieceTop, &aPieceBottom);
            aRow++;
            break;
      }
      aRow += aPieceBottom;
      for (aCol = gNumCols / 2 + 1; aCol < theCol; aCol++)
         if (!PieceFits(gameBoard, theTopOfPieces, anActivePiece,
                              aPieceLeft, aPieceRight, aPieceTop, aPieceBottom,
                              aRow + (aCol - (gNumCols / 2 + 1)), aCol, 0))
            return 0;
      for (aCol = gNumCols / 2 - 1; aCol > theCol; aCol-)
         if (!PieceFits(gameBoard, theTopOfPieces, anActivePiece,
                              aPieceLeft, aPieceRight, aPieceTop, aPieceBottom,
                              aRow + ((gNumCols / 2 - 1) - aCol), aCol, 0))
            return 0;
   }
   return 1;
}

MovePiece
static void MovePiece(const Board gameBoard,
                                 short activePieceTypeIndex)
// determine the column for the piece and prepare the moves
{
   Piece   anActivePiece;
   long   aPieceLeft, aPieceRight, aPieceTop, aPieceBottom;
   long   aRow, aCol, aRotation;
   long   aTopOfPieces[kMaxBoardSizeSize];
   long   aBottomTopRow, aTopTopRow;
   long   aColScore[kMaxNrRotations][kMaxBoardSizeSize];
   long   aBestScore, aBestCol, aBestRotation;
   long   anExtraScore, aNrCompletedLines;
   short   aCompletedLines[kPieceSize];
   short   aValidMove;

   memcpy(anActivePiece, gGamePieces[activePieceTypeIndex],
             sizeof(Piece));
   
   aPieceLeft = gPieceInfo[activePieceTypeIndex].pieceLeft;
   aPieceRight = gPieceInfo[activePieceTypeIndex].pieceRight;
   aPieceTop = gPieceInfo[activePieceTypeIndex].pieceTop;
   aPieceBottom = gPieceInfo[activePieceTypeIndex].pieceBottom;

   // find top of pieces in board
   aBottomTopRow = 0;
   aTopTopRow = gNumCols;
   for (aCol = 0; aCol < gNumCols; aCol++)
   {
      aRow = 0;
      while ((aRow < gNumRows) &&
                  (gameBoard[aRow][aCol] == -1)) aRow++;
      aTopOfPieces[aCol] = aRow;
      if (aBottomTopRow < aRow)
         aBottomTopRow = aRow;
      if (aTopTopRow > aRow)
         aTopTopRow = aRow;
   }

   // find where the piece fits best
   for (aRotation = 0;
            aRotation < gPieceInfo[activePieceTypeIndex].nrOfRorations;
            aRotation++)
   {
      for (aCol = 0; aCol < gNumCols; aCol++)
      {
         aColScore[aRotation][aCol] = 1000000;
         if ((aCol >= kHalfPieceSize - aPieceLeft) &&
               (aCol < gNumCols - aPieceRight + kHalfPieceSize))
         {
            aRow = aTopOfPieces[aCol] + kPieceSize - 1;
            if (aRow > aBottomTopRow)
               aRow = aBottomTopRow;
      while ((!PieceFits(gameBoard, aTopOfPieces, anActivePiece,
                  aPieceLeft, aPieceRight, aPieceTop, aPieceBottom,
                              aRow, aCol, 1)) &&
                  (aRow >= 0))
               aRow-;
            if (aRow > (aPieceBottom - aPieceTop - 1))
            {
               aColScore[aRotation][aCol] =
                  ((aBottomTopRow - aRow) + 
                  (aPieceBottom - aPieceTop)) * 2;
               FindCompletedLines(gameBoard, aCompletedLines,
                        &aNrCompletedLines, anActivePiece,
                  aPieceLeft, aPieceRight, aPieceTop, aPieceBottom,
                        aRow, aCol);
               anExtraScore = CountEmptySpaces(aTopOfPieces,
                        aCompletedLines, anActivePiece,
                  aPieceLeft, aPieceRight, aPieceTop, aPieceBottom,
                        aRow, aCol);
               aColScore[aRotation][aCol] += anExtraScore * 5;
               anExtraScore = CountTouches(gameBoard,
                     aTopOfPieces, anActivePiece,
               aPieceLeft, aPieceRight, aPieceTop, aPieceBottom,
                        aRow, aCol);
               aColScore[aRotation][aCol] -= anExtraScore;
            }
         }
      }
      RotatePiece90(anActivePiece,
                  &aPieceLeft, &aPieceRight, &aPieceTop, &aPieceBottom);
   }
   aBestCol = 0;
   aBestRotation = 0;
   aValidMove = 0;
   while (!aValidMove)
   {
      aBestScore = 1000000;
      for (aRotation = 0;
            aRotation < gPieceInfo[activePieceTypeIndex].nrOfRorations;
            aRotation++)
         for (aCol = 0; aCol < gNumCols; aCol++)
            if (aColScore[aRotation][aCol] < aBestScore)
            {
               aBestScore = aColScore[aRotation][aCol];
               aBestCol = aCol;
               aBestRotation = aRotation;
            }
      if (aBestScore < 1000000)   // found valid move
      {
         if (ValidMove(gameBoard, activePieceTypeIndex,
                  aTopOfPieces, aTopTopRow, aBestCol, aBestRotation))
            aValidMove = 1;
         else
            aColScore[aBestRotation][aBestCol] = 1000000;
      }
      else
      {
         // no valid moves, give up
         aBestCol = gNumCols / 2;
         aBestRotation = 0;
         aValidMove = 1;
      }
   }
   
   // prepare moves
   gNrMovesToDo = 0;
   switch (aBestRotation)
   {
      case 1:
         gMovesToDo[gNrMovesToDo] = kRotateClockwise;
         gNrMovesToDo++;
         break;
      case 2:
         gMovesToDo[gNrMovesToDo] = kRotateClockwise;
         gNrMovesToDo++;
         gMovesToDo[gNrMovesToDo] = kRotateClockwise;
         gNrMovesToDo++;
         break;
      case 3:
         gMovesToDo[gNrMovesToDo] = kRotateCounterClockwise;
         gNrMovesToDo++;
         break;
   }
   if (aBestCol > gNumCols / 2)
      for (aCol = gNumCols / 2; aCol < aBestCol; aCol++)
      {
         gMovesToDo[gNrMovesToDo] = kMoveRight;
         gNrMovesToDo++;
      }
   else
      for (aCol = aBestCol; aCol < gNumCols / 2; aCol++)
      {
         gMovesToDo[gNrMovesToDo] = kMoveLeft;
         gNrMovesToDo++;
      }
   gMovesToDo[gNrMovesToDo] = kDrop;
   gNrMovesToDo++;
   gMovesToDo[gNrMovesToDo] = kNoMove;
   gNrMovesToDo++;
}

GetPieceInfo
static void GetPieceInfo()
// determine the bounds of the piece and if rotating
// the piece results in the same piece 
{
   long   i;

   for (i = 0; i < gNumPieceTypes; i++)
   {
      long   aPieceLeft = kPieceSize - 1, aPieceRight = 0;
      long   aPieceTop = kPieceSize - 1, aPieceBottom = 0;
      Piece   anActivePiece;
      long   aRow, aCol, aRowOffset, aColOffset;
      short   aPiecesMatch;

      memcpy(anActivePiece, gGamePieces[i], sizeof(Piece));
      for (aRow = 0; aRow < kPieceSize; aRow++)
         for (aCol = 0; aCol < kPieceSize; aCol++)
            if (anActivePiece[aRow][aCol])
            {
               if (aRow < aPieceTop)
                  aPieceTop = aRow;
               if (aRow > aPieceBottom)
                  aPieceBottom = aRow;
               if (aCol < aPieceLeft)
                  aPieceLeft = aCol;
               if (aCol > aPieceRight)
                  aPieceRight = aCol;
            }
      gPieceInfo[i].pieceLeft = aPieceLeft;
      gPieceInfo[i].pieceRight = aPieceRight;
      gPieceInfo[i].pieceTop = aPieceTop;
      gPieceInfo[i].pieceBottom = aPieceBottom;
      
      if (aPieceRight - aPieceLeft > gMaxPieceSize)
         gMaxPieceSize = aPieceRight - aPieceLeft;
      if (aPieceBottom - aPieceTop > gMaxPieceSize)
         gMaxPieceSize = aPieceBottom - aPieceTop;
      
      gPieceInfo[i].nrOfRorations = kMaxNrRotations;

      RotatePiece90(anActivePiece,
                  &aPieceLeft, &aPieceRight, &aPieceTop, &aPieceBottom);
      if ((aPieceRight - aPieceLeft) == (aPieceBottom - aPieceTop))
      {
         aPiecesMatch = 1;
         aRowOffset = gPieceInfo[i].pieceTop - aPieceTop;
         aColOffset = gPieceInfo[i].pieceLeft - aPieceLeft;
         for (aRow = aPieceTop; aRow <= aPieceBottom; aRow++)
            for (aCol = aPieceLeft; aCol <= aPieceRight; aCol++)
               if ((anActivePiece[aRow][aCol] &&
                        !gGamePieces[i][aRow + aRowOffset][aCol + 
                                    aColOffset]) ||
                     (!anActivePiece[aRow][aCol] &&
                        gGamePieces[i][aRow + 
                              aRowOffset][aCol + aColOffset]))
                  aPiecesMatch = 0;
         if (aPiecesMatch)
            gPieceInfo[i].nrOfRorations = 1;
      }
      if (gPieceInfo[i].nrOfRorations == kMaxNrRotations)
      {
         RotatePiece90(anActivePiece,
                  &aPieceLeft, &aPieceRight, &aPieceTop, &aPieceBottom);
         aPiecesMatch = 1;
         aRowOffset = gPieceInfo[i].pieceTop - aPieceTop;
         aColOffset = gPieceInfo[i].pieceLeft - aPieceLeft;
         for (aRow = aPieceTop; aRow <= aPieceBottom; aRow++)
            for (aCol = aPieceLeft; aCol <= aPieceRight; aCol++)
               if ((anActivePiece[aRow][aCol] &&
                        !gGamePieces[i][aRow + 
                                       aRowOffset][aCol + aColOffset]) ||
                     (!anActivePiece[aRow][aCol] &&
                        gGamePieces[i][aRow + 
                                       aRowOffset][aCol + aColOffset]))
                  aPiecesMatch = 0;
         if (aPiecesMatch)
            gPieceInfo[i].nrOfRorations = 2;
      }
   }
}

InitTetris
void InitTetris(
  short boardWidth,            /* width of board in cells */
  short boardHeight,         /* height of board in cells */
  short numPieceTypes,      /* number of types of pieces */
  const Piece gamePieces[],   /* pieces to play */
  long timeToPlay               /* game time, in milliseconds */
) {
   gNumRows = boardHeight;
   gNumCols = boardWidth;
   gNumPieceTypes = numPieceTypes;
   gGamePieces = gamePieces;
   gNrMovesToDo = 0;
   gMoveNr = 0;
   gLastPieceIndex = -1;
   glastNextPieceIndex = -1;
   gPieceInfo = new PieceInfo[gNumPieceTypes];
   gMaxPieceSize = 0;
   GetPieceInfo();
   gMaxPieceSize++;
}

Tetris
MoveType /* move active piece */ Tetris(
  const Board gameBoard,      
  /* current state of the game board,
     bottom row is [boardHeight-1], left column is [0] */
  short activePieceTypeIndex,   /* index into gamePieces of active piece */
  short nextPieceTypeIndex,      /* index into gamePieces of next piece */
  long pointsEarned,                     /* number of points earned thus far */
  long timeToGo                              /* time remaining, in milliseconds */
) {
   // try to detect a new piece,
   // will fail when a piece appears three times in a row
   if ((gLastPieceIndex != activePieceTypeIndex) ||
         (glastNextPieceIndex != nextPieceTypeIndex))
      gMoveNr = gNrMovesToDo;
   gLastPieceIndex = activePieceTypeIndex;
   glastNextPieceIndex = nextPieceTypeIndex;

   if (gMoveNr >= gNrMovesToDo)
   {
      // calculate the moves for a new piece
      MovePiece(gameBoard, activePieceTypeIndex);
      gMoveNr = 0;
   }
   // return next move
   return gMovesToDo[gMoveNr++];
}

TermTetris
void TermTetris(void) {
   delete[] gPieceInfo;
}
 

Community Search:
MacTech Search:

Software Updates via MacUpdate

How to get coins faster in Rodeo Stamped...
There comes a time in a cowboy or cowgirl's life when all the riding and lassoing skills in the world aren't enough. You're going to need some cold, hard cash to keep your sky zoo expanding in Rodeo Stampede. [Read more] | Read more »
Artik Games releases Splashy Cats for An...
Splashy Cats had us hooked from the title alone, and when we found out the game was literally just zig-zagging one of our favourite pop-culture references, guised as a playable cat character, down a river – our appetites were whetted to say the... | Read more »
Battle Cars (Games)
Battle Cars 1.1 Device: iOS Universal Category: Games Price: $1.99, Version: 1.1 (iTunes) Description: Welcome to the world of Battle Cars. Battle Cars is a classic arcade top-down racing game with fast mini cars and funny weapons to... | Read more »
How to get started with live.ly
One could be forgiven for thinking that there are already plenty of streaming video apps out there. It's just that the App Store charts would insist that you're mistaken. [Read more] | Read more »
Rodeo Stampede: Guide to all Savannah an...
A "gotta catch 'em all" joke seems appropriate here, even though we're talking animals in Rodeo Stampede and not pocket monsters. By now you've probably had plenty of rides, tamed some animals and built yourself a pretty nice zoo | Read more »
Is there cross-platform play in slither....
So you've sunken plenty of hours into crawling around in slither.io on your iPhone or iPad. You've got your stories of tragedy and triumph, the times you coiled four snakes at one time balanced out by the others when you had a length of more than... | Read more »
Rodeo Stampede guide to running a better...
In Rodeo Stampede, honing your skills so you can jump from animal to animal and outrun the herd as long as possible is only half the fun. Once you've tamed a few animals, you can bring them home with you. [Read more] | Read more »
VoxSyn (Music)
VoxSyn 1.0 Device: iOS Universal Category: Music Price: $6.99, Version: 1.0 (iTunes) Description: VoxSyn turns your voice into the most flexible vocal sound generator ever. Instantly following even subtle modulations of pitch and... | Read more »
Catch Battleplans on Google Play from Ju...
Real-time strategy title Battleplans is due for release on Google Play on June 30th, following its release for iOS systems last month. With its simple interface and pretty graphics, the crowd-pleaser brings a formerly overlooked genre out for the... | Read more »
iDoyle: The interactive Adventures of Sh...
iDoyle: The interactive Adventures of Sherlock Holmes - A Scandal in Bohemia 1.0 Device: iOS Universal Category: Books Price: $1.99, Version: 1.0 (iTunes) Description: Special Release Price $1.99 (Normally $3.99) | Read more »

Price Scanner via MacPrices.net

MacBook Airs on sale for up to $50-$100 off M...
B&H Photo has 13″ and 11″ MacBook Airs on sale for up to $100 off MSRP. Shipping is free, and B&H charges NY sales tax only: - 11″ 1.6GHz/128GB MacBook Air: $849 $50 off list price - 11″ 1.... Read more
Brexit Vote Result Forecast To Slash UK 2016...
Uncertainty and economic volatility can be expected to increase over the next nine months, as the Brexit and concerns over the future of the EU hit IT investment, say Canalys market analysts, with... Read more
13-inch 256GB MacBook Air on sale for $1149,...
Amazon has the 2016 13″ 1.6GHz/256GB MacBook Air (model MMGG2LL/A) on sale for $1149.99 including free shipping. Their price is also $50 off MSRP. Read more
Haven App Launches New Age Of Wirless 911 Eme...
Haven from RapidSOS represents a transformation in access to emergency services from a phone call solely dependent on voice to a robust data connection for voice, text, medical/demographic data.... Read more
Cu Parachute 1.1 Retirement Success PLanning...
Tucson, Arizona based Indie developer Bradley McCarthy has announce the release of Cu (Copper) Parachute 1.1 for iPhone, iPad, and iPod touch devices — a tool with which users can continuously... Read more
Research and Markets Releases iPhone 6s Plus...
A new analysis report from Dublin-based Research and Markets observes that with the iPhone 6s Plus, Apple introduced a new rear camera module. The new device has similar structure and technology than... Read more
Apple refurbished Retina MacBook Pros availab...
Apple has Certified Refurbished 2015 13″ and 15″ Retina MacBook Pros available for up to $380 off the cost of new models. An Apple one-year warranty is included with each model, and shipping is free... Read more
Apple refurbished 11-inch MacBook Airs availa...
Apple has Certified Refurbished 11″ MacBook Airs (the latest models), available for up to $170 off the cost of new models. An Apple one-year warranty is included with each MacBook, and shipping is... Read more
Apple price trackers, updated continuously
Scan our Apple Price Trackers for the latest information on sales, bundles, and availability on systems from Apple’s authorized internet/catalog resellers. We update the trackers continuously: - 15″... Read more
12-inch 32GB and 128GB WiFi iPad Pros on sale...
B&H Photo has 12″ 32GB & 128GB WiFi iPad Pros on sale for up to $80 off MSRP, each including free shipping. B&H charges sales tax in NY only: - 12″ Space Gray 32GB WiFi iPad Pro: $749 $50... Read more

Jobs Board

*Apple* Retail - Multiple Positions, Willow...
Job Description: Sales Specialist - Retail Customer Service and Sales Transform Apple Store visitors into loyal Apple customers. When customers enter the store, Read more
*Apple* iPhone 6s and New Products Tester Ne...
…we therefore look forward to put out products to quality test for durability. Apple leads the digital music revolution with its iPods and iTunes online store, Read more
*Apple* iPhone 6s and New Products Tester Ne...
…we therefore look forward to put out products to quality test for durability. Apple leads the digital music revolution with its iPods and iTunes online store, Read more
*Apple* iPhone 6s and New Products Tester Ne...
…we therefore look forward to put out products to quality test for durability. Apple leads the digital music revolution with its iPods and iTunes online store, Read more
*Apple* Retail - Multiple Positions, Towson...
Job Description: Sales Specialist - Retail Customer Service and Sales Transform Apple Store visitors into loyal Apple customers. When customers enter the store, Read more
All contents are Copyright 1984-2011 by Xplain Corporation. All rights reserved. Theme designed by Icreon.