TweetFollow Us on Twitter

Jul 00 Getting Started

Volume Number: 16 (2000)
Issue Number: 7
Column Tag: Getting Started

Networks 201 pt. 3

by John C. Welch

Layer 1: The Physical Layer

Refresh

Last time around, we covered the sub-OSI parts of a network model, AKA Layer 0. We went over the physical wiring, and wiring types that networks use. We also covered connections between stations on a network, the pinouts of Ethernet cabling, and some basic information on fiber optic connections. Finally, we went over the various network topologies. This month we move up into the actual OSI model, starting with Layer 1, the Physical Layer.

Layer 1

The Physical Layer is the foundation for all the other layers in the OSI stack. It contains all of the specifications for any functions that deal with the transmission and reception of signals. There are four basic functions of the Physical Layer: Mechanical, Electrical, Functional, and Procedural. These cover all the functions that are needed for the transfer of electrical and / or optical signals and data. Examples of these are signaling methods, current requirements, components on the Network Interface Card, (NIC), and the characteristics of the connector on the NIC.

One of the common problems with talking about the Physical Layer is remembering its scope. In general, if it's outside of the host, it's outside of the Physical Layer, and the OSI model in general. This includes cabling, switches, routers and hubs. The usual boundary for the Physical Layer is the connector on the NIC. Part of the reason for the confusion over the scope of the layer is that it defines a lot of what the media and other Layer 0 components have to do, but doesn't actually include those components.

Since the Physical Layer transmits and receives data, let's look at what it has to do for those functions. For transmission, the Physical Layer has to:

  • Convert the frames it receives from the Data Link Layer into a stream of binary data.
  • Use the Media Access Method, as determined by the Data Link Layer 's media access method.
  • Transmit the binary data stream serially.
  • To receive data, the Physical Layer must:
  • Listen for inbound transmissions that are addressed to a device attached to its host.
  • Accept correctly addressed streams
  • Pass the stream data to the Data Link Layer for conversion to frames.

One important fact to note is that the Physical Layer does no error correction. It has no ability to detect errors in the data stream or frames it deals with. All it does is transfer data.

Signal Encoding

The Physical Layer primarily deals with getting signals in and out of the host, and encoding and decoding them. Regardless of the type of media used, these signals are all electromagnetic waves of some sort. Every electromagnetic wave has certain characteristics, the most obvious being its period or frequency. The frequency of a wave is the number of oscillations it makes every second. No wave is a straight line, but rather is a regular, reasonably symmetric curve that most resembles a sine wave. A diagram is shown in Figure 1.


Figure 1.

The symbol for wavelength is lambda, or l. The wavelength is the physical size of the signal through one complete oscillation, or cycle. The wavelength is also the inverse of the frequency. The frequency of a signal is the number of cycles it has in a given amount of time, usually one second. The measurement used to identify frequency is hertz, or Hz. If a signal has one cycle every second, its frequency is one Hz. If it has a thousand cycles per second, then it has a frequency of one KHz, and so on. Since frequency and wavelength are inverses of each other, the value of one can give you the value of the other. For example, the frequency of many Radar guns used by the police is 34GHz, or 34 billion cycles per second. Taking the inverse of this, using the formula 1/frequency, we get 1/34 x 109, or 2.9411 x 10-11, or a wavelength of .0294118 nanometers. Since nanometers are billionths of a meter, this is a very small wavelength indeed.

One of the more useful side effects of frequency has to do with the ability of a signal to transmit data. Since most encoding methods use the number of changes in a wave, the higher the frequency, the more data that can be transmitted by that wave. The disadvantage of higher frequencies is that the signal has less range and persistence. This is why faster LAN technologies tend to have less range than slower ones. (Note: I say 'tend to' here because when you go from copper - based LANs to fiber - optic based LANs, this falls apart somewhat, as a optical LAN has more range than a copper LAN, yet operates at much higher frequencies.) If we look at the signal in figure one above, you can see that the signal is either above or below a central point. The amount of distance between the top or bottom most point in the signal, and the central point is the amplitude, or strength of the signal. Normally, amplitude is measured in positive or negative volts, so our central point is zero volts. The positive and negative sections of the signal are states, and the transition points at zero volts are the state changes. As we will see, state changes are critical to encoding data in a signal. There are a few more parts of a wave that we need to understand, so we'll take a look at another wave form, the square wave, in Figure 2.


Figure 2.

The square wave is named for its shape, and is a common wave form used in the transmission of data. The square wave is also useful for identifying certain parts of a wave that are used in signaling and encoding. The leftmost edge of the wave is the leading, or rising edge. The upper and lowermost parts of the wave are the peaks, and the middle line, where the wave is transitioning from a high to a low is the trailing, or falling edge. All parts of the wave can be used in signaling and data encoding, depending on which method is used.

Regardless of the method chosen, there are three basic ways to modulate a wave so as to allow it to carry data. (In truth, these are the basis for many, many more modulation techniques, and other trucks to get as many bits per cycle as possible onto a wave, but for our purposes, these three will do.) The first method is amplitude modulation, also known as AM or ASK, for Amplitude Shift keying. Since the amplitude of a signal is its strength, the way this works is suggested by the name. If the data being carried by the signal is a binary 1, then the pulse amplitude is increased by a given amount. If the data is a binary 0 then the pulse amplitude is decreased by the same amount. A middle amplitude indicates no data. Amplitude Modulation is simple to implement, and widely used for voice transmission, as in AM radio. Due to limitations in the modulation technique itself, ASK is only used for transmissions up to 1200 baud.

The next method used is Frequency Modulation, a.k.a. FM or FSK. This functions by introducing a second signal into the first signal. If a binary 1 needs to be transmitted, the frequency of the first signal is upshifted, or increased. If a binary 0 is being transmitted, the signal frequency is downshifted, or decreased. If no data is being transmitted, the frequency is left alone. FSK is more efficient and reliable than ASK, and is used for data rates up to 1200 baud.

The final method is known as Phase Modulation, or PSK. In this method, the phase of the signal is altered to indicate a binary 0 or 1. If a binary 0 is sent, the phase is not altered. If a binary 1 is sent, the phase is switched to its opposite. This allows one bit per shift(s) to be sent. If more than one phase shift is used, then more bits can be sent in a set of shifts, or burst. PSK is the most efficient, and reliable of the three modulation techniques, allowing data rates of up to 9600bps. These may not seem like fast data rates, but in combination with other encoding methods, (most of which we will cover in other articles, as they are protocol - dependant, and therefore beyond the scope of the Physical Layer.), we get the data rates we are accustomed to on today's LANs.

Whichever form of modulation and encoding is chosen, that is then modified by other methods to allow the signal to pack more bits per cycle, thereby increasing efficiency of the signal as a data carrier. Depending on the methods used, and the frequency of the signal, it is possible to encode anywhere from two to forty bits per cycle in a signal. So a cable that has a maximum bandwidth of 500MHz is capable of transmitting several gigabits of data per second. Since fiber optic cables can handle much higher frequencies than copper, it is obvious why fiber is becoming more popular as a way to move the staggering amounts of data that a modern network is required to move.

One thing to remember is that any form of encoding, no matter how fast or efficient, imposes an overhead that subtracts from the bits a signal can carry. As an example, Gigabit Ethernet uses an encoding scheme known as 4B/5B. 4B/5B states that for every 4 - bit string of data transmitted, a 5 - bit pattern is used to encode it. This means that 20% of the data transmitted is overhead. If Gigabit Ethernet were to be strictly defined as 1000, or even 1024Mbps, then the best speed you could actually get would be in the 800Mbps range. To get around this, Gigabit Ethernet is actually defined as 1250Mbps, so when the encoding and other overhead is accounted for, the usable speed is still very close to 1Gbps.

Conclusion

It may seem that we have glossed over a lot of the Physical Layer. That is partially true. Much of the Physical Layer deals with extremely low level electrical issues that would be of only academic use to the network administrators. Since we covered physical media in the previous article, there is no need to re-hash that here. Also, anything that is protocol - specific is the property of the higher layers. The important thing to remember is that the Physical Layer is only concerned with ones and zeros, and the transfer of those things. The next article will deal with the Data Link Layer , and the Medium Access Control sublayer, and that is where we will get into much of the protocol specific issues of a network.

Bibliography and References

  • Tannenbaum, Andrew S. Computer Networks. Third Edition Prentice Hall, 1996.
  • Sportack, Mark. Networking Essentials Unleashed. SAMS Publishing, 1998.
  • Stallings, William. Local & Metropolitan Area Networks. Fifth Edition Prentice Hall, 1997.

John Welch <jwelch@aer.com> is the Mac and PC Administrator for AER Inc., a weather and atmospheric science company in Cambridge, Mass. He has over fifteen years of experience at making computers work. His specialties are figuring out ways to make the Mac do what nobody thinks it can, and showing that the Mac is the superior administrative platform.

 

Community Search:
MacTech Search:

Software Updates via MacUpdate

Never Gone (Games)
Never Gone 1.0.2 Device: iOS Universal Category: Games Price: $2.99, Version: 1.0.2 (iTunes) Description: ###IMPPORTANT### Never Gone's HD art resources require devices with more than 1GB RAM, so please note that iPhone 4/4s, iPad 2/... | Read more »
INKS. (Games)
INKS. 1.0 Device: iOS Universal Category: Games Price: $1.99, Version: 1.0 (iTunes) Description: From the makers of BAFTA-winning Lumino City comes INKS. INKS updates pinball for a new generation. It combines the joy of pinball with... | Read more »
How to maximise your profits in Bakery B...
Running a bakery can be an expensive venture. You’ll need to continuously upgrade your oven, your kitchen supplies, and even your ingredients to keep customers happy. Most of these renovations in Bakery Blitz cost a pretty penny, but we have a few... | Read more »
How to manage your time in Bakery Blitz
It can be tricky, especially when you risk burning your kitchen to the ground if you forget a cake in the oven, so make sure to use these time management tricks to keep your bakery running smoothly. Don’t collect the money right away [Read more] | Read more »
Model 15 (Music)
Model 15 1.0 Device: iOS iPhone Category: Music Price: $29.99, Version: 1.0 (iTunes) Description: The Moog Model 15 App is the first Moog modular synthesizer and synthesis educational tool created exclusively for iPad, iPhone and... | Read more »
How to deal with wind in Angry Birds Act...
Angry Birds Action! is a physics-based puzzler in which you're tasked with dragging and launching birds around an obstacle-littered field to achieve a set objective. It's simple enough at first, but when wind gets introduced things can get pretty... | Read more »
How to get three stars in every level of...
Angry Birds Action! is, essentially, a pinball-style take on the pull-and-fling action of the original games. When you first boot it up, you'll likely be wondering exactly what it is you have to do to get a good score. Well, never fear as 148Apps... | Read more »
The beginner's guide to Warbits
Warbits is a turn-based strategy that's clearly inspired by Nintendo's Advance Wars series. Since turn-based strategy games can be kind of tricky to dive into, see below for a few tips to help you in the beginning. Positioning is crucial [Read... | Read more »
How to upgrade your character in Spellsp...
So you’ve mastered the basics of Spellspire. By which I mean you’ve realised it’s all about spelling things in a spire. What next? Well you’re going to need to figure out how to toughen up your character. It’s all well and good being able to spell... | Read more »
5 slither.io mash-ups we'd love to...
If there's one thing that slither.io has proved, it's that the addictive gameplay of Agar.io can be transplanted onto basically anything and it will still be good fun. It wouldn't be surprising if we saw other developers jumping on the bandwagon,... | Read more »

Price Scanner via MacPrices.net

Global Tablet Sales Slump Continues, iPad’s F...
Another miserable showing for the global slate tablet category in calendar Q1/16, with global tablet shipments falling another 1ten percent to 46.5 million units during the according to Strategy... Read more
Revel Systems to Showcase iPad POS Platform w...
Revel Systems, specialists in iPad Point of Sale management solution for brick-and-mortar retail, food businesses and more, today announced that it will showcase its innovative iPad Point of Sale... Read more
13-inch 2.5GHz MacBook Pro on sale for $999,...
B&H Photo has the 13″ 2.5GHz MacBook Pro on sale for $999 including free shipping plus NY sales tax only. Their price is $100 off MSRP. Read more
Apple refurbished 2015 iMacs available for up...
Apple now has a full line of Certified Refurbished 2015 21″ & 27″ iMacs available for up to $350 off MSRP. Apple’s one-year warranty is standard, and shipping is free. The following models are... Read more
Indian Smartphone Market Grows Annually by 12...
India’s smartphone market grew by 12 percent year-over-year, with 24.4 million units shipping in Q1 2016. The top five vendors stayed the same, with Samsung in the lead, followed by Micromax, Intex... Read more
Get Notifications When Your Friend’s Phone Ba...
Calgary, Canada based Stonelight Pictures has announced the release of Battery Share 1.0.1, its new utility for iOS 9 supported devices. The company notes that people are spending more time on their... Read more
11-inch 1.6GHz/128GB MacBook Air on sale for...
Amazon has the current-generation 11″ 1.6GHz/128GB MacBook Air (sku MJVM2LL/A) on sale for $749.99 for a limited time. Their price is $150 off MSRP, and it’s the lowest price available for this model... Read more
Price drops on clearance 2015 13-inch MacBook...
B&H Photo has dropped prices on clearance 2015 13″ MacBook Airs by up to $250. Shipping is free, and B&H charges NY sales tax only: - 13″ 1.6GHz/4GB/128GB MacBook Air (MJVE2LL/A): $799, $200... Read more
Mac minis on sale for up to $100 off MSRP
B&H Photo has Mac minis on sale for up to $100 off MSRP including free shipping plus NY sales tax only: - 1.4GHz Mac mini: $449 $50 off MSRP - 2.6GHz Mac mini: $649 $50 off MSRP - 2.8GHz Mac mini... Read more
13-inch Retina MacBook Pros on sale for up to...
B&H Photo has 13″ Retina MacBook Pros on sale for $130-$200 off MSRP. Shipping is free, and B&H charges NY tax only: - 13″ 2.7GHz/128GB Retina MacBook Pro: $1169 $130 off MSRP - 13″ 2.7GHz/... Read more

Jobs Board

Restaurant Manager (Neighborhood Captain) - A...
…in every aspect of daily operation. WHY YOU'LL LIKE IT: You'll be the Big Apple . You'll solve problems. You'll get to show your ability to handle the stress and Read more
Simply Mac *Apple* Specialist- Service Repa...
Simply Mac is the largest premier retailer of Apple products in the nation. In order to support our growing customer base, we are currently looking for a driven Read more
Restaurant Manager (Neighborhood Captain) - A...
…in every aspect of daily operation WHY YOU LL LIKE IT You ll be the Big Apple You ll solve problems You ll get to show your ability to handle the stress and Read more
*Apple* Retail - Multiple Positions (US) - A...
Job Description:SalesSpecialist - Retail Customer Service and SalesTransform Apple Store visitors into loyal Apple customers. When customers enter the store, Read more
Restaurant Manager (Neighborhood Captain) - A...
…in every aspect of daily operation. WHY YOU'LL LIKE IT: You'll be the Big Apple . You'll solve problems. You'll get to show your ability to handle the stress and Read more
All contents are Copyright 1984-2011 by Xplain Corporation. All rights reserved. Theme designed by Icreon.