TweetFollow Us on Twitter

Apr 00 Challenge

Volume Number: 16 (2000)
Issue Number: 4
Column Tag: Programmer's Challenge

Programmer's Challenge

by Bob Boonstra, Westford, MA

Text Compression

This month, we've got some very important messages to send. But we're not living in a world of free bandwidth. In fact, bandwidth in our Challenge world is very expensive, so expensive that we're asking you to compress our messages and save us a few bytes.

The prototype for the code you should write is:

void * /* yourStorage */ InitCompression(void);

long /* compressedLength */ CompressText(
  char *inputText,        /* text to be compressed */
  long numInputChars,     /* length of inputText in bytes */
  char *compressedText,   /* return compressedText here */
  const void *yourStorage /* storage returned by InitCompression */
);

long /* expandedLength */ ExpandText(
  char *compressedText,   /* encoded text to be expanded */
  long compressedLength,  /* length of encoded text in bytes */
  char *expandedText,     /* return expanded text here */
  const void *yourStorage /* storage returned by InitCompression */
);

void TermCompression(
  void *yourStorage       /* storage returned by InitCompression */
);

For this Challenge, you need to provide the four routines indicated above. Your InitCompression and TermCompression routines will be called only once each, at the beginning of the test and at the end of the test, respectively. InitCompression should allocate and return a block of yourStorage where you initialize any information needed by your compression and expansion routines. That storage will be passed back to you unchanged each time you are asked to compress or decompress text. TermCompression will be called at the end of the test and should deallocate the block of yourStorage to avoid a memory leak.

In between the calls to InitCompression and TermCompression, the test code will make multiple calls to CompressText and ExpandText with different inputText values. CompressText should process the inputText, populate the compressedText, and return the number of bytes in the result. ExpandText does the opposite, processing the compressedText, converting it to expandedText, and returning the number of bytes of the original text. Multiple CompressText and ExpandText calls will occur with varying inputText and compressedText, in any order, with the obvious constraint that text must be encoded before it can be decoded.

The inputText may contain any character between 0x00 and 0x7F, inclusive. As a practical matter, the inputText will be drawn from paragraphs of English-language text, computer programs in C, C++, and Pascal, and html pages.

All text-specific information needed to decode the compressedText must be stored in the compressedText itself. Any text-independent decoding information may be stored in yourStorage or in static storage within your program. No text-specific encoding information may be stored in yourStorage or in static variables.

The winner will be the solution that correctly compresses the inputText into the least costly compressedText, where cost is a function of length and execution time. Specifically, each inputText will have a cost equal to theCompressedLength of the corresponding compressedText, plus a penalty of 10% for each 100 milliseconds required to do the encoding and decoding.

This will be a native PowerPC Challenge, using the CodeWarrior Pro 5 environment. Solutions may be coded in C, C++, or Pascal. Solutions in Java will also be accepted, but Java entries must be accompanied by a test driver that uses the interface provided in the problem statement.

Three Months Ago Winner

Congratulations to Sebastian Maurer for winning the January, 2000, Triangle Peg Challenge. The Peg Challenge required entries to solve variously sized games of peg solitaire, a game where pegs are arranged in holes on a triangle board. The objective of the game is to repeatedly jump one peg over an adjacent one, removing the jumped peg each time, with the intent of removing as many pegs as possible. In our Challenge, scoring counted 1000 penalty points for each peg left on the board, plus one penalty point for each millisecond of execution time. Sebastian did not submit the fastest entry - in fact, he ranked third in speed - but it played the Peg game significantly better than the other solutions, resulting in a better overall score.

I evaluated the Pegs entries using 14 test cases, ranging from 5 pegs to 100 pegs on a side. Nine of the test cases were missing only one peg, one of the large puzzles was missing 50 pegs, with the remainder missing a small number of pegs. Sebastian's entry left fewer pegs on the board than the second place solution in 12 of 14 test cases, and fewer than the third place solution in 10 of 14 cases. Sebastian's entry won in all of the test cases involving larger puzzles.

Sebastian's code is rather sparsely commented. The work is done in his Search routine, which iteratively tries valid moves, backtracks when it cannot find a valid move, and saves the best solution found so far. In looking at the code for the top entries, it wasn't obvious why Sebastian's solution did so much better than the others. The entries did use different logic to prune the search and trade execution time against search depth; perhaps those differences explain the performance variation.

The table below lists, for each of the solutions submitted, the overall score, the execution time in microseconds, and the total number of pegs left on the board for all of our test cases. It also indicates the code size, data size, and programming language used by each solution. Two entries did not complete all of the test cases and are listed last. As usual, the number in parentheses after the entrant's name is the total number of Challenge points earned in all Challenges prior to this one.

NameScoreTime (µsecs)Pegs LeftCode SizeData SizeLang
Sebastian Maurer (77)20224644646419764852162C
Andrew Downs (2)3623988109883613187220C
Willeke Rieken (61)3727672146723713302056C++
Randy Boring (112)11211715476714107357308132096C++
M. L.N/AN/A2648218C
J. C.N/AN/A108281021C++

Top Contestants

Listed here are the Top Contestants for the Programmer's Challenge, including everyone who has accumulated 10 or more points during the past two years. The numbers below include points awarded over the 24 most recent contests, including points earned by this month's entrants.

RankNamePoints
1.Munter, Ernst227
2.Saxton, Tom139
3.Maurer, Sebastian87
4.Rieken, Willeke48
5.Boring, Randy43
6.Heithcock, JG43
7.Shearer, Rob43
8.Taylor, Jonathan24
9.Brown, Pat20
10.Downs, Andrew12
11.Jones, Dennis12
12.Hart, Alan11
13.Duga, Brady10
14.Hewett, Kevin10
15.Murphy, ACC10
16.Selengut, Jared10
17.Strout, Joe10
18.Varilly, Patrick10

There are three ways to earn points: (1) scoring in the top 5 of any Challenge, (2) being the first person to find a bug in a published winning solution or, (3) being the first person to suggest a Challenge that I use. The points you can win are:

1st place20 points
2nd place10 points
3rd place7 points
4th place4 points
5th place2 points
finding bug2 points
suggesting Challenge2 points

Here is Sebastian's winning Triangle Peg solution:

Pegs.c
Copyright © 2000 Sebastian Maurer

#include "Pegs.h"
#include "Memory.h"
#include "Timer.h"

#include <stdio.h>

const int kNumTries = 1000;
const UInt32 kStopTime = 500000;
  // in microseconds

const int kNumDirections = 6;
enum {kIllegal = 0, kFull, kEmpty};

char** gGrid;
PegJump *gCurrentJumps;
PegJump *gBestJumps;
int gBestScore;
UnsignedWide gLastImprovement;
unsigned short *gDirection;
short gDeltaRow[kNumDirections];
short gDeltaCol[kNumDirections];

static UInt32 WideDiff(UnsignedWide m1, UnsignedWide m2)
{
  UnsignedWide m;
  m.lo = m2.lo - m1.lo;
  m.hi = m2.hi - m1.hi;
  if (m1.lo > m2.lo)
    m.hi -= 1;
  return m.lo;
}

static void PrintBoard(int triangleSize) {
  for(int r = 0; r < triangleSize; r++) {
    for(int c = - triangleSize; c <= triangleSize; c++)
    {
      switch (gGrid[r][c]) {
        case kIllegal: printf(" "); break;
        case kFull: printf("X"); break;
        case kEmpty: printf("."); break;
        default: printf("?");
      }
    }
    printf("\n");
  }
  printf("\n");
}

AllocateGrid
//////
// Memory allocation for the 2D grid
static char **AllocateGrid(
  int xMin, int xMax,
  int yMin, int yMax)
{
  int i, j;
  int nx = xMax - xMin + 1;
  int ny = yMax - yMin + 1;
  char **array;
  Ptr p;
  int rowSize;

  array = (char **) NewPtr((Size)(nx * sizeof(char*)));
  if (array == 0)
    return 0;
  
  array -= xMin;
  p = NewPtr((Size)(nx * ny * sizeof(char)));
  if (p == 0)
    return 0;
  p -= yMin * sizeof(char);
  rowSize = (int)(ny * sizeof(char));
  for(i = xMin; i <= xMax; i++) {
    array[i] = (char*) p;
    p += rowSize;
  }

  for(i = xMin; i <= xMax; i++)
    for(j = yMin; j <= yMax; j++)
      array[i][j] = 0;

  return array;
}

DeallocateGrid
static void DeallocateGrid(
  char **array, long xMin, long yMin)
{
  DisposePtr((Ptr) (array[xMin] + yMin));
  DisposePtr((Ptr) (array + xMin));
}

FillGrid
//////
// Fill the grid with the initial configuration
static void FillGrid(
  short size,
  short numInitialPegs,
  TrianglePegPosition initialPegPositions[]
) {
  for(int r = -2; r < size + 2; r++)
    for(int c = - size - 2; c <= size + 2; c++)
      gGrid[r][c] = kIllegal;

  for(int r = 0; r < size; r++)
    for(int c = - r; c <= r; c += 2)
      gGrid[r][c] = kEmpty;
  
  for(int p = 0; p < numInitialPegs; p++) {
    int row = initialPegPositions[p].row;
    int col = initialPegPositions[p].col;
    gGrid[row][col] = kFull;
  }
}

SaveSolution
//////
// Store the current best solution
static void SaveSolution(int numMoves) {
  gBestScore = numMoves;

  for(int m = 0; m < numMoves; m++) {
    gBestJumps[m].from.row =
      gCurrentJumps[m].from.row;
    gBestJumps[m].from.col =
      gCurrentJumps[m].from.col;
    gBestJumps[m].to.row =
      gCurrentJumps[m].to.row;
    gBestJumps[m].to.col =
      gCurrentJumps[m].to.col;
  }
    
}

Try
//////
// Perform a move if it is legal, and return true
// If the move is illegal, return false
// I assume position (r,c) already contains a peg
static bool Try(int move, int r, int c, int dir)
{
  int dr = gDeltaRow[dir];
  int dc = gDeltaCol[dir];

  if ((gGrid[r + dr][c + dc] == kFull) &&
    (gGrid[r + 2 * dr][c + 2 * dc] == kEmpty))
  {
    gDirection[move] = dir;
      
    gCurrentJumps[move].from.row = r;
    gCurrentJumps[move].from.col = c;
    
    gCurrentJumps[move].to.row = r + 2 * dr;
    gCurrentJumps[move].to.col = c + 2 * dc;
    
    gGrid[r][c] = kEmpty;
    gGrid[r + dr][c + dc] = kEmpty;
    gGrid[r + 2 * dr][c + 2 * dc] = kFull;

    return true;
  }
  else
    return false;
}

UndoMove
//////
// Undo a move by restoring the grid
static inline void UndoMove(int row, int col, int dir) {
  int dr = gDeltaRow[dir];
  int dc = gDeltaCol[dir];

  gGrid[row][col] = kFull;
  gGrid[row + dr][col + dc] = kFull;
  gGrid[row + 2 * dr][col + 2 * dc] = kEmpty;
}

Search
//////
// This is where the search is done
static void Search(
  int numInitialPegs,
  int triangleSize
) {

  UnsignedWide now;
  int move, row, col, dir;
  bool abort = false;
  bool haveASolution = false;
  
  int numTries = 0;

  row = 0;
  col = 0;
  dir = -1;
  move = 0;

  do {
  
    // find the next valid move
    do {
      dir++;
      if (dir >= kNumDirections) {
        dir = 0;
        col++;
        if (col == row + 1) {
          row++;
          col = - row;
        }
      }
    } while ((row < triangleSize) &&
           ((gGrid[row][col] == kEmpty) ||
            !Try(move, row, col, dir)));
  
    if (row < triangleSize) {
      // we just made a valid move
      // start work on the next move
      
      move++;

      row = 0;
      col = 0;
      dir = 0;
    } else { // we reached a dead end
      
      // see if this is a better solution
      if (move > gBestScore) {
        SaveSolution(move);
        haveASolution = true;

        if (move + 1 == numInitialPegs)
          abort = true;

        Microseconds(&now);

        gLastImprovement = now;
      }
      
      // backtrack
      move-;
      
      if (move >= 0) {
        row = gCurrentJumps[move].from.row;
        col = gCurrentJumps[move].from.col;
        dir = gDirection[move];
        UndoMove(row, col, dir);        
      }
      
    }
    
    if (haveASolution) {
      // if we already reached a dead end once,
      // don't waste time searching more
    
      numTries++;
      if (numTries == kNumTries) {
        numTries = 0;
        Microseconds(&now);
        if (WideDiff(gLastImprovement, now) >
            kStopTime)
        {
          abort = true;
        }
      }
    }

  } while (!abort && (move >= 0));
}

SolvePegTriangle
short /* number of moves */ SolvePegTriangle (
  short triangleSize,
    /* number of rows in triangle to solve */
  short numInitialPegs,
    /* number of pegs in starting puzzle position */
  TrianglePegPosition initialPegPositions[],
    /* peg locations in starting puzzle position */
  PegJump pegJumps[]
    /* return peg moves that solve the puzzle here,
       in sequence */

) {
  // prepare, allocate, initialize structures
  gDeltaRow[0] = -1; gDeltaCol[0] = -1;
  gDeltaRow[1] = -1; gDeltaCol[1] = +1;
  gDeltaRow[2] = 0; gDeltaCol[2] = -2;
  gDeltaRow[3] = 0; gDeltaCol[3] = +2;
  gDeltaRow[4] = +1; gDeltaCol[4] = -1;
  gDeltaRow[5] = +1; gDeltaCol[5] = +1;
  
  gGrid =
    AllocateGrid(-2, triangleSize + 2,
      - triangleSize - 2, triangleSize + 2);
  if (gGrid == 0)
    return 0;
  
  gDirection = (unsigned short*)
    NewPtr(numInitialPegs * sizeof(unsigned short));
  if (gDirection == 0)
    return 0;
  
  gCurrentJumps = (PegJump*)
    NewPtr(numInitialPegs * sizeof(PegJump));
  if (gCurrentJumps == 0)
    return 0;

  gBestJumps = pegJumps;

  Microseconds(&gLastImprovement);
  gBestScore = 0;

  FillGrid(triangleSize, numInitialPegs,
       initialPegPositions);

  // do the work
  Search(numInitialPegs, triangleSize);

  // clean up
  DeallocateGrid(gGrid, -2, - triangleSize - 2);
  DisposePtr((Ptr)gDirection);
  DisposePtr((Ptr)gCurrentJumps);

  return gBestScore;
}
 

Community Search:
MacTech Search:

Software Updates via MacUpdate

How to become the ultimate robot warrior...
Chrono Strike is a delightfully immersive beat ‘em up with a sense of humor (any game with a good Sims reference gets points in my book). [Read more] | Read more »
Tips and tricks to get a higher score in...
Snow Roll is a devilish endless runner very much in the vein of Flappy Bird. It revels in its dastardly level of difficulty, and doesn’t really care how angry you get at it as it knows you’ll keep coming back for more. [Read more] | Read more »
How to win big in Slots Deluxe
Cheating while gambling is illegal and morally wrong, and in some parts of the world it leads to men with names like Vinnie "Six Knuckles" Manchenzo beating you to a pulp in a dark alley. [Read more] | Read more »
How to take over the world in Dictator 2
Running a country isn't easy - especially when you're a dictator who wants to take over the world and crush everyone in your path while you do it. [Read more] | Read more »
Tips and tricks to get a higher score in...
Tank.iois - you guessed it! - another multiplayer arena battler likeAgar.io and Slither.io. It does differentiate itself by putting you in a tiny tank though, so it's not exactly the same. To help you get that all-important high score, we've got a... | Read more »
How to unlock characters in One Tap Tenn...
As the title suggests, One Tap Tennis requires only a single tap to play its particular brand of tennis, and rewards you with a ton of unlockable characters if you perform well. Fortunately for you, we at 148Apps have got a few tips and tricks to... | Read more »
Grab it now: Game Craft’s Legend of War...
The real time strategy game is now available for you to sink your teeth into, through the App Store and Google Play. Combining elements of skill, strategy and empire building, Legend of War is a real gamers’ game. [Read more] | Read more »
Skateboard Party 3 ft. Greg Lutzka (Gam...
Skateboard Party 3 ft. Greg Lutzka 1.0 Device: iOS Universal Category: Games Price: $1.99, Version: 1.0 (iTunes) Description: Skateboard Party is back! This third edition of the popular sports franchise features professional skater... | Read more »
Cubious (Games)
Cubious 1.0 Device: iOS Universal Category: Games Price: $.99, Version: 1.0 (iTunes) Description: Cubious – How smart are you? How high is your IQube? Solve the impossible puzzles to find out, and help a lost little cube find his... | Read more »
Goat Simulator Waste of Space (Games)
Goat Simulator Waste of Space 1.1 Device: iOS Universal Category: Games Price: $4.99, Version: 1.1 (iTunes) Description: ** IMPORTANT - SUPPORTED DEVICESiPhone 4S, iPad 2, iPod Touch 5 or better.** | Read more »

Price Scanner via MacPrices.net

Enterprise Workers Pick Technology Over Perks...
New Adobe study shows surprising attitudes about office jobs and where the future of work is heading. Adobe has released survey findings revealing that a surprising 70 percent of U.S. office workers... Read more
Memorial Day Weekend Sale: $50-$100 off 11-in...
B&H Photo has 13″ and 11″ MacBook Airs with 256GB SSDs on sale for $50-$100 off MSRP. Shipping is free, and B&H charges NY sales tax only: - 11″ 1.6GHz/256GB MacBook Air: $999 $100 off MSRP... Read more
Memorial Day Weekend Sales: Apple MacBook Pro...
B&H Photo has 13″ and 15″ Retina MacBook Pros on sale for up to $210 off MSRP. Shipping is free, and B&H charges NY tax only: - 15″ 2.2GHz Retina MacBook Pro: $1799 $200 off MSRP - 15″ 2.5GHz... Read more
Memorial Day Weekend Sales: Apple iMacs and M...
Take up to $150 off the price of a new iMac or Mac mini at the following Apple resellers this Memorial Day weekend: iMacs: B&H Photo has 21″ and 27″ iMacs on sale for up to $150 off MSRP... Read more
Apple refurbished Retina MacBook Pros availab...
Apple has Certified Refurbished 2015 13″ and 15″ Retina MacBook Pros available for up to $380 off the cost of new models. An Apple one-year warranty is included with each model, and shipping is free... Read more
Apple refurbished 11-inch MacBook Airs availa...
Apple has Certified Refurbished 11″ MacBook Airs (the latest models), available for up to $170 off the cost of new models. An Apple one-year warranty is included with each MacBook, and shipping is... Read more
Goal Zero and OtterBox Partner to Expand iPh...
Goal Zero, specialists in portable power, have announced a partnership with OtterBox, brand smartphone case protection, to offer the Slide and Slide Plus Batteries as modules compatible with the new... Read more
15-inch Retina MacBook Pros on sale for up to...
B&H Photo has 15″ Retina MacBook Pros on sale for up to $210 off MSRP. Shipping is free, and B&H charges NY tax only: - 15″ 2.2GHz Retina MacBook Pro: $1799 $200 off MSRP - 15″ 2.5GHz Retina... Read more
Clearance 2015 13-inch MacBook Airs available...
B&H Photo has clearance 2015 13″ MacBook Airs available for $250 off original MSRP. Shipping is free, and B&H charges NY sales tax only: - 13″ 1.6GHz/4GB/128GB MacBook Air (MJVE2LL/A): $799... Read more
Apple refurbished Apple TVs available for up...
Apple has Certified Refurbished 32GB and 64GB Apple TVs available for up to $30 off the cost of new models. Apple’s standard one-year warranty is included with each model, and shipping is free: -... Read more

Jobs Board

*Apple* Architect - AECOM (United States)
**Requisition/Vacancy No.** 132759BR **Position Title** Apple Architect **Job Category** Information Technology **Business Line** Government **Country** United Read more
*Apple* Solutions Consultant - APPLE (United...
Job Summary As an Apple Solutions Consultant, you'll be the link between our future customers and our products. You'll showcase your entrepreneurial spirit as you Read more
*Apple* Project Engineer - Smart Source Inc...
SmartSource is in need of an Apple Project Engineer for a 12 month contract opportunity in Pittsburg, PA. Role: Apple Project Engineer Location: Pittsburg, PA Read more
Automotive Sales Consultant - Apple Ford Linc...
…you. The best candidates are smart, technologically savvy and are customer focused. Apple Ford Lincoln Apple Valley is different, because: $30,000 annual salary Read more
Service Assistant - *Apple* Chevrolet *App...
Apple Automotive is one of the fastest growing dealer...and it shows. Consider making the switch to the Apple Automotive Group today! At Apple Automotive, we Read more
All contents are Copyright 1984-2011 by Xplain Corporation. All rights reserved. Theme designed by Icreon.