TweetFollow Us on Twitter

Mar 00 Getting Started

Volume Number: 16 (2000)
Issue Number: 3
Column Tag: Getting Started

Speech and Voices

by Dan Parks Sydow

Writing a Macintosh program that makes use of different voices

Two months ago, Getting Started introduced the topic of adding computer-generated speech to a Mac program. In that article you learned how to verify that the user's Mac is able to output speech and then use the Toolbox SpeakString() function to speak the text of one string. Last month's Getting Started article carried on with the topic of speech by demonstrating how a program can create a speech channel in order to speak more than a single string. This month we complete the trilogy of speech articles by seeing how a speech channel is used by a program that wants to alter the voice that's used in the generation of speech.

Speech Basics Review

A Mac program that is to speak should include the Speech.h universal header file to make sure that the compiler recognizes the speech-related Toolbox functions. The program should also verify that the user's Mac is able to generate speech. After that, a string of text can be spoken by calling the Toolbox function SpeakString(). A Pascal-formatted string is the only argument. After that, repeatedly call the Toolbox function SpeechBusy() to allow for the Mac to complete talking. If the following snippet doesn't look familiar, refer back to the January Getting Started article for more information.

#include	<Speech.h>

OSErr	err;
long		response;
long		mask;

err = Gestalt( gestaltSpeechAttr, &response );
if ( err != noErr )
	DoError( "\pError calling Gestalt" );

mask = 1 << gestaltSpeechMgrPresent;	
if ( response & mask == 0 )
 	DoError( "\pSpeech Manager not present " );

err = SpeakString( "\pThis is a test." );
if ( err != noErr )
	DoError( "\pError attempting to speak a phrase" );
while ( SpeechBusy() == true )

Speech Channels Review

Last month's Getting Started introduced speech channels. In order to specify which voice to use, you're program needs to allocate such a channel - so take a quick look at some of the code from last month.

A speech channel is a data structure that holds descriptive information about the voice that is to be used to speak. If you're program needs to alternate voices, you may want to create two or more speech channels - one for each voice. The Toolbox function NewSpeechChannel() creates a new speech channel record and returns a SpeechChannel - a pointer to that record.

SpeechChannel	channel;
OSErr					err;

err = NewSpeechChannel( nil, &channel );	

The first NewSpeechChannel() argument is a pointer to a voice specification data structure. Passing a value of nil as the first argument results in assigning the system default voice as the voice to be used by speech that comes eventually comes from this new channel.


To this point we've relied on the default voice - the voice the user's Mac uses when a program doesn't specify a particular voice. As shown in Figure 1, the_user uses the Speech control panel to determine which voice is to be the default voice.

Figure 1.The Speech control panel.

As shown on the left of Figure 2, the Speech control panel includes a pop-up menu that lets the user choose a voice. And as shown on the right of Figure 2, each voice in the Speech control panel pop-up menu corresponds to a voice in the System Folder of the user's Mac (in the Voices folder in the Extensions folder, to be exact).

Figure 2.Each voice in the Speech control panel pop-up menu corresponds to a system voice file

As shown in Figure 2, voices each have a name. So it might seem logical that your program would choose a voice based on its name. However, such is not the case. Voice files can be added and removed from the Voices folder, and there's no way of ensuring that any one particular voice is present in the Voices folder of every Mac user. So rather than specifying a voice by name, your program should specify one or more characteristics the desired voice should have. After that your program can examine the voices present on the user's machine in order to find an appropriate voice. When a match is found, the voice can be associated with a speech channel, and subsequent text that is sent to that channel will be spoken using the desired voice.

The data that makes up any one voice can be placed in a VoiceDescription data structure. Such a structure has several fields, the most important of which are the gender and age fields. We'll look at these fields after first learning how a VoiceDescription is obtained.

Obtaining the Description of a Voice

To find a voice that meets your needs, your program will examine the voices in the Voices folder of the user's machine. Begin this chore by determining how many voices are in that folder. A call to the Toolbox function CountVoices() returns this number in its one argument. Use the number of voices as a loop counter, where the body of the loop examines each voice for a suitable match.

OSErr	err;
short	numVoices;
short	i;

err = CountVoices( &numVoices);

for ( i = 1; i <= numVoices; i++ )
	// obtain a voice description for one voice

Obtaining a voice takes two steps. The first step is to get a VoiceSpec for a voice. The VoiceSpec consists of an identification number of the speech synthesizer for which the voice was created, and an identification number for the voice itself. Any number of voices can share the same speech synthesizer ID, but each voice of those voices with the same speech synthesizer ID will have a voice ID that is unique. Passing the Toolbox function GetIndVoice() an index of a voice in the Voices folder results in GetIndVoice() returning a VoiceSpec for that one voice. We'll be placing the call to GetIndVoice() within the above for loop, so we can use the current loop counter as the index:

VoiceSpec	theVoiceSpec;

err = GetIndVoice( i, &theVoiceSpec );

The VoiceSpec for a voice let's use access the VoiceDescription structure of that voice. Call the Toolbox function GetVoiceDescription() to do that.

VoiceDescription	voiceDesc;

err = GetVoiceDescription( theVoiceSpec, &voiceDesc, sizeof( voiceDesc ) );

The first argument to GetVoiceDescription() is the just-obtained VoiceSpec. The second argument is the VoiceDescription structure, and will be filled in by GetVoiceDescription(). The third argument is the number of bytes in the returned VoiceDescription structure. Use the sizeof() function to get this value. Here's how the voice-selecting code looks - so far:

OSErr						err;
short						numVoices;
short						i;
VoiceSpec				theVoiceSpec;
VoiceDescription	voiceDesc;

err = CountVoices( &numVoices);

for ( i = 1; i <= numVoices; i++ )
	err = GetIndVoice( i, &theVoiceSpec );

	err = GetVoiceDescription( theVoiceSpec, &voiceDesc, sizeof( voiceDesc ) );

	// examine the characteristics of this one voice

Selecting a Voice Based On Characteristics

At this point we know how to determine the number of voices in the user's Voices folder and then get a VoiceDescription for each voice. Now we need to look at how we select a voice based on information in that VoiceDescription structure. For most programmers the most meaningful fields of this structure are the gender field and the age field.

The gender field can have one of three values, each represented by an Apple-defined constant. The kMale and kFemale gender values are self-explanatory. The third gender value, kNeuter, describes a voice that is robotic-sounding. The age field holds the approximate age that a speaker of a voice would have.

If you want your program to generate speech using a male voice, you'll be testing the gender field of a VoiceDescription structure. Assuming we've used the above method to obtain a VoiceDescription for a voice, that test looks like this:

if ( voiceDesc.gender == kMale )

If you want your program to generate speech using a voice of a teenager, then you'd test the age field of a VoiceDescription structure. Again assuming a VoiceDescription has already been obtained, the code to accomplish the task at hand looks like this:

if ( ( voiceDesc.age > 12 ) && ( voiceDesc.age < 20 ) )
	// we've found a teenage voice

And if we want to specify a voice based on both the gender and the age? Combine both tests (which order you perform the tests in isn't important).

if ( ( voiceDesc.age > 12 ) && ( voiceDesc.age < 20 ) )
	if ( voiceDesc.gender == kMale )
		// we've found the voice of a teenage male

Using the Selected Voice

When we've found VoiceDescription information that matches our voice interests, we've found a suitable voice. If working from within a loop, now's the time to terminate the loop and make use of the VoiceSpec.

for ( i = 1; i <= numVoices; i++ )
	err = GetIndVoice( i, &theVoiceSpec );

	err = GetVoiceDescription( theVoiceSpec, &voiceDesc, sizeof( voiceDesc ) );

	if ( ( voiceDesc.age > 12 ) && ( voiceDesc.age < 20 ) )
		if ( voiceDesc.gender == kMale )
			// use the VoiceSpec held in variable theVoiceSpec

Last month you saw the creation of a new speech channel handled in this manner:

SpeechChannel	channel;

err = NewSpeechChannel( nil, &channel );

Using nil as the first argument meant the returned speech channel makes use of the default voice. If we now instead pass the just-obtained VoiceSpec, the speech channel will be created such that it makes use of the voice referenced by this VoiceSpec:

err = NewSpeechChannel( &theVoiceSpec, &channel );

Last month's Getting Started article introduced SpeakText(), the Toolbox function that speaks text from a buffer. The first argument to that routine is a SpeechChannel. Now that the channel variable references a speech channel that's associated with a specific voice, that voice (rather than the system default voice) will be used in the generation of the speech that SpeakText() emits.

err = SpeakText( channel, (Ptr)(str + 1), str[0] );


This month's program is SpeechVoice. When you run SpeechVoice you'll be presented with the dialog box pictured in Figure 3.

Figure 3.The SpeechVoice dialog box.

In the SpeechVoice dialog box you click on one of two radio buttons to select a voice to use, then click the Play Speech button to have the program speak the string "Is this the voice you're looking for?" using the selected voice. If the user's machine doesn't hold a voice that has the specified characteristics, the program instead uses the system default voice. You can repeat the process of choosing a voice and speaking the phrase as often as you wish. When finished, click the Quit button to end the program.

Creating the SpeechVoice Resources

Start your resource development by creating a new folder named SpeechVoice in your main CodeWarrior folder. Start ResEdit and create a new resource file named SpeechVoice.rsrc. Specify that the SpeechVoice folder act as the resource file's destination. This resource file requires four resources, two of which you're very familiar with: the one ALRT and one of the two DITLs. ALRT 128 and the corresponding DITL 128 together define the program's error-handling alert. If the SpeechVoice program doesn't experience a serious error while executing, then this alert won't be seen by the user.

The remaining two resources are DLOG 129 and its corresponding DITL 129. Together these resources define the dialog box shown back in Figure 3. The size, placement, and type of dialog that the DLOG defines aren't too critical, though it makes sense to select the type that doesn't have a close box (since the dialog is to remain on-screen until the user quits). Figure 4 shows the DITL that defines the type and placement of the items in the dialog box. To view the item numbers (as displayed in Figure 4), check Show Item Numbers from ResEdit's DITL menu. Take note of the item numbers - they'll appear as constants in the source code.

Figure 4.The SpeechVoice resources.

Creating the SpeechVoice Project

Create a new project by launching CodeWarrior and choosing New Project from the File menu. Use the MacOS:C_C++:MacOS Toolbox:MacOS Toolbox Multi-Target project stationary for the new project. Uncheck the Create Folder check box, then click the OK button. Name the project SpeechVoice.mcp and choose the existing SpeechVoice folder as the project's destination.

Add the SpeechVoice.rsrc resource file to the project, then remove the SillyBalls.rsrc file. You can remove the ANSI Libraries folder if you want as the project won't be making use of any ANSI C libraries.

If you plan on making a PowerPC version or fat version of the SpeechVoice program, add the SpeechLib library to the two PowerPC targets of your project. As mentioned in last month's Getting Started, you'll want to choose Add Files from the Project menu and then maneuver your way to this library. The most likely spot to find this library is in the Metrowerks CodeWarrior:MacOS Support:Libraries:MacOS Common folder. If it's not there, use Sherlock to search your hard drive. After adding the library to the project, CodeWarrior displays a dialog box asking you which targets to add the library to. Check the two PPC targets.

Now create a new source code window by choosing New from the File menu.. When you save the window, give it the name SpeechVoice.c. Choose Add Window from the Project menu to add the new empty file to the project. Now remove the SillyBalls.c placeholder file from the project window. You're all set to type in the source code.

If you want to save yourself a little typing, connect to the Internet and visit MacTech's ftp site at There you'll find the SpeechVoice source code file available for downloading.

Walking Through the Source Code

SpeechVoice.c begins with the inclusion of the Speech.h file:

/********************** includes *********************/

#include	<Speech.h>

After the #include comes a number of constants, most of which are resource-related. The constant kALRTResID holds the ID of the ALRT resource used to define the error-handling alert. kDLOGResID holds the ID of the DLOG resource used to define the program's dialog box. The constants kPlaySpeechButton, kSetSpeechWomanRadio, kSetSpeechRobotRadio, and kQuitButton each hold the item number of one of the items in the dialog box (compare these constants to the items in DITL 129 as shown back in Figure 4). The constant kNoMatchingVoiceErr is our own (arbitrary) value that we'll use in the event the program fails in its attempt to find an appropriate voice. The constants kControlOn and kControlOff are used in the turning on and off of the dialog box radio buttons.

/********************* constants *********************/

#define		kALRTResID						128 
#define		kDLOGResID						129
#define		kPlaySpeechButton			1
#define		kSetSpeechWomanRadio	2
#define		kSetSpeechRobotRadio	3
#define		kQuitButton					4
#define		kNoMatchingVoiceErr		-999
#define		kControlOn						1
#define		kControlOff					0

Next come the program's function prototypes.

/********************* functions *********************/

void						ToolBoxInit( void );
void						OpenSpeechDialog( void );
SpeechChannel	OpenOneSpeechChannel( VoiceSpec );
OSErr					GetVoiceSpecBasedOnAgeGender( VoiceSpec *, 
							short, short, short );
void						DoError( Str255 errorString );

The main() function of SpeechVoice begins with the declaration of three variables, all of which are used in the determination of whether speech generation is possible on the user's Mac.

/********************** main *************************/

void		main( void )
	OSErr	err;
	long		response;
	long		mask;

After the Toolbox is initialized the speech-related tests (as described in January's Getting Started) are made. After that main ends with a call to the application-defined function OpenSpeechDialog().

	err = Gestalt( gestaltSpeechAttr, &response );
	if ( err != noErr )
		DoError( "\pError calling Gestalt" );

	mask = 1 << gestaltSpeechMgrPresent;	
	if ( response & mask == 0 )
		DoError( "\pSpeech Manager not present " );


ToolBoxInit() remains the same as previous versions.

/******************** ToolBoxInit ********************/

void		ToolBoxInit( void )
	InitGraf( &qd.thePort );
	InitDialogs( nil );

OpenSpeechDialog() is responsible for opening, displaying, and monitoring the program's dialog box. It's also responsible for generating speech. The function begins with a host of variable declarations, each to be discussed at the time it's used in the function:

	DialogPtr				dialog;
	short						oldRadio;
	short						type;
	Handle						handle;
	Rect							rect;
	short						item;
	Boolean					done = false;
	OSErr						err;
	SpeechChannel		channel;
	Str255			str = "\pIs this the voice you're looking for?";
	short						ageLow;
	short						ageHigh;
	short						gender;
	VoiceSpec				defaultVoiceSpec;
	VoiceSpec				theVoiceSpec;
	VoiceDescription	voiceDesc;

Creating a new dialog box, and saving a pointer to it in variable dialog, is the first order of business:

	dialog = GetNewDialog( kDLOGResID, nil, (WindowPtr)-1L );

Both radio buttons will initially appear unselected, so it's up to us to turn one on. GetDialogItem() returns (among other pieces of information) a handle to the item named in the second argument. This generic handle is then typecast to a ControlHandle and used in a call to SetControlValue() to turn the radio button on. To let the routine know which radio button is now on, the variable oldRadio is set to match the item number of the just turned on button.

	GetDialogItem( dialog, kSetSpeechWomanRadio, &type, 
								&handle, &rect );
	SetControlValue( ( ControlHandle )handle, kControlOn );
	oldRadio = kSetSpeechWomanRadio;

Now we'll call ShowWindow() to handle the case of a DLOG resource that specified that the dialog box be initially visible. A call to SetPort() ensures that the newly opened dialog box is the window that receives updating.

	ShowWindow( dialog );
	SetPort( dialog );

Before jumping into the loop that will watch for, and handle, the user's actions, we need to take one more preliminary step. As shown earlier in this article, the GetVoiceDescription() function is usually called with a VoiceSpec as the first argument. If a value of nil is passed instead, then a VoiceDescription for the system default voice is returned. We'll do that here in order to get, and save, the default voice. If our later attempts to find a particular voice fail, we'll use the system voice.

	err = GetVoiceDescription( nil, &voiceDesc, sizeof( voiceDesc ) ); 
	defaultVoiceSpec = voiceDesc.voice;

We now begin the while loop that executes until the user clicks the dialog box Quit button. When the user clicks on any one of the four items in the dialog box, ModalDialog() returns the item number of the clicked-on item. We use that returned value in a switch statement:

	while ( done == false )
		ModalDialog( nil, &item );
		switch ( item )

If the user clicks on the radio button labeled Woman: 20 - 40 years, then the following code executes:

			case kSetSpeechWomanRadio:
				GetDialogItem( dialog, kSetSpeechWomanRadio, &type, &handle, &rect );
				SetControlValue( (ControlHandle)handle, kControlOn );
				GetDialogItem( dialog, oldRadio, &type, &handle, &rect );
				SetControlValue( (ControlHandle)handle, kControlOff);
				oldRadio = kSetSpeechWomanRadio;
				gender = kFemale;
				ageLow = 20;
				ageHigh = 40;

The above code turns the previously off button on, then turns the previously on button off (got that?). The newly turned on button is now considered the old button - which's information necessary for the next time a radio button is clicked. Three local variables, gender, ageLow, and ageHigh, are then set to values appropriate to the selected option. We'll use these values when the user eventually clicks the Play Speech button.

If the user instead clicks on the radio button labeled Robot: any age, then the following code executes. Recall that the Apple-defined constant kNeuter is used to specify a robotic voice. Since we've set up this option such that there's no age restrictions on the voice, we set the lowest acceptable age to 0 and the highest acceptable age to an arbitrarily large value (keeping in mind that a variable of type short can hold a value a little larger than 32,000).

			case kSetSpeechRobotRadio:
				GetDialogItem( dialog, kSetSpeechRobotRadio, &type, &handle, &rect );
				SetControlValue( (ControlHandle)handle, kControlOn );
				GetDialogItem( dialog, oldRadio, &type, &handle, &rect );
				SetControlValue( (ControlHandle)handle, kControlOff);
				oldRadio = kSetSpeechRobotRadio;
				gender = kNeuter;
				ageLow = 0;
				ageHigh = 30000;

Clicking either of the radio buttons doesn't cause a search for the desired voice to take place. Instead, we wait until the user clicks the Play Speech button. When the user takes that step, we call our application-defined function GetVoiceSpecBasedOnAgeGender(). When we pass this function the address of a VoiceSpec, a range of ages, and a gender, the function searches the system for a voice with matching characteristics and fills in the VoiceSpec variable with the voice specification for that voice (more on this function ahead):

			case kPlaySpeechButton:
				err = GetVoiceSpecBasedOnAgeGender( &theVoiceSpec, ageLow, ageHigh, gender );

GetVoiceSpecBasedOnAgeGender() is written such that a failed attempt to find a voice results in the returning of an error value of -999, or kNoMatchingVoiceErr. In such a situation we set our local theVoiceSpec variable to the previously saved default voice. For any other error value we instead call our own error-handling routine that displays a short message and terminates the program.

				if ( err == kNoMatchingVoiceErr )
					theVoiceSpec = defaultVoiceSpec;
				else if ( err != noErr )
					DoError( "\pError finding voice" );

Now it's time to open a new speech channel. In last month's Getting Started we wrote OpenOneSpeechChannel() to handle that task. Here we call a slightly modified version of that routine. In this new version we pass a VoiceSpec along for use in opening the channel. This is the VoiceSpec returned by GetVoiceSpecBasedOnAgeGender() (or the VoiceSpec of the default voice in the event that a matching voice wasn't found).

				channel = OpenOneSpeechChannel( theVoiceSpec );
				if ( channel == nil )
					DoError( "\pError opening a speech channel" );  

With a new speech channel open (and with that channel associated with the desired voice), it's time to test things out by speaking a phrase. Variable str holds the text to speak. The SpeakText() routine speaks the text of that string (refer to last month's Getting Started for the details on SpeakText()).

				err = SpeakText( channel, (Ptr)(str + 1), str[0] );
				if ( err != noErr )
					DoError( "\pError attempting to speak a phrase" );

				while ( SpeechBusy() == true )

				err = DisposeSpeechChannel( channel );
				if ( err != noErr )
					DoError( "\pError disposing speech channel" );

When the user is finished a click of the Quit button ends the dialog box loop, and ends the program.

			case kQuitButton:
				done = true;
	DisposeDialog( dialog ); 

OpenSpeechDialog() made calls to two application-defined routines: GetVoiceSpecBasedOnAgeGender() and OpenOneSpeechChannel(). Here's that first routine:

OSErr GetVoiceSpecBasedOnAgeGender( 
		VoiceSpec	*theVoiceSpec, 
		short			ageLow, 
		short			ageHigh, 
		short			gender )
	OSErr						err;
	short						numVoices;
	short						i;
	VoiceDescription	voiceDesc;
	err = CountVoices( &numVoices );
	if ( err != noErr )
		return ( err );

	for ( i = 1; i <= numVoices; i++ )
		err = GetIndVoice( i, theVoiceSpec );
		if ( err != noErr )
			return ( err );

		err = GetVoiceDescription( theVoiceSpec, &voiceDesc, 
                   sizeof( voiceDesc ) );   
		if ( err != noErr )
			return ( err );
		if ( (voiceDesc.age >= ageLow) && (voiceDesc.age <= ageHigh) )
			if ( voiceDesc.gender == gender )
				return ( noErr );
	return ( kNoMatchingVoiceErr );

We can get by with very little descriptive information about this routine because its code has already been described in this article. Recall that CountVoices() returns the number of voices in the user's system, and that number can then be used as a loop index. Each pass through the loop calls GetIndVoice() to obtain a voice specification for one voice, and then calls GetVoiceDescription() to get the voice description of that one voice. From the voice description it can be determined if a suitable match has been made. Here we look to see if the voice's age falls into the range of ageLow and ageHigh, and whether the voice is of the proper gender. If a match is made, return ends the loop. At this point theVoiceSpec holds the voice specification for a matching voice.

The second application-defined function called by OpenSpeechDialog() is OpenOneSpeechChannel(). As you saw in last month's article, this routine calls NewSpeechChannel() to create a new speech channel. Last month we passed nil as the first argument, telling NewSpeechChannel() to associate the system default voice with the channel. Here we pass in a voice specification and use that as the first argument, telling NewSpeechChannel() to associate this voice with the new channel.

/*************** OpenOneSpeechChannel ****************/

SpeechChannel OpenOneSpeechChannel( VoiceSpec theVoiceSpec )
  SpeechChannel channel;  
  OSErr     err;
  err = NewSpeechChannel( &theVoiceSpec, &channel );
  if ( err != noErr )
   err = DisposeSpeechChannel( channel );
   channel = nil;
  return ( channel );

DoError() is unchanged from prior versions. A call to this function results in the posting of an alert that holds an error message. After the alert is dismissed the program ends.

/********************** DoError **********************/

void		DoError( Str255 errorString )
	ParamText( errorString, "\p", "\p", "\p" );
	StopAlert( kALRTResID, nil );

Running SpeechVoice

Run SpeechVoice by choosing Run from CodeWarrior's Project menu. After the code is compiled, CodeWarrior launches the SpeechVoice program. After you're satisfied that the program does in fact select and use an appropriate voice, click the Quit button to quit.

Till Next Month...

Two months ago you saw how a Mac program can speak the text in a single string. Last month you learned how your program can use a buffer and a speech channel to speak larger amounts of text. And finally, this month you read up on how to select a voice and then use that voice in generating speech. You can learn still more about speech and voices by reading the Sound volume of Inside Macintosh. You can also learn more about voices by experimenting with the SpeechVoice code. For starters, try adding a third radio button that specifies different voice characteristics. By the time you have speech fully integrated into your own program, you'll be ready to read up on a new topic in next month's Getting Started article...

Apple Inc.
Microsoft Corpora
Google Inc.

MacTech Search:
Community Search:

Software Updates via MacUpdate

GarageSale 6.8 - Create outstanding eBay...
GarageSale is a slick, full-featured client application for the eBay online auction system. Create and manage your auctions with ease. With GarageSale, you can create, edit, track, and manage... Read more
ScreenFlow 4.5.3 - Create screen recordi...
Save 5% with the MacUpdate coupon code: 68031AE15F -- Buy now! ScreenFlow is powerful, easy-to-use screencasting software for the Mac. With ScreenFlow you can record the contents of your entire... Read more
NeoOffice 2014.3 - Mac-tailored, OpenOff...
NeoOffice is a complete office suite for OS X. With NeoOffice, users can view, edit, and save OpenOffice documents, PDF files, and most Microsoft Word, Excel, and PowerPoint documents. NeoOffice 3.x... Read more
Typinator 6.2 - Speedy and reliable text...
Typinator turbo-charges your typing productivity. Type a little. Typinator does the rest. We've all faced projects that require repetitive typing tasks. With Typinator, you can store commonly used... Read more
PopChar X 6.7 - Floating window shows av...
PopChar X helps you get the most out of your font collection. With its crystal-clear interface, PopChar X provides a frustration-free way to access any font's special characters. Expanded... Read more
Evernote 5.6.0 - Create searchable notes...
Evernote allows you to easily capture information in any environment using whatever device or platform you find most convenient, and makes this information accessible and searchable at anytime, from... Read more
Monosnap 2.2.2 - Versatile screenshot ut...
Monosnap allows you to save screenshots easily, conveniently, and quickly, sharing them with friends and colleagues at once. It's the ideal choice for anyone who is looking for a smart and fast... Read more
Tunnelblick 3.4beta36 - GUI for OpenVPN...
Tunnelblick is a free, open source graphic user interface for OpenVPN on OS X. It provides easy control of OpenVPN client and/or server connections. It comes as a ready-to-use application with all... Read more
SoftRAID 5.0.4 - High-quality RAID manag...
SoftRAID allows you to create and manage disk arrays to increase performance and reliability. SoftRAID's intuitive interface and powerful feature set makes this utility a must have for any Mac OS X... Read more
Audio Hijack Pro 2.11.3 - Record and enh...
Audio Hijack Pro drastically changes the way you use audio on your computer, giving you the freedom to listen to audio when you want and how you want. Record and enhance any audio with Audio Hijack... Read more

Latest Forum Discussions

See All

Why I Don’t Want to Upgrade to the iPhon...
I’ve been living with my iPhone 4S for the past two years or so, and if I was living in a world where I wasn’t bombarded with new phone announcements and people of the general public caring enough to upgrade constantly, I wouldn’t think my phone... | Read more »
Tictail Review
Tictail Review By Jennifer Allen on September 23rd, 2014 Our Rating: :: CLASSY SHOPPINGiPhone App - Designed for the iPhone, compatible with the iPad Tictail is an attractive and stylish way of looking for some great new clothes... | Read more »
Super Glyph Quest is Bringing More Match...
Super Glyph Quest is Bringing More Match-3 Magics to the App Store Soon Posted by Jessica Fisher on September 23rd, 2014 [ permalink ] Fans of Glyph Quest, by Alex Trowers and Leanne Bayley, | Read more »
Sword King Review
Sword King Review By Jennifer Allen on September 23rd, 2014 Our Rating: :: WEAK, SO WEAKUniversal App - Designed for iPhone and iPad Ever wanted to tap on a screen and assume you’ve killed a monster or two? Probably not, but just... | Read more »
Pangea Software Unveil Bundles and iOS 8...
Pangea Software Unveil Bundles and iOS 8 Updates Posted by Ellis Spice on September 23rd, 2014 [ permalink ] Universal App - Designed for iPhone and iPad | Read more »
Race Team Manager Review
Race Team Manager Review By Jennifer Allen on September 23rd, 2014 Our Rating: :: LIGHT RACINGUniversal App - Designed for iPhone and iPad Want to be in charge of a racing team but not be overwhelmed by tactics and options? Race... | Read more »
Kobojo Works with Creative Minds from Fi...
Kobojo has announced details for their newest game, Zodiac – a 2D persistent online RPG. Kobojo has put together a crack team of developers including composer Hitoshi Sakimoto and scenario writer Kazushige Nojima, whose work includes many of the... | Read more »
PlayHaus Review
PlayHaus Review By Amy Solomon on September 23rd, 2014 Our Rating: iPad Only App - Designed for the iPad PlayHaus is a interesting, stylish app for young children, full of cause-and-effect interactions.   | Read more »
Astropolo Review
Astropolo Review By Amy Solomon on September 23rd, 2014 Our Rating: Universal App - Designed for iPhone and iPad Astropolo is a space-themed children’s app with a great sense of style.   | Read more »
New E*TRADE Update Includes Touch ID and...
New E*TRADE Update Includes Touch ID and Home Screen Widget for iOS 8 Posted by Jessica Fisher on September 23rd, 2014 [ permalink ] | Read more »

Price Scanner via

Razer DeathAdder Chroma Gaming Mouse Upgraded...
Razer has announced the launch of their new Razer DeathAdder Chroma gaming mouse. Even if you’re not a gamer, the DeathAdder bears considering. I’m a fan of the hard-wired tracking accuracy,... Read more
Check Apple prices on your device with iTracx
MacPrices is proud to offer readers a free iOS app (iPhones, iPads, & iPod touch) and Android app (Google Play and Amazon App Store) called iTracx, which allows you to glance at today’s lowest... Read more
Refurbished 2013 MacBook Pros available for u...
The Apple Store has Apple Certified Refurbished 13″ and 15″ MacBook Pros available starting at $929. Apple’s one-year warranty is standard, and shipping is free: - 13″ 2.5GHz MacBook Pros (4GB RAM/... Read more
New iPhones Score Big in SquareTrade Breakabi...
SquareTrade has announced the iPhone 6 and its larger sibling, iPhone 6 Plus, performed impressively in Breakability testing, and each carries the top Breakability Score in their respective category... Read more
10 Million + First Weekend Sales Set New iPho...
Apple has announced it sold over 10 million new iPhone 6 and iPhone 6 Plus models, a new record, just three days after the launch on September 19. iPhone 6 and iPhone 6 Plus are now available in the... Read more
Betty Crocker Launches New Cookbook for iOS
Betty Crocker, a General Mills brand, an established food industry leader, has announced its free digital cookbook app has been refreshed to make cooking with iPhone, iPad and iPod touch even easier... Read more
Apple restocks some refurbished 2014 MacBook...
The Apple Store has restocked some Apple Certified Refurbished 2014 MacBook Airs, with prices starting at $769. An Apple one-year warranty is included with each MacBook, and shipping is free. These... Read more
13-inch 128GB MacBook Air on sale for $949, s...
B&H Photo has the new 2014 13″ 1.4GHz/128GB MacBook Air on sale for $949.99 including free shipping plus NY tax only. Their price is $50 off MSRP. B&H will also include free copies of... Read more
Apple offering free $25 iTunes Gift Card with...
The Apple Store is offering a free $25 iTunes Gift Card with the purchase of a $99 Apple TV for a limited time. Shipping is free. Read more
Apple refurbished iPod touch available for up...
The Apple Store has Apple Certified Refurbished 5th generation iPod touches available starting at $149. Apple’s one-year warranty is included with each model, and shipping is free. Most colors are... Read more

Jobs Board

Senior Event Manager, *Apple* Retail Market...
…This senior level position is responsible for leading and imagining the Apple Retail Team's global event strategy. Delivering an overarching brand story; in-store, Read more
*Apple* Solutions Consultant (ASC) - Apple (...
**Job Summary** The ASC is an Apple employee who serves as an Apple brand ambassador and influencer in a Reseller's store. The ASC's role is to grow Apple Read more
Project Manager / Business Analyst, WW *Appl...
…a senior project manager / business analyst to work within our Worldwide Apple Fulfillment Operations and the Business Process Re-engineering team. This role will work Read more
*Apple* Retail - Multiple Positions (US) - A...
Job Description: Sales Specialist - Retail Customer Service and Sales Transform Apple Store visitors into loyal Apple customers. When customers enter the store, Read more
Position Opening at *Apple* - Apple (United...
…customers purchase our products, you're the one who helps them get more out of their new Apple technology. Your day in the Apple Store is filled with a range of Read more
All contents are Copyright 1984-2011 by Xplain Corporation. All rights reserved. Theme designed by Icreon.