TweetFollow Us on Twitter

Apr 01 Challenge Volume Number: 17 (2001)
Issue Number: 4
Column Tag: Programmer's Challenge

Programmer's Challenge

By Bob Boonstra, Westford, MA

Crossword II

Several years ago we held a Programmers Challenge based on crossword puzzles. So when my son came home from school with an idea for a crossword Challenge, my first thought was that we had been there and done that. The old Challenge required readers to solve a crossword puzzle, fitting the available words into a predefined pattern, without the benefit of clues. My son's problem, to generate a crossword puzzle, is sufficiently different to make a potentially interesting Challenge.

The prototype for the code you should write is:

typedef struct Words {
   char *theWord;      /* null terminated string */
   short value;         /* points value for theWord */
} Words;

typedef struct WordPositions {
   short whichWord;            /* index in Words array of word being placed */
   short row;                     /* row in which the first letter of the word is placed */
   short col;                     /* col in which the first letter of the word is placed */
   short orientation;         /* 0==down, 1==across */
} WordPositions;

long /* numberOfWordPositions */ CrosswordII  (
   short puzzleSize,            /* puzzle has puzzleSize rows and columns */
   const Words words[],      /* words to be used to form the puzzle */
   short numWords,               /* number of words[] available */
   WordPositions positions[]      /* placement of words in puzzle */
);

The homework assignment that inspired this Challenge was from Chemistry class. Students were required to generate a 20x20 crossword puzzle using the names of the first 103 elements from the periodic table. Each word placed had a value equal to the atomic number for that element. So placing the word "lawrencium" earns you 103 points, "molybdenum" is worth only 42, but "lead" is worth 82. The assignment was to generate a crossword puzzle worth as many points as possible.

For the Challenge, we'll generalize the problem to work with an arbitrary list of words and arbitrarily assigned values. The puzzle dimension will be puzzleSize x puzzleSize instead of 20x20. You should decide which words to place where in the puzzle and return your word placements in the positions array, specifying in positions[].whichWord the index in words of the word being placed, the cell in which the first letter of the word is placed in positions[].row and positions[].col, and the direction the word is being placed in positions[].orientation. Your CrosswordII routine should return the number of words placed in the puzzle.

A few constraints: Each of the words will be at least 3 letters long and terminated with a zero byte. Every pair of adjacent letters in the puzzle you form must be part of some word. No word may occur more than once in the puzzle. Words may be placed horizontally or vertically, but not diagonally.

The winner will be the solution that earns the most points. Points will be based on the value of the words you place in your crossword puzzle, minus a penalty of 1% for each minute of execution time. The Challenge prize will be divided between the overall winner and the best scoring entry from a contestant that has not won the Challenge recently.

This will be a native PowerPC Challenge, using the CodeWarrior Pro 6 environment. Solutions may be coded in C, C++, or Pascal. You may provide a solution in Java instead, provided you also provide a test driver equivalent to the C code provided on the web for this problem.

Three Months Ago Winner

Congratulations to Willeke Rieken for winning the January Tetris Challenge. The Tetris Challenge required readers to provide a player for the classic Tetris game. Willeke actually won by default, as his was the only entry. As I've said before, you can't win if you don't play. With this win, Willeke vaults into second place in our Challenge points standings.

Willeke describes his solution as "low tech". The heavy lifting is done in his MovePiece routine, where he determines the position and orientation of the current piece that provides the best fit. His heuristic for best fit takes into consideration the number of unreachable empty spaces created by placing a piece, with special weighting against placements that create "deep pits". The solution does not take advantage of the opportunity to move a piece after it has been dropped, nor does it use the information provided about the next piece to be placed.

Top Contestants...

Listed here are the Top Contestants for the Programmer's Challenge, including everyone who has accumulated 20 or more points during the past two years. The numbers below include points awarded over the 24 most recent contests, including points earned by this month's entrants.

Rank Name Points
1. Munter, Ernst 281
2. Rieken, Willeke 85
3. Saxton, Tom 76
4. Maurer, Sebastian 68
5. Boring, Randy 52
6. Shearer, Rob 48
7. Taylor, Jonathan 36
8. Wihlborg, Charles 29

... and the Top Contestants Looking For a Recent Win

Starting this month, in order to give some recognition to other participants in the Challenge, we are also going to list the high scores for contestants who have accumulated points without taking first place in a Challenge. Listed here are all of those contestants who have accumulated 6 or more points during the past two years.

9. Downs, Andrew 12
10. Jones, Dennis 12
11. Day, Mark 10
12. Duga, Brady 10
13. Fazekas, Miklos 10
14. Flowers, Sue 10
15. Sadetsky, Gregory 10
16. Selengut, Jared 10
17. Strout, Joe 10
18. Hala, Ladislav 7
19. Miller, Mike 7
20. Nicolle, Ludovic 7
21. Schotsman, Jan 7
22. Widyyatama, Yudhi 7
23. Heithcock, JG 6

There are three ways to earn points: (1) scoring in the top 5 of any Challenge, (2) being the first person to find a bug in a published winning solution or, (3) being the first person to suggest a Challenge that I use. The points you can win are:

1st place 20 points
2nd place 10 points
3rd place 7 points
4th place 4 points
5th place 2 points
finding bug 2 points
suggesting Challenge 2 points

Here is Willeke's winning Tetris solution:

tetris.cp
Copyright © 2001
Willeke Rieken
/*
   a piece is dropped at each column and points are given for
   creating empty cells and adding height. points are subtracted
   for fitting in existing holes. the column with the lowest
   score wins. the moves to drop the piece in the winning
   column are placed in an array. in subsequent calls of Tetris
   the next move is returned.
   this is a low tech solution without using the next piece or
   the possibility to move a piece after it dropped. 
*/

#include <stdio.h>
#include <string.h>

#include "Tetris.h"

#define kPieceSize 7
#define kHalfPieceSize 3
#define kMaxBoardSizeSize 256
#define kMaxNrRotations 4

typedef struct PieceInfo {
   long pieceLeft, pieceRight, pieceTop, pieceBottom;
   long nrOfRorations;
} PieceInfo;

static const Piece *gGamePieces;
static MoveType gMovesToDo[(kMaxBoardSizeSize / 2) + 3];
   // (max board size/2) lefts or rights + 2 rotations + drop
static PieceInfo *gPieceInfo;
static long gNrMovesToDo, gMoveNr;
static long gLastPieceIndex, glastNextPieceIndex;
static long gNumRows, gNumCols;
static long gNumPieceTypes, gMaxPieceSize;

PieceFits

static short PieceFits(const Board gameBoard, long *theTopOfPieces,
                                    Piece theActivePiece,
                              long thePieceLeft, long thePieceRight,
                              long thePieceTop, long thePieceBottom,
                                    long theRow, long theCol,
                                    short theMustFitInBoard)
// check if the piece will fit on the board at
// position (theRow,theCol), if theMustFitInBoard then
// the total piece has to be on the board
{
   long   aRowOffset, aColOffset;
   long   aRow, aCol;

   aRowOffset = theRow - thePieceBottom - 1;
   aColOffset = theCol - kHalfPieceSize;
   for (aRow = thePieceTop; aRow <= thePieceBottom; aRow++)
      for (aCol = thePieceLeft; aCol <= thePieceRight; aCol++)
      {
         if (theActivePiece[aRow][aCol])
         {
            if (aRowOffset + aRow < 0)
               if (theMustFitInBoard)
                  return 0;
               else
                  break;
            if (theMustFitInBoard)
               if (aRowOffset + aRow >= 
                           theTopOfPieces[aColOffset + aCol])
                  return 0;
   if (gameBoard[aRowOffset + aRow][aColOffset + aCol] >= 0)
               return 0;
         }
      }
   return 1;
}

RotatePiece90

static void RotatePiece90(Piece theActivePiece,
                                       long *aPieceLeft, long *aPieceRight,
                                       long *aPieceTop, long *aPieceBottom)
// rotates the piece 90° clockwise
{
   Piece   aRotatedPiece;
   long   aRow, aCol;
   
   for (aRow = 0; aRow < kPieceSize; aRow++)
      for (aCol = 0; aCol < kPieceSize; aCol++)
         aRotatedPiece[aCol][kPieceSize - 1 - aRow] =
               theActivePiece[aRow][aCol];
   memcpy(theActivePiece, aRotatedPiece, sizeof(Piece));
         
   aRow = *aPieceLeft;
   *aPieceLeft = kPieceSize - 1 - *aPieceBottom;
   *aPieceBottom = *aPieceRight;
   *aPieceRight = kPieceSize - 1 - *aPieceTop;
   *aPieceTop = aRow;
}

RotatePiece180
static void RotatePiece180(Piece theActivePiece,
                                       long *aPieceLeft, long *aPieceRight,
                                       long *aPieceTop, long *aPieceBottom)
// rotates the piece 180°
{
   Piece   aRotatedPiece;
   long   aRow, aCol;
   
   for (aRow = 0; aRow < kPieceSize; aRow++)
      for (aCol = 0; aCol < kPieceSize; aCol++)
         aRotatedPiece[kPieceSize - 1 - aRow][kPieceSize - 1 - aCol] 
                  =   theActivePiece[aRow][aCol];
   memcpy(theActivePiece, aRotatedPiece, sizeof(Piece));
         
   aRow = *aPieceTop;
   *aPieceTop = kPieceSize - 1 - *aPieceBottom;
   *aPieceBottom = kPieceSize - 1 - aRow;
   aRow = *aPieceLeft;
   *aPieceLeft = kPieceSize - 1 - *aPieceRight;
   *aPieceRight = kPieceSize - 1 - aRow;
}

RotatePiece270
static void RotatePiece270(Piece theActivePiece,
                                       long *aPieceLeft, long *aPieceRight,
                                       long *aPieceTop, long *aPieceBottom)
// rotates the piece 90° counter clockwise
{
   Piece   aRotatedPiece;
   long   aRow, aCol;
   
   for (aRow = 0; aRow < kPieceSize; aRow++)
      for (aCol = 0; aCol < kPieceSize; aCol++)
         aRotatedPiece[kPieceSize - 1 - aCol][aRow] =
               theActivePiece[aRow][aCol];
   memcpy(theActivePiece, aRotatedPiece, sizeof(Piece));
         
   aRow = *aPieceTop;
   *aPieceTop = kPieceSize - 1 - *aPieceRight;
   *aPieceRight = *aPieceBottom;
   *aPieceBottom = kPieceSize - 1 - *aPieceLeft;
   *aPieceLeft = aRow;
}

FindCompletedLines
static void FindCompletedLines(const Board gameBoard,
                                             short theCompletedLines[kPieceSize],
                                             long *theNrCompletedLines,
                                             Piece theActivePiece,
                                             long thePieceLeft, long thePieceRight,
                                             long thePieceTop, long thePieceBottom,
                                             long theRow, long theCol)
// find the lines that are completed and will disappear after the piece dropped
{
   long   aRowOffset, aColOffset;
   long   aRow, aCol;

   aRowOffset = theRow - thePieceBottom - 1;
   aColOffset = theCol - kHalfPieceSize;

   for (aRow = 0; aRow < kPieceSize; aRow++)
      theCompletedLines[aRow] = 0;
   *theNrCompletedLines = 0;
      
   for (aRow = thePieceTop; aRow <= thePieceBottom; aRow++)
   {
      theCompletedLines[aRow] = 1;
      for (aCol = thePieceLeft; aCol <= thePieceRight; aCol++)
         if ((!theActivePiece[aRow][aCol]) &&
               (gameBoard[aRowOffset + aRow][aColOffset + aCol] == -1))
         {
            theCompletedLines[aRow] = 0;
            break;
         }
      if (theCompletedLines[aRow])
      {
         for (aCol = 0; aCol < aColOffset + thePieceLeft; aCol++)
            if (gameBoard[aRowOffset + aRow][aCol] == -1)
            {
               theCompletedLines[aRow] = 0;
               break;
            }
      }
      if (theCompletedLines[aRow])
      {
         for (aCol = aColOffset + thePieceRight + 1; 
                     aCol < gNumCols; aCol++)
            if (gameBoard[aRowOffset + aRow][aCol] == -1)
            {
               theCompletedLines[aRow] = 0;
               break;
            }
      }
      if (theCompletedLines[aRow])
         (*theNrCompletedLines)++;
   }
}

CountEmptySpaces
static long CountEmptySpaces(long *theTopOfPieces,
                                             short theCompletedLines[kPieceSize],
                                             Piece theActivePiece,
                                             long thePieceLeft, long thePieceRight,
                                             long thePieceTop, long thePieceBottom,
                                             long theRow, long theCol)
// count the empty cells as a result of the piece being dropped
// at theCol. don't include the empty cells that will be part
// of the big space at the top after de completed lines are removed
{
   long   aRowOffset, aColOffset;
   long   aRow, aCol, aNrOfEmptySpaces;

   aRowOffset = theRow - thePieceBottom - 1;
   aColOffset = theCol - kHalfPieceSize;
   aNrOfEmptySpaces = 0;
   for (aCol = thePieceLeft; aCol <= thePieceRight; aCol++)
   {
      short   aPieceInColumn = 0;
      
      for (aRow = thePieceTop; aRow <= thePieceBottom; aRow++)
         if (theActivePiece[aRow][aCol] && 
                     (!theCompletedLines[aRow]))
         {
            aPieceInColumn = 1;
            break;
         }
      if (aPieceInColumn)
      {
         aRow = thePieceTop;
         while ((!theActivePiece[aRow][aCol]) && 
                           (aRow <= thePieceBottom))
            aRow++;
         while ((aRow + aRowOffset < 
                           theTopOfPieces[aColOffset + aCol]) &&
                     (aRow <= thePieceBottom))
         {
            if (!theActivePiece[aRow][aCol])
               aNrOfEmptySpaces++;
            aRow++;
         }
         if (aRow + aRowOffset < theTopOfPieces[aColOffset + aCol])
            if ((theTopOfPieces[aColOffset + aCol] - aRow - aRowOffset) 
                              > gMaxPieceSize)
               aNrOfEmptySpaces += gMaxPieceSize;
            else
               aNrOfEmptySpaces += (theTopOfPieces[aColOffset + aCol] - 
                                                            aRow - aRowOffset);
      }
   }
   return aNrOfEmptySpaces;
}

CountTouches
static long CountTouches(const Board gameBoard,
                                    long *theTopOfPieces, Piece theActivePiece,
                                    long thePieceLeft, long thePieceRight,
                                    long thePieceTop, long thePieceBottom,
                                    long theRow, long theCol)
// count at how many cells the piece will touch the pieces on
// the board, subtract points for creating deep pits
{
   long   aRowOffset, aColOffset;
   long   aRow, aCol, aNrOfTouches;

   aRowOffset = theRow - thePieceBottom - 1;
   aColOffset = theCol - kHalfPieceSize;
   aNrOfTouches = 0;
   for (aRow = thePieceTop; aRow <= thePieceBottom; aRow++)
      for (aCol = thePieceLeft; aCol <= thePieceRight; aCol++)
         if (theActivePiece[aRow][aCol])
         {
            // touches on the left
            if (aColOffset + aCol == 0)
               aNrOfTouches++;
            else
               if (((aCol == thePieceLeft) ||
                        (!theActivePiece[aRow][aCol - 1])) &&
                     (gameBoard[aRowOffset + aRow][aColOffset + aCol - 1] 
                                                != -1))
                  aNrOfTouches++;
            // touches on the right
            if (aColOffset + aCol == gNumCols - 1)
               aNrOfTouches++;
            else
               if (((aCol == thePieceRight) ||
                        (!theActivePiece[aRow][aCol + 1])) &&
                     (gameBoard[aRowOffset + aRow][aColOffset + aCol + 1] 
                                                != -1))
                  aNrOfTouches++;
            // touches on the bottom
            if (aRowOffset + aRow == gNumRows - 1)
               aNrOfTouches++;
            else
               if (((aRow == thePieceBottom) ||
                        (!theActivePiece[aRow + 1][aCol])) &&
                     (gameBoard[aRowOffset + aRow + 1][aColOffset + aCol] 
                                                != -1))
                  aNrOfTouches++;
         }
   // check for deep pits
   if ((aColOffset + thePieceLeft > 0) &&
      (theTopOfPieces[aColOffset + thePieceLeft - 1] >
            aRowOffset + thePieceBottom + 1))
   {
      aNrOfTouches -= 
            ((theTopOfPieces[aColOffset + thePieceLeft - 1]) -
               (aRowOffset + thePieceTop + 1));
      aRow = thePieceTop;
      while (!theActivePiece[aRow][thePieceLeft])
      {
         aRow-;
         aNrOfTouches++;
      }
   }
   if ((aColOffset + thePieceRight < gNumCols - 1) &&
      (theTopOfPieces[aColOffset + thePieceRight + 1] >
            aRowOffset + thePieceBottom + 1))
   {
      aNrOfTouches -= ((theTopOfPieces[aColOffset + 
                                          thePieceRight + 1]) -
                                          (aRowOffset + thePieceTop + 1));
      aRow = thePieceTop;
      while (!theActivePiece[aRow][thePieceRight])
      {
         aRow-;
         aNrOfTouches++;
      }
   }
   return aNrOfTouches;
}

ValidMove
static short ValidMove(const Board gameBoard,
                                 short activePieceTypeIndex,
                                 long *theTopOfPieces, long theTopTopOfPieces,
                                 long theCol, long theRotation)
// check if the piece can reach its column without
// colliding with pieces on the board
{
   long   aCol, aRow, aNrMovesToDo;
   Piece   anActivePiece;
   long   aPieceLeft, aPieceRight, aPieceTop, aPieceBottom;

   memcpy(anActivePiece, gGamePieces[activePieceTypeIndex], 
                              sizeof(Piece));
   aPieceLeft = gPieceInfo[activePieceTypeIndex].pieceLeft;
   aPieceRight = gPieceInfo[activePieceTypeIndex].pieceRight;
   aPieceTop = gPieceInfo[activePieceTypeIndex].pieceTop;
   aPieceBottom = gPieceInfo[activePieceTypeIndex].pieceBottom;

   aRow = 1 - aPieceBottom;

   // count moves
   aNrMovesToDo = 0;
   switch (theRotation)
   {
      case 0:
         break;
      case 1:
         aNrMovesToDo++;
         break;
      case 2:
         aNrMovesToDo++;
         aNrMovesToDo++;
         break;
      case 3:
         aNrMovesToDo++;
         break;
   }
   if (theCol > gNumCols / 2)
      aNrMovesToDo += theCol - gNumCols / 2;
   else
      aNrMovesToDo += gNumCols / 2 - theCol;
      
   // check if the piece can move without hitting pieces on the board
   if (aNrMovesToDo >= theTopTopOfPieces)
   {
      switch (theRotation)
      {
         case 0:
            break;
         case 1:
            RotatePiece90(anActivePiece,
                                 &aPieceLeft, &aPieceRight,
                                 &aPieceTop, &aPieceBottom);
            aRow++;
            break;
         case 2:
            RotatePiece180(anActivePiece, &aPieceLeft,
                                 &aPieceRight, &aPieceTop,
                                 &aPieceBottom);
            aRow++;
            aRow++;
            break;
         case 3:
            RotatePiece270(anActivePiece,
                                 &aPieceLeft, &aPieceRight,
                                 &aPieceTop, &aPieceBottom);
            aRow++;
            break;
      }
      aRow += aPieceBottom;
      for (aCol = gNumCols / 2 + 1; aCol < theCol; aCol++)
         if (!PieceFits(gameBoard, theTopOfPieces, anActivePiece,
                              aPieceLeft, aPieceRight, aPieceTop, aPieceBottom,
                              aRow + (aCol - (gNumCols / 2 + 1)), aCol, 0))
            return 0;
      for (aCol = gNumCols / 2 - 1; aCol > theCol; aCol-)
         if (!PieceFits(gameBoard, theTopOfPieces, anActivePiece,
                              aPieceLeft, aPieceRight, aPieceTop, aPieceBottom,
                              aRow + ((gNumCols / 2 - 1) - aCol), aCol, 0))
            return 0;
   }
   return 1;
}

MovePiece
static void MovePiece(const Board gameBoard,
                                 short activePieceTypeIndex)
// determine the column for the piece and prepare the moves
{
   Piece   anActivePiece;
   long   aPieceLeft, aPieceRight, aPieceTop, aPieceBottom;
   long   aRow, aCol, aRotation;
   long   aTopOfPieces[kMaxBoardSizeSize];
   long   aBottomTopRow, aTopTopRow;
   long   aColScore[kMaxNrRotations][kMaxBoardSizeSize];
   long   aBestScore, aBestCol, aBestRotation;
   long   anExtraScore, aNrCompletedLines;
   short   aCompletedLines[kPieceSize];
   short   aValidMove;

   memcpy(anActivePiece, gGamePieces[activePieceTypeIndex],
             sizeof(Piece));
   
   aPieceLeft = gPieceInfo[activePieceTypeIndex].pieceLeft;
   aPieceRight = gPieceInfo[activePieceTypeIndex].pieceRight;
   aPieceTop = gPieceInfo[activePieceTypeIndex].pieceTop;
   aPieceBottom = gPieceInfo[activePieceTypeIndex].pieceBottom;

   // find top of pieces in board
   aBottomTopRow = 0;
   aTopTopRow = gNumCols;
   for (aCol = 0; aCol < gNumCols; aCol++)
   {
      aRow = 0;
      while ((aRow < gNumRows) &&
                  (gameBoard[aRow][aCol] == -1)) aRow++;
      aTopOfPieces[aCol] = aRow;
      if (aBottomTopRow < aRow)
         aBottomTopRow = aRow;
      if (aTopTopRow > aRow)
         aTopTopRow = aRow;
   }

   // find where the piece fits best
   for (aRotation = 0;
            aRotation < gPieceInfo[activePieceTypeIndex].nrOfRorations;
            aRotation++)
   {
      for (aCol = 0; aCol < gNumCols; aCol++)
      {
         aColScore[aRotation][aCol] = 1000000;
         if ((aCol >= kHalfPieceSize - aPieceLeft) &&
               (aCol < gNumCols - aPieceRight + kHalfPieceSize))
         {
            aRow = aTopOfPieces[aCol] + kPieceSize - 1;
            if (aRow > aBottomTopRow)
               aRow = aBottomTopRow;
      while ((!PieceFits(gameBoard, aTopOfPieces, anActivePiece,
                  aPieceLeft, aPieceRight, aPieceTop, aPieceBottom,
                              aRow, aCol, 1)) &&
                  (aRow >= 0))
               aRow-;
            if (aRow > (aPieceBottom - aPieceTop - 1))
            {
               aColScore[aRotation][aCol] =
                  ((aBottomTopRow - aRow) + 
                  (aPieceBottom - aPieceTop)) * 2;
               FindCompletedLines(gameBoard, aCompletedLines,
                        &aNrCompletedLines, anActivePiece,
                  aPieceLeft, aPieceRight, aPieceTop, aPieceBottom,
                        aRow, aCol);
               anExtraScore = CountEmptySpaces(aTopOfPieces,
                        aCompletedLines, anActivePiece,
                  aPieceLeft, aPieceRight, aPieceTop, aPieceBottom,
                        aRow, aCol);
               aColScore[aRotation][aCol] += anExtraScore * 5;
               anExtraScore = CountTouches(gameBoard,
                     aTopOfPieces, anActivePiece,
               aPieceLeft, aPieceRight, aPieceTop, aPieceBottom,
                        aRow, aCol);
               aColScore[aRotation][aCol] -= anExtraScore;
            }
         }
      }
      RotatePiece90(anActivePiece,
                  &aPieceLeft, &aPieceRight, &aPieceTop, &aPieceBottom);
   }
   aBestCol = 0;
   aBestRotation = 0;
   aValidMove = 0;
   while (!aValidMove)
   {
      aBestScore = 1000000;
      for (aRotation = 0;
            aRotation < gPieceInfo[activePieceTypeIndex].nrOfRorations;
            aRotation++)
         for (aCol = 0; aCol < gNumCols; aCol++)
            if (aColScore[aRotation][aCol] < aBestScore)
            {
               aBestScore = aColScore[aRotation][aCol];
               aBestCol = aCol;
               aBestRotation = aRotation;
            }
      if (aBestScore < 1000000)   // found valid move
      {
         if (ValidMove(gameBoard, activePieceTypeIndex,
                  aTopOfPieces, aTopTopRow, aBestCol, aBestRotation))
            aValidMove = 1;
         else
            aColScore[aBestRotation][aBestCol] = 1000000;
      }
      else
      {
         // no valid moves, give up
         aBestCol = gNumCols / 2;
         aBestRotation = 0;
         aValidMove = 1;
      }
   }
   
   // prepare moves
   gNrMovesToDo = 0;
   switch (aBestRotation)
   {
      case 1:
         gMovesToDo[gNrMovesToDo] = kRotateClockwise;
         gNrMovesToDo++;
         break;
      case 2:
         gMovesToDo[gNrMovesToDo] = kRotateClockwise;
         gNrMovesToDo++;
         gMovesToDo[gNrMovesToDo] = kRotateClockwise;
         gNrMovesToDo++;
         break;
      case 3:
         gMovesToDo[gNrMovesToDo] = kRotateCounterClockwise;
         gNrMovesToDo++;
         break;
   }
   if (aBestCol > gNumCols / 2)
      for (aCol = gNumCols / 2; aCol < aBestCol; aCol++)
      {
         gMovesToDo[gNrMovesToDo] = kMoveRight;
         gNrMovesToDo++;
      }
   else
      for (aCol = aBestCol; aCol < gNumCols / 2; aCol++)
      {
         gMovesToDo[gNrMovesToDo] = kMoveLeft;
         gNrMovesToDo++;
      }
   gMovesToDo[gNrMovesToDo] = kDrop;
   gNrMovesToDo++;
   gMovesToDo[gNrMovesToDo] = kNoMove;
   gNrMovesToDo++;
}

GetPieceInfo
static void GetPieceInfo()
// determine the bounds of the piece and if rotating
// the piece results in the same piece 
{
   long   i;

   for (i = 0; i < gNumPieceTypes; i++)
   {
      long   aPieceLeft = kPieceSize - 1, aPieceRight = 0;
      long   aPieceTop = kPieceSize - 1, aPieceBottom = 0;
      Piece   anActivePiece;
      long   aRow, aCol, aRowOffset, aColOffset;
      short   aPiecesMatch;

      memcpy(anActivePiece, gGamePieces[i], sizeof(Piece));
      for (aRow = 0; aRow < kPieceSize; aRow++)
         for (aCol = 0; aCol < kPieceSize; aCol++)
            if (anActivePiece[aRow][aCol])
            {
               if (aRow < aPieceTop)
                  aPieceTop = aRow;
               if (aRow > aPieceBottom)
                  aPieceBottom = aRow;
               if (aCol < aPieceLeft)
                  aPieceLeft = aCol;
               if (aCol > aPieceRight)
                  aPieceRight = aCol;
            }
      gPieceInfo[i].pieceLeft = aPieceLeft;
      gPieceInfo[i].pieceRight = aPieceRight;
      gPieceInfo[i].pieceTop = aPieceTop;
      gPieceInfo[i].pieceBottom = aPieceBottom;
      
      if (aPieceRight - aPieceLeft > gMaxPieceSize)
         gMaxPieceSize = aPieceRight - aPieceLeft;
      if (aPieceBottom - aPieceTop > gMaxPieceSize)
         gMaxPieceSize = aPieceBottom - aPieceTop;
      
      gPieceInfo[i].nrOfRorations = kMaxNrRotations;

      RotatePiece90(anActivePiece,
                  &aPieceLeft, &aPieceRight, &aPieceTop, &aPieceBottom);
      if ((aPieceRight - aPieceLeft) == (aPieceBottom - aPieceTop))
      {
         aPiecesMatch = 1;
         aRowOffset = gPieceInfo[i].pieceTop - aPieceTop;
         aColOffset = gPieceInfo[i].pieceLeft - aPieceLeft;
         for (aRow = aPieceTop; aRow <= aPieceBottom; aRow++)
            for (aCol = aPieceLeft; aCol <= aPieceRight; aCol++)
               if ((anActivePiece[aRow][aCol] &&
                        !gGamePieces[i][aRow + aRowOffset][aCol + 
                                    aColOffset]) ||
                     (!anActivePiece[aRow][aCol] &&
                        gGamePieces[i][aRow + 
                              aRowOffset][aCol + aColOffset]))
                  aPiecesMatch = 0;
         if (aPiecesMatch)
            gPieceInfo[i].nrOfRorations = 1;
      }
      if (gPieceInfo[i].nrOfRorations == kMaxNrRotations)
      {
         RotatePiece90(anActivePiece,
                  &aPieceLeft, &aPieceRight, &aPieceTop, &aPieceBottom);
         aPiecesMatch = 1;
         aRowOffset = gPieceInfo[i].pieceTop - aPieceTop;
         aColOffset = gPieceInfo[i].pieceLeft - aPieceLeft;
         for (aRow = aPieceTop; aRow <= aPieceBottom; aRow++)
            for (aCol = aPieceLeft; aCol <= aPieceRight; aCol++)
               if ((anActivePiece[aRow][aCol] &&
                        !gGamePieces[i][aRow + 
                                       aRowOffset][aCol + aColOffset]) ||
                     (!anActivePiece[aRow][aCol] &&
                        gGamePieces[i][aRow + 
                                       aRowOffset][aCol + aColOffset]))
                  aPiecesMatch = 0;
         if (aPiecesMatch)
            gPieceInfo[i].nrOfRorations = 2;
      }
   }
}

InitTetris
void InitTetris(
  short boardWidth,            /* width of board in cells */
  short boardHeight,         /* height of board in cells */
  short numPieceTypes,      /* number of types of pieces */
  const Piece gamePieces[],   /* pieces to play */
  long timeToPlay               /* game time, in milliseconds */
) {
   gNumRows = boardHeight;
   gNumCols = boardWidth;
   gNumPieceTypes = numPieceTypes;
   gGamePieces = gamePieces;
   gNrMovesToDo = 0;
   gMoveNr = 0;
   gLastPieceIndex = -1;
   glastNextPieceIndex = -1;
   gPieceInfo = new PieceInfo[gNumPieceTypes];
   gMaxPieceSize = 0;
   GetPieceInfo();
   gMaxPieceSize++;
}

Tetris
MoveType /* move active piece */ Tetris(
  const Board gameBoard,      
  /* current state of the game board,
     bottom row is [boardHeight-1], left column is [0] */
  short activePieceTypeIndex,   /* index into gamePieces of active piece */
  short nextPieceTypeIndex,      /* index into gamePieces of next piece */
  long pointsEarned,                     /* number of points earned thus far */
  long timeToGo                              /* time remaining, in milliseconds */
) {
   // try to detect a new piece,
   // will fail when a piece appears three times in a row
   if ((gLastPieceIndex != activePieceTypeIndex) ||
         (glastNextPieceIndex != nextPieceTypeIndex))
      gMoveNr = gNrMovesToDo;
   gLastPieceIndex = activePieceTypeIndex;
   glastNextPieceIndex = nextPieceTypeIndex;

   if (gMoveNr >= gNrMovesToDo)
   {
      // calculate the moves for a new piece
      MovePiece(gameBoard, activePieceTypeIndex);
      gMoveNr = 0;
   }
   // return next move
   return gMovesToDo[gMoveNr++];
}

TermTetris
void TermTetris(void) {
   delete[] gPieceInfo;
}
 

Community Search:
MacTech Search:

Software Updates via MacUpdate

Fantastical 2.3.2 - Create calendar even...
Fantastical 2 is the Mac calendar you'll actually enjoy using. Creating an event with Fantastical is quick, easy, and fun: Open Fantastical with a single click or keystroke Type in your event... Read more
PCalc 4.4.4 - Full-featured scientific c...
PCalc is a full-featured, scriptable scientific calculator with support for hexadecimal, octal, and binary calculations, as well as an RPN mode, programmable functions, and an extensive set of unit... Read more
Alfred 3.2.1 - Quick launcher for apps a...
Alfred is an award-winning productivity application for OS X. Alfred saves you time when you search for files online or on your Mac. Be more productive with hotkeys, keywords, and file actions at... Read more
OmniPlan 3.6 - Robust project management...
With OmniPlan, you can create logical, manageable project plans with Gantt charts, schedules, summaries, milestones, and critical paths. Break down the tasks needed to make your project a success,... Read more
Backblaze 4.2.0.990 - Online backup serv...
Backblaze is an online backup service designed from the ground-up for the Mac. With unlimited storage available for $5 per month, as well as a free 15-day trial, peace of mind is within reach with... Read more
AppDelete 4.3.1 - $7.99
AppDelete is an uninstaller that will remove not only applications but also widgets, preference panes, plugins, and screensavers along with their associated files. Without AppDelete these associated... Read more
Apple GarageBand 10.1.4 - Complete recor...
The new GarageBand is a whole music creation studio right inside your Mac -- complete with keyboard, synths, orchestral and percussion instruments, presets for guitar and voice, an entirely... Read more
Adobe Lightroom 6.8 - Import, develop, a...
Adobe Lightroom is available as part of Adobe Creative Cloud for as little as $9.99/month bundled with Photoshop CC as part of the photography package. Lightroom 6 is also available for purchase as a... Read more
iMazing 2.1.3 - Complete iOS device mana...
iMazing (was DiskAid) is the ultimate iOS device manager with capabilities far beyond what iTunes offers. With iMazing and your iOS device (iPhone, iPad, or iPod), you can: Copy music to and from... Read more
Little Snitch 3.7.1 - Alerts you about o...
Little Snitch gives you control over your private outgoing data. Track background activity As soon as your computer connects to the Internet, applications often have permission to send any... Read more

Latest Forum Discussions

See All

Galaxy on Fire 3 and four other fantasti...
Galaxy on Fire 3 - Manticore brings the series back for another round of daring space battles. It's familiar territory for folks who are familiar with the franchise. If you've beaten the game and are looking to broaden your horizons, might we... | Read more »
The best apps for your holiday gift exch...
What's that, you say? You still haven't started your holiday shopping? Don't beat yourself up over it -- a lot of people have been putting it off, too. It's become easier and easier to procrastinate gift shopping thanks to a number of apps that... | Read more »
Toca Hair Salon 3 (Education)
Toca Hair Salon 3 1.0 Device: iOS Universal Category: Education Price: $2.99, Version: 1.0 (iTunes) Description: | Read more »
Winter comes to Darkwood as Seekers Note...
MyTona, based in the chilly Siberian city of Yakutsk, has brought a little festive fun to its hidden object game Seekers Notes: Hidden Mystery. The Christmas update introduces some new inhabitants to players, and with them a chance to win plenty of... | Read more »
Bully: Anniversary Edition (Games)
Bully: Anniversary Edition 1.03.1 Device: iOS Universal Category: Games Price: $6.99, Version: 1.03.1 (iTunes) Description: *** PLEASE NOTE: This game is officially supported on the following devices: iPhone 5 and newer, iPod Touch... | Read more »
PINE GROVE (Games)
PINE GROVE 1.0 Device: iOS Universal Category: Games Price: $1.99, Version: 1.0 (iTunes) Description: A pine grove where there are no footsteps of people due to continuous missing cases. The case is still unsolved and nothing has... | Read more »
Niantic teases new Pokémon announcement...
After rumors started swirling yesterday, it turns out there is an official Pokémon GO update on its way. We’ll find out what’s in store for us and our growing Pokémon collections tomorrow during the Starbucks event, but Niantic will be revealing... | Read more »
3 reasons why Nicki Minaj: The Empire is...
Nicki Minaj is as business-savvy as she is musically talented and she’s proved that by launching her own game. Designed by Glu, purveyors of other fine celebrity games like cult favorite Kim Kardashian: Hollywood, Nicki Minaj: The Empire launched... | Read more »
Clash of Clans is getting its own animat...
Riding on its unending wave of fame and success, Clash of Clans is getting an animated web series based on its Clash-A-Rama animated shorts.As opposed to the current shorts' 60 second run time, the new and improved Clash-A-Rama will be comprised of... | Read more »
Leaks hint at Pokémon GO and Starbucks C...
Leaked images from a hub for Starbucks employees suggests that a big Pokémon GO event with the coffee giant could begin this very week. The images appeared on Reddit and hint at some exciting new things to come for Niantic's smash hit game. | Read more »

Price Scanner via MacPrices.net

12-inch Retina MacBooks, Apple refurbished, n...
Apple has restocked a full line of Certified Refurbished 2016 12″ Retina MacBooks, now available for $200-$260 off MSRP. Refurbished 2015 models are available starting at $929. Apple will include a... Read more
Holiday sale: 12-inch Retina MacBook for $100...
B&H has 12″ Retina MacBooks on sale for $100 off MSRP as part of their Holiday sale. Shipping is free, and B&H charges NY sales tax only: - 12″ 1.1GHz Space Gray Retina MacBook: $1199 $100... Read more
Apple refurbished 13-inch MacBook Airs availa...
Apple has Certified Refurbished 13″ MacBook Airs available starting at $849. An Apple one-year warranty is included with each MacBook, and shipping is free: - 13″ 1.6GHz/8GB/128GB MacBook Air: $849 $... Read more
Apple refurbished iMacs available for up to $...
Apple has Certified Refurbished 2015 21″ & 27″ iMacs available for up to $350 off MSRP. Apple’s one-year warranty is standard, and shipping is free. The following models are available: - 21″ 3.... Read more
Apple’s Education discount saves up to $300 o...
Purchase a new Mac or iPad using Apple’s Education Store and take up to $300 off MSRP. All teachers, students, and staff of any educational institution qualify for the discount. Shipping is free: -... Read more
Back in stock: Apple refurbished Mac minis fr...
Apple has Certified Refurbished Mac minis available starting at $419. Apple’s one-year warranty is included with each mini, and shipping is free: - 1.4GHz Mac mini: $419 $80 off MSRP - 2.6GHz Mac... Read more
Twenty-Five Years Of Apple Laptops – A person...
Among many other things, the often tumultuous 16th year of the new century marked the 25th anniversary of Apple laptop computers, not counting the optimistically named 16-pound Mac Portable of 1989.... Read more
Landlordy iOS App Adds Support For Appliances...
Riga, Latvia based E-protect SIA is releasing major update (version 1.8) to its Landlordy app for managing rental business financials on the go. Landlordy is iPhone and iPad app designed for self-... Read more
Holiday sale, Apple iMacs for up to $200 off...
B&H Photo has 21″ and 27″ Apple iMacs on sale for up to $200 off MSRP including free shipping plus NY sales tax only: - 27″ 3.3GHz iMac 5K: $2099 $200 off MSRP - 27″ 3.2GHz/1TB Fusion iMac 5K: $... Read more
Holiday sale: Mac minis for $50 to $100 off M...
B&H Photo has Mac minis on sale for up to $100 off MSRP free shipping plus NY sales tax only: - 1.4GHz Mac mini: $449 $50 off MSRP - 2.6GHz Mac mini: $629 $70 off MSRP - 2.8GHz Mac mini: $899 $... Read more

Jobs Board

*Apple* Retail - Multiple Positions - Apple,...
Job Description: Sales Specialist - Retail Customer Service and Sales Transform Apple Store visitors into loyal Apple customers. When customers enter the store, Read more
*Apple* Retail - Multiple Positions- Trumbul...
Sales Specialist - Retail Customer Service and Sales Transform Apple Store visitors into loyal Apple customers. When customers enter the store, you're also the Read more
*Apple* Retail - Multiple Positions- Philade...
Job Description: Sales Specialist - Retail Customer Service and Sales Transform Apple Store visitors into loyal Apple customers. When customers enter the store, Read more
*Apple* Retail - Multiple Positions- San Ant...
Job Description:SalesSpecialist - Retail Customer Service and SalesTransform Apple Store visitors into loyal Apple customers. When customers enter the store, Read more
*Apple* Products Tester Needed - Apple (Unit...
…we therefore look forward to put out products to quality test for durability. Apple leads the digital music revolution with its iPods and iTunes online store, Read more
All contents are Copyright 1984-2011 by Xplain Corporation. All rights reserved. Theme designed by Icreon.