Mar 00 Challenge

Volume Number: 16 (2000)
Issue Number: 3
Column Tag: Programmer's Challenge

# Programmer's Challenge

by Bob Boonstra, Westford, MA

### Sum of Powers

A year or so back, Ken Slezak wrote me to say: "Recently my 7th grade son showed me an extra credit math problem. Given a number from 1 to 100, create that number from one, two, or three squared numbers added or subtracted together.... It turned out to be more difficult than I thought! Might this make an interesting programming challenge?" Well, Ken, we're about to find out.

First, though, we need to spice up the problem a bit. I've been trying to make the problems a little easier of late, but the 7th grade level, even the 7th grade extra credit level, would be a bit too easy. First, we'll expand the problem domain to include any positive number that fits into a signed 32-bit long integer. Second, we'll expand the number of terms allowed. And third, instead of limiting the problem to only squared numbers, we'll allow any positive exponent greater than 1.

The prototype for the code you should write is:

```typedef struct IntegerPower {
long value;		/* term is sign*value^power */
short power;	/* power = 2,3,4,... */
short sign;		/* +1 or -1 */
} IntegerPower;

long /* number of factors */ SumOfPowers (
long result,						/* terms need to sum to this result */
IntegerPower terms[],		/* return terms sign*value^power here */
long maxTerms						/* maximum number of terms allowed */
);
```

Your SumOfPowers routine will be called a number of times. Each time, you must identify a set of terms which sum to the specified result. Each term is a value raised to an integer power greater than 1, multiplied by a sign value. You should return the number of terms used to form the result, or zero if the result cannot be formed with maxTerms terms.

The winner will be the solution that forms the desired results with the minimum number of terms. A time penalty of one term will be added per 100 milliseconds of execution time. All solutions must be calculated at execution time; any entry that precalculates a solution will be disqualified.

This will be a native PowerPC Challenge, using the CodeWarrior Pro 5 environment. Solutions may be coded in C, C++, or Pascal. Solutions in Java will also be accepted, but Java entries must be accompanied by a test driver that uses the interface provided in the problem statement.

Ken Slezak earns 2 Challenge points for suggesting this month's Challenge.

### Three Months Ago Winner

Congratulations to Jonathan Taylor (Blandford, Dorset, U.K.) for winning the December, 1999, Costas Array Challenge. The Costas Challenge required contestants to produce all of the arrays of a given dimension that satisfied two criteria. First, each row and each column of the array must have exactly one "1", with the remaining entries being zeros. Second, the line connecting a pair of "1"s in an array may not have the same slope as the line connecting any other pair of "1"s. Costas arrays have properties that make it an ideal discrete waveform for some sensor applications. The number of Costas arrays of order N increases until N==17, after which it decreases at least until N==23. This Challenge attracted 16 entries, 13 of which worked correctly.

Jonathan's solution is recursive for array sizes greater than 17, but he gains speed by unrolling the code for smaller orders. He also took advantage of the fact that assembly language was permitted for this Challenge. For these smaller arrays, he maintained the position of the "1"s in each row in separate registers, eliminating a significant number of memory accesses. This optimization allowed Jonathan's entry to run approximately 15% faster than the second place entry by Ernst Munter. Jonathan included a nice description of the recursive and unrolled algorithms in the preface to his code, so I won't repeat his description here.

I evaluated every entry by having them calculate the Costas arrays of orders 5 through 13, inclusive. I then extended the tests to include arrays of orders through 15. Finally, I tested the top entries with arrays of orders through 17. In evaluating the correctness of the arrays generated, I made use of some code provided by Ludovic Nicolle. Ludo's code verified that each array produced met the criteria for a Costas array, and that each array was distinct from any other array. Solutions were judged correct if the number of valid, unique Costas arrays produced equaled the known number of Costas arrays of a given order. Judging correctness would have been more difficult if any of the solutions had completed problems where the number of Costas arrays is unknown; fortunately (or unfortunately, depending on your point of view), none of the entries completed problems of that size. Several contestants observed that execution time increased by a factor of ~5.3 from one order to the next, and some estimated that 1000 fast PowerMacs should be able to calculate the arrays of order 24 in a couple of weeks. Perhaps we should turn this over to the distributed.net folks.

The table below lists, for each of the solutions submitted, the cumulative time required to calculate the Costas arrays up to orders 13, 15, and 17. It also indicates the code size, data size, and programming language used by each solution. As usual, the number in parentheses after the entrant's name is the total number of Challenge points earned in all Challenges prior to this one.

 Name Time (13) (secs) Time (15) (secs) Time (17) (secs) Errors Code Size Data Size Lang Jonathan Taylor (4) 7.69 228.79 1246.12 0 21334 200 C/asm Ernst Munter (547) 9.31 270.32 1477.03 0 4668 8608 C++/asm Ludovic Nicolle (48) 10.02 289.08 N/A 0 2612 24 C++ Xan Gregg (116) 12.06 340.65 N/A 0 4428 8 C++ Rob Shearer (41) 12.06 346.45 N/A 0 158720 10300 C++ Willeke Rieken (61) 19.36 540.05 N/A 0 2420 8 C Tom Saxton (158) 33.16 1011.24 N/A 0 1500 8 C Greg Sadetsky (2) 40.74 1122.02 N/A 0 2044 8 C Michael Lewis 51.94 1592.36 N/A 0 1528 72 C Randy Boring (112) 57.32 1801.37 N/A 0 1516 24 C++ Sebastian Maurer (77) 59.83 1927.93 N/A 0 1216 74 C Brian Hall 125.35 3642.11 N/A 0 2880 412 C Brady Duga (10) 130.50 N/A N/A 0 4152 371 C++ D. L. N/A N/A N/A 1 C. L. N/A N/A N/A 1 B. B. N/A N/A N/A 1

### Top Contestants

Listed here are the Top Contestants for the Programmer's Challenge, including everyone who has accumulated 10 or more points during the past two years. The numbers below include points awarded over the 24 most recent contests, including points earned by this month's entrants.

 Rank Name Points 1. Munter, Ernst 247 2. Saxton, Tom 139 3. Maurer, Sebastian 67 4. Rieken, Willeke 51 5. Heithcock, JG 43 6. Shearer, Rob 43 7. Boring, Randy 39 8. Taylor, Jonathan 24 9. Brown, Pat 20 10. Jones, Dennis 12 11. Hart, Alan 11 12. Duga, Brady 10 13. Hewett, Kevin 10 14. Murphy, ACC 10 15. Selengut, Jared 10 16. Strout, Joe 10 17. Varilly, Patrick 10

There are three ways to earn points: (1) scoring in the top 5 of any Challenge, (2) being the first person to find a bug in a published winning solution or, (3) being the first person to suggest a Challenge that I use. The points you can win are:

 1st place 20 points 2nd place 10 points 3rd place 7 points 4th place 4 points 5th place 2 points finding bug 2 points suggesting Challenge 2 points

Here is Jonthan Taylor's winning Costas solution:

```Costas.c

/*
The algorithm works by attempting to find a position for a '1' in the first row of the array, and
then to work down the array attempting to fill each row in turn until there is no permissible move,
in which case the program backtracks to the previous row and tries the next permissible position.
At the beginning of each row, it calculates a bit-mask which shows which positions have been
forbidden by the choice of position on the previous rows.

There are two conditions that are detected:
1. A '1' is already in the column
2. Putting a '1' in this position would create three in a row:
Let a A and B be the x position of the '1' in two previous rows. Every
existing combination of A and B is checked in turn. C is another row's x
position. This row is the one which, when combined with B and C will
cause one of the positions in the current row to be forbidden. For
example:
1000 0000 row described by A
0000 0010
0010 0000 row described by B
0100 0000 row described by C
0001 0000
(the next row is the one currently being determined)
the '1' in row B is two right and two down of the one in A, so the
position two right and two down from the '1' in row C is forbidden. The
program will record this information appropriately

The program was a recursive function which stores the position of the 1
in each row (rowPos) in RAM, as well as the bitField for each row. The
bitField is a long where each bit represents one of the positions that
the '1' could be placed in the current row. If a bit is set, that
position is forbidden by the rules as applied to the rows that have
already been decided. Unused bits are also one. Note that each level of
recursion has its own bitField variable, each of which will be very
different.

In each recursion, it sets bitField to the appropriate value. If
bitField is now equal to -1, there are no permissible places to put the
'1' on this row, and the function returns to the previous recursion. If
it does not return, it then checks each bit in bitField to see if it is
a zero. If it is, that is a permissible place for the '1'. It records
this selection and calls the next level of recursion (when that level
returns, execution will resume by trying the next bit in bitField).

If by placing a '1' at this level the array has been successfully
filled, the array has the correct values entered in it, and the function
then returns to the previous level of recursion in order to continue the
search for the next solution. It should be noted that if an array is a
valid solution, then its horizontal reflection is also a different,
valid solution (for 2 or more rows). That is also recorded in the
solution list. This allows the running time to be roughly halved,
because once the first row has been half traversed, all the solutions
will have been found.

The problem with that is that the program must be stopped halfway
through the arrays in order to prevent there being repeats. The
condition is slightly different for even- and odd-sized arrays, so one
of two different tests is used depending on the array size.

This version was used for cases of n>17. Version 2 handles smaller
cases (much faster!). The underlying algorithm is the same, though. It
could easily be extended to higher ones by writing more code.

Version 2

I suspected that the limiting factor for the speed of the previous
example was probably memory accesses. In calculating bitField, the
positions of the '1's in previous rows are used over and over again.
However, they are not used in order, and neither I nor the complier
could find any effective way of caching the values in registers to save
on RAM accesses.  However, I realised there were in fact enough
registers to fit them all into registers.

This strategy is extremely fast, as it requires only one write to RAM
when calling the next recursion level, and one read when returning.
However there is a problem. I have been unable to discover a way of
indirectly addressing a register. It is not possible to design a loop
that will access, say, row_position[n] if it is stores in register n. It
was therefore necessary to unroll all the loops completely (If anyone
wants to tell me how I could have performed indirect addressing of
registers, I'd love to know!).

Since the loops were of variable length depending on the level of
recursion, it was necessary to write new code for every level of
recursion, with 'goto's to "call" the next level of recursion. This has
the huge drawback that new code must be written in order to allow the
program do determine larger arrays. The competition code was able to
deal with up to 17x17 arrays. What I should have done was to write a
program to generate the C code, since the unrolling is completely
deterministic, although fairly complex. As it was, I had to spend a long
time checking for errors in the unrolling.

By the 17th row, there are 140 calls of SetBit()! There are only 17 bits
to be set. This is a huge overkill if it turns out there is no place to
go anyway! As a result, I inserted the line:

if(tempBitField==-1) goto endSetForbiddenXX;

after every 5 SetBit() s. This allows the subsequent calls to be skipped
if there is already no place left to go. I have no idea how often they
should be put - I didn't have time to experiment - and they take up
valuable execution time. With some serious experimentation, a better
distribution of the 'if's could almost certainly be found.

This version has several limitations. The problem of loop unrolling
limiting the array size can be partly solved by producing an automatic C
code generator as described. The other potential problem is lack of
row-position ones. With current processors having 32 integer registers,
22x22 arrays could potentially be calculated. After that, the values
would have to spill over into RAM, causing some, but not initially much,
slowdown.

*/

#include "Costas.h"
#include <MacTypes.h>

// this macro is the assembly code for the detection of a three-in-a-row
// situation
subf       r0,C,r0;   \
slw        r0,kOne,r0;    \
or         tempBitField,tempBitField,r0

// this macro is the assembly code for detection of an already-filled
// column
or      tempBitField,tempBitField,r0

#pragma optimization_level 2
/* I don't remember exactly why this was needed. If the level is zero, the 'register' keywords are
ignored. If it is too high, maybe it just took for too long to compile without gaining anything... */

void DoCostasRow(long row);
long EnumerateCostasInRegisters(int n,unsigned long *costasArrays);

long      gCount,gMax_Rows;
unsigned long *gCostasArrays;

long EnumerateCostas(int n,unsigned long *costasArrays)
{
if(n>17)
{
gMax_Rows = n;
gCostasArrays=costasArrays;
DoCostasRow(0); //call recursive function
return(gCount);
}
else
return(EnumerateCostasInRegisters(n,costasArrays));
}

void DoCostasRow(long row)
{
register long     n,m,bitField,bitNum;
static long       doExit; //used to signal when all arrays found
static long       count;      //number found
static long       max_rows;   //dimensions of array
static long       blankBitField;
static long       rowPosStore[32];  //x position of the '1' //in each row
static unsigned long  *costasArrays;

if(row == 0)    //setup code
{
count = 0;
max_rows = gMax_Rows;
blankBitField = (-1)^((1<<max_rows)-1);
costasArrays=gCostasArrays;
doExit=false;
}
// This next bit detects which positions are forbidden
// See introduction for more details
bitField = blankBitField; //make all x positions permissible
for(n=0;n<row;n++)
{
bitField|=(1<<rowPosStore[n]);  //forbid (condition #1)
for(m=0;m<n;m++)                 //forbid (condition #2)
bitField |= (1<<
(rowPosStore[n]+rowPosStore[row-1-m]-rowPosStore[n-m-1]));
}
if(bitField == -1)
return;           //all positions are forbidden

for(bitNum=0;bitNum<max_rows;bitNum++)
//try each position in turn
{
if((bitField&(1<<bitNum)) == 0)   //permissible
{
//Next comes code for checking when we are done
//(see introduction)
if(max_rows%2 == 1)   //odd-sized array
{
if(row==1)
{
if(bitNum>max_rows/2 && rowPosStore[0]==max_rows/2)
{
gCount=count;
doExit=true;
return;
}
}
}
else if(row==0)   //even
{
if(bitNum>=max_rows/2)
{
gCount=count;
return;
}
}

rowPosStore[row] = bitNum;
if(row == max_rows-1)     //got a complete array
{
for(n=0;n<max_rows;n++)      //record it
costasArrays[count*max_rows+n] = (1<<rowPosStore[n]);
count++;
if(max_rows != 1)
{
for(n=0;n<max_rows;n++)
//and its horizontal reflection
costasArrays[count*max_rows+n] =
((1<<(max_rows-1))>>rowPosStore[n]);
count++;
}
else        //array is 1x1 - got the solution so exit
gCount=count;
return;
}
DoCostasRow(row+1);   //call next level of recursion
if(doExit) return;      //is set when all arrays are found
}
}
}

#define STORE0  RP00=bitNum
#define STORE1  RP01=bitNum
#define STORE2  RP02=bitNum
#define STORE3  RP03=bitNum
#define STORE4  RP04=bitNum
#define STORE5  RP05=bitNum
#define STORE6  RP06=bitNum
#define STORE7  RP07=bitNum
#define STORE8  RP08=bitNum
#define STORE9  RP09=bitNum
#define STORE10 RP10=bitNum
#define STORE11 RP11=bitNum
#define STORE12 RP12=bitNum
#define STORE13 RP13=bitNum
#define STORE14 RP14=bitNum
#define STORE15 RP15=bitNum

long EnumerateCostasInRegisters(int n,
unsigned long *costasArrays)
{
register long   bitField;
/*  this is a set of bits that records which
positions are forbidden due to the choices
for previous rows. A '1' means the position
is forbidden  */
register long tempBitField;
/*  when a new level of recursion is begun, this
stores the new value of 'bitField' as it is
calculated. But if there are no legal positions,
an immediate return occurs. bitField is only
updated if there is al least one position, since
the bitField value for the previous recursion
level must be stored in RAM - a slow process!  */
register long bitNum;
//the current x position in the row under consideration
register long   blankBitField;
register long   kOne;
//code is faster if this is a register instead of a constant
register long   RP00,RP01,RP02,RP03,RP04,RP05,RP06,RP07,
RP08,RP09,RP10,RP11,RP12,RP13,RP14,RP15;
//RPn ('row position n') stores the x coordinate of the '1' on row n
long        bitFieldStore[32];
/* these store the bitFields as calculated for previous recursion levels
long        count;            //number of solutions found

kOne=1;
count=0;
begin0:
blankBitField=(-1)^((kOne<<n)-1);
bitField=blankBitField;
bitFieldStore[0]=bitField;

for(bitNum=0;bitNum<n;)    //try every x position in turn
{
if((bitField&(kOne<<bitNum))==0)
//if this position not forbidden
{
//RowPosStore[row]=bitNum;
STORE0;

if(n==1)        //record layout!
{
costasArrays[count*n]=(1<<RP00);
//record in result array
count++;
return count; //return number found
}
goto begin1;    //try the next row...
}
returnPoint0:
bitNum++;
}
doReturn0:
return count;

begin1:
tempBitField=blankBitField;
asm { HadBit(RP00)  } //can't be below the '1' in the first row
bitField=tempBitField;
bitFieldStore[1]=bitField;

for(bitNum=0;bitNum<n;)
{
if((bitField&(kOne<<bitNum))==0)
{
//RowPosStore[row]=bitNum;
STORE1;

if(n==2)      //record layout!
{
if(RP00>=n/2)
return count;
costasArrays[count*n]=(1<<RP00);
costasArrays[count*n+1]=(1<<RP01);
count++;
costasArrays[count*n]=(2>>RP00);
costasArrays[count*n+1]=(2>>RP01);
count++;
goto doReturn1;
}
goto begin2;
}
returnPoint1:
bitNum++;
}
doReturn1:
//  bitNum=RowPosStore[row];
bitField=bitFieldStore[0];
goto returnPoint0;

begin2:
tempBitField=blankBitField;
setForbidden2:
asm{   HadBit(RP00) }  //set forbidden bits (condition #1)

asm{   SetBit(RP01,RP01,RP00)}
//set forbidden bits (condition #2)
endSetForbidden2:
if(tempBitField==-1)
//give up now if no positions permitted
goto returnPoint1;
bitField=tempBitField;
bitFieldStore[2]=bitField;

for(bitNum=0;bitNum<n;)
{
if((bitField&(kOne<<bitNum))==0)
{
//RowPosStore[row]=bitNum;
STORE2;

if(n==3)      //record layout!
{
if(RP01>n/2 && RP00==n/2)
return count;
costasArrays[count*n]=(1<<RP00);
costasArrays[count*n+1]=(1<<RP01);
costasArrays[count*n+2]=(1<<RP02);
count++;
costasArrays[count*n]=(4>>RP00);
costasArrays[count*n+1]=(4>>RP01);
costasArrays[count*n+2]=(4>>RP02);
count++;
goto doReturn2;
}
goto begin3;
}
returnPoint2:
bitNum++;
}
doReturn2:
//  bitNum=RowPosStore[row];
bitField=bitFieldStore[1];
goto returnPoint1;

begin3:
tempBitField=blankBitField;
setForbidden3:

asm{         SetBit(RP02,RP01,RP00)  }
asm{         SetBit(RP02,RP02,RP01)  }
asm{         SetBit(RP01,RP02,RP00)  }

endSetForbidden3:
if(tempBitField==-1)
goto returnPoint2;
bitField=tempBitField;
bitFieldStore[3]=bitField;

for(bitNum=0;bitNum<n;)
{
if((bitField&(kOne<<bitNum))==0)
{
//RowPosStore[row]=bitNum;
STORE3;
if(n==4)      //record layout!
{
if(RP00>=n/2)
return count;
costasArrays[count*n]=(1<<RP00);
costasArrays[count*n+1]=(1<<RP01);
costasArrays[count*n+2]=(1<<RP02);
costasArrays[count*n+3]=(1<<RP03);
count++;
costasArrays[count*n]=(8>>RP00);
costasArrays[count*n+1]=(8>>RP01);
costasArrays[count*n+2]=(8>>RP02);
costasArrays[count*n+3]=(8>>RP03);
count++;
goto doReturn3;
}
goto begin4;
}
returnPoint3:
bitNum++;
}
doReturn3:
//  bitNum=RowPosStore[row];
bitField=bitFieldStore[2];
goto returnPoint2;

begin4:
tempBitField=blankBitField;
setForbidden4:

SetBit(RP03,RP01,RP00)
SetBit(RP03,RP02,RP01)
SetBit(RP03,RP03,RP02)
SetBit(RP02,RP02,RP00)
SetBit(RP02,RP03,RP01)
SetBit(RP01,RP03,RP00)    }

endSetForbidden4:
if(tempBitField==-1)
goto returnPoint3;
bitField=tempBitField;
bitFieldStore[4]=bitField;

for(bitNum=0;bitNum<n;)
{
if((bitField&(kOne<<bitNum))==0)
{
//RowPosStore[row]=bitNum;
STORE4;
if(n==5)      //record layout!
{
if(RP01>n/2 && RP00==n/2)
return count;
costasArrays[count*n]=(1<<RP00);
costasArrays[count*n+1]=(1<<RP01);
costasArrays[count*n+2]=(1<<RP02);
costasArrays[count*n+3]=(1<<RP03);
costasArrays[count*n+4]=(1<<RP04);
count++;
costasArrays[count*n]=(16>>RP00);
costasArrays[count*n+1]=(16>>RP01);
costasArrays[count*n+2]=(16>>RP02);
costasArrays[count*n+3]=(16>>RP03);
costasArrays[count*n+4]=(16>>RP04);
count++;
goto doReturn4;
}
goto begin5;
}
returnPoint4:
bitNum++;
}
doReturn4:
//  bitNum=RowPosStore[row];
bitField=bitFieldStore[3];
goto returnPoint3;

begin5:
tempBitField=blankBitField;
setForbidden5:

SetBit(RP04,RP01,RP00)
SetBit(RP04,RP02,RP01)
SetBit(RP04,RP03,RP02)
SetBit(RP04,RP04,RP03)
SetBit(RP03,RP02,RP00)  }

/*In most cases for large row numbers, I suspect that all positions will be very quickly seen to
be forbidden. All the subsequent SetBit() calls are unnecessary in that instance. This check allows
them to be skipped out. It appears after every five SetBit() calls (see introduction for comments) */
if(tempBitField==-1)
goto endSetForbidden5;
asm {
SetBit(RP03,RP03,RP01)
SetBit(RP03,RP04,RP02)
SetBit(RP02,RP03,RP00)
SetBit(RP02,RP04,RP01)
SetBit(RP01,RP04,RP00)    }

endSetForbidden5:
if(tempBitField==-1)
goto returnPoint4;
bitField=tempBitField;
bitFieldStore[5]=bitField;

for(bitNum=0;bitNum<n;)
{
if((bitField&(kOne<<bitNum))==0)
{
//RowPosStore[row]=bitNum;
STORE5;

if(n==6)      //record layout!
{
if(RP00>=n/2)
return count;
costasArrays[count*n]=(1<<RP00);
costasArrays[count*n+1]=(1<<RP01);
costasArrays[count*n+2]=(1<<RP02);
costasArrays[count*n+3]=(1<<RP03);
costasArrays[count*n+4]=(1<<RP04);
costasArrays[count*n+5]=(1<<RP05);
count++;
costasArrays[count*n]=(32>>RP00);
costasArrays[count*n+1]=(32>>RP01);
costasArrays[count*n+2]=(32>>RP02);
costasArrays[count*n+3]=(32>>RP03);
costasArrays[count*n+4]=(32>>RP04);
costasArrays[count*n+5]=(32>>RP05);
count++;
goto doReturn5;
}
goto begin6;
}
returnPoint5:
bitNum++;
}
doReturn5:
//  bitNum=RowPosStore[row];
bitField=bitFieldStore[4];
goto returnPoint4;

/* the code then continues with begin6 up to begin16. The pattern the code is following after
each 'begin' should be clear now!

The size of the code grows with n^2, and becomes completely dominated by SetBit(). This is
definitely the place for further optimization! Several things spring to mind.
At the moment I suspect the SetBit() macros are executed in strict order, since the
tempBitField register is always being modified. By using a number of different registers
that are written to, it might be possible to allow a much greater degree of instruction
interleaving, which looks as if it could at least double the speed if done cleverly?

The other place for improvement is the the 'if(tempBitField==-1)' lines (see note in introduction).
*/

begin6:
tempBitField=blankBitField;
setForbidden6:

SetBit(RP05,RP01,RP00)
SetBit(RP05,RP02,RP01)
SetBit(RP05,RP03,RP02)
SetBit(RP05,RP04,RP03)
SetBit(RP05,RP05,RP04)  }
if(tempBitField==-1)
goto endSetForbidden6;
asm { SetBit(RP04,RP02,RP00)
SetBit(RP04,RP03,RP01)
SetBit(RP04,RP04,RP02)
SetBit(RP04,RP05,RP03)
SetBit(RP03,RP03,RP00)  }
if(tempBitField==-1)
goto endSetForbidden6;
asm { SetBit(RP03,RP04,RP01)
SetBit(RP03,RP05,RP02)
SetBit(RP02,RP04,RP00)
SetBit(RP02,RP05,RP01)
SetBit(RP01,RP05,RP00)  }

endSetForbidden6:
if(tempBitField==-1)
goto returnPoint5;
bitField=tempBitField;
bitFieldStore[6]=bitField;

for(bitNum=0;bitNum<n;)
{
if((bitField&(kOne<<bitNum))==0)
{
//RowPosStore[row]=bitNum;
STORE6;

if(n==7)      //record layout!
{
if(RP01>n/2 && RP00==n/2)
return count;
costasArrays[count*n]=(1<<RP00);
costasArrays[count*n+1]=(1<<RP01);
costasArrays[count*n+2]=(1<<RP02);
costasArrays[count*n+3]=(1<<RP03);
costasArrays[count*n+4]=(1<<RP04);
costasArrays[count*n+5]=(1<<RP05);
costasArrays[count*n+6]=(1<<RP06);
count++;
costasArrays[count*n]=(64>>RP00);
costasArrays[count*n+1]=(64>>RP01);
costasArrays[count*n+2]=(64>>RP02);
costasArrays[count*n+3]=(64>>RP03);
costasArrays[count*n+4]=(64>>RP04);
costasArrays[count*n+5]=(64>>RP05);
costasArrays[count*n+6]=(64>>RP06);
count++;
goto doReturn6;
}
goto begin7;
}
returnPoint6:
bitNum++;
}
doReturn6:
//  bitNum=RowPosStore[row];
bitField=bitFieldStore[5];
goto returnPoint5;

begin7:
tempBitField=blankBitField;
setForbidden7:

SetBit(RP06,RP01,RP00)
SetBit(RP06,RP02,RP01)
SetBit(RP06,RP03,RP02)
SetBit(RP06,RP04,RP03)
SetBit(RP06,RP05,RP04)  }
if(tempBitField==-1)
goto endSetForbidden7;
asm { SetBit(RP06,RP06,RP05)
SetBit(RP05,RP02,RP00)
SetBit(RP05,RP03,RP01)
SetBit(RP05,RP04,RP02)
SetBit(RP05,RP05,RP03)  }
if(tempBitField==-1)
goto endSetForbidden7;
asm { SetBit(RP05,RP06,RP04)
SetBit(RP04,RP03,RP00)
SetBit(RP04,RP04,RP01)
SetBit(RP04,RP05,RP02)
SetBit(RP04,RP06,RP03)  }
if(tempBitField==-1)
goto endSetForbidden7;
asm { SetBit(RP03,RP04,RP00)
SetBit(RP03,RP05,RP01)
SetBit(RP03,RP06,RP02)
SetBit(RP02,RP05,RP00)
SetBit(RP02,RP06,RP01)
SetBit(RP01,RP06,RP00)  }

endSetForbidden7:
if(tempBitField==-1)
goto returnPoint6;
bitField=tempBitField;
bitFieldStore[7]=bitField;

for(bitNum=0;bitNum<n;)
{
if((bitField&(kOne<<bitNum))==0)
{
//RowPosStore[row]=bitNum;
STORE7;

if(n==8)      //record layout!
{
if(RP00>=n/2)
return count;
costasArrays[count*n]=(1<<RP00);
costasArrays[count*n+1]=(1<<RP01);
costasArrays[count*n+2]=(1<<RP02);
costasArrays[count*n+3]=(1<<RP03);
costasArrays[count*n+4]=(1<<RP04);
costasArrays[count*n+5]=(1<<RP05);
costasArrays[count*n+6]=(1<<RP06);
costasArrays[count*n+7]=(1<<RP07);
count++;
costasArrays[count*n]=(128>>RP00);
costasArrays[count*n+1]=(128>>RP01);
costasArrays[count*n+2]=(128>>RP02);
costasArrays[count*n+3]=(128>>RP03);
costasArrays[count*n+4]=(128>>RP04);
costasArrays[count*n+5]=(128>>RP05);
costasArrays[count*n+6]=(128>>RP06);
costasArrays[count*n+7]=(128>>RP07);
count++;
goto doReturn7;
}
goto begin8;
}
returnPoint7:
bitNum++;
}
doReturn7:
//  bitNum=RowPosStore[row];
bitField=bitFieldStore[6];
goto returnPoint6;

begin8:
tempBitField=blankBitField;
setForbidden8:

SetBit(RP07,RP01,RP00)
SetBit(RP07,RP02,RP01)
SetBit(RP07,RP03,RP02)
SetBit(RP07,RP04,RP03)
SetBit(RP07,RP05,RP04)  }
if(tempBitField==-1)
goto endSetForbidden8;
asm {  SetBit(RP07,RP06,RP05)
SetBit(RP07,RP07,RP06)
SetBit(RP06,RP02,RP00)
SetBit(RP06,RP03,RP01)
SetBit(RP06,RP04,RP02)    }
if(tempBitField==-1)
goto endSetForbidden8;
asm { SetBit(RP06,RP05,RP03)
SetBit(RP06,RP06,RP04)
SetBit(RP06,RP07,RP05)
SetBit(RP05,RP03,RP00)
SetBit(RP05,RP04,RP01)    }
if(tempBitField==-1)
goto endSetForbidden8;
asm { SetBit(RP05,RP05,RP02)
SetBit(RP05,RP06,RP03)
SetBit(RP05,RP07,RP04)
SetBit(RP04,RP04,RP00)
SetBit(RP04,RP05,RP01)    }
if(tempBitField==-1)
goto endSetForbidden8;
asm { SetBit(RP04,RP06,RP02)
SetBit(RP04,RP07,RP03)
SetBit(RP03,RP05,RP00)
SetBit(RP03,RP06,RP01)    }
if(tempBitField==-1)
goto endSetForbidden8;
asm { SetBit(RP03,RP07,RP02)
SetBit(RP02,RP06,RP00)
SetBit(RP02,RP07,RP01)
SetBit(RP01,RP07,RP00)    }

endSetForbidden8:
if(tempBitField==-1)
goto returnPoint7;
bitField=tempBitField;
bitFieldStore[8]=bitField;

for(bitNum=0;bitNum<n;)
{
if((bitField&(kOne<<bitNum))==0)
{
//RowPosStore[row]=bitNum;
STORE8;

if(n==9)      //record layout!
{
if(RP01>n/2 && RP00==n/2)
return count;
costasArrays[count*n]=(1<<RP00);
costasArrays[count*n+1]=(1<<RP01);
costasArrays[count*n+2]=(1<<RP02);
costasArrays[count*n+3]=(1<<RP03);
costasArrays[count*n+4]=(1<<RP04);
costasArrays[count*n+5]=(1<<RP05);
costasArrays[count*n+6]=(1<<RP06);
costasArrays[count*n+7]=(1<<RP07);
costasArrays[count*n+8]=(1<<RP08);
count++;
costasArrays[count*n]=(256>>RP00);
costasArrays[count*n+1]=(256>>RP01);
costasArrays[count*n+2]=(256>>RP02);
costasArrays[count*n+3]=(256>>RP03);
costasArrays[count*n+4]=(256>>RP04);
costasArrays[count*n+5]=(256>>RP05);
costasArrays[count*n+6]=(256>>RP06);
costasArrays[count*n+7]=(256>>RP07);
costasArrays[count*n+8]=(256>>RP08);
count++;
goto doReturn8;
}
goto begin9;
}
returnPoint8:
bitNum++;
}
doReturn8:
//  bitNum=RowPosStore[row];
bitField=bitFieldStore[7];
goto returnPoint7;

begin9:
tempBitField=blankBitField;
setForbidden9:

asm { SetBit(RP08,RP01,RP00)  }
asm { SetBit(RP08,RP02,RP01)  }
asm { SetBit(RP08,RP03,RP02)  }
asm { SetBit(RP08,RP04,RP03)  }
asm { SetBit(RP08,RP05,RP04)  }
if(tempBitField==-1)
goto endSetForbidden9;
asm { SetBit(RP08,RP06,RP05)  }
asm { SetBit(RP08,RP07,RP06)  }
asm { SetBit(RP08,RP08,RP07)  }
asm { SetBit(RP07,RP02,RP00)  }
asm { SetBit(RP07,RP03,RP01)  }
if(tempBitField==-1)
goto endSetForbidden9;
asm { SetBit(RP07,RP04,RP02)  }
asm { SetBit(RP07,RP05,RP03)  }
asm { SetBit(RP07,RP06,RP04)  }
asm { SetBit(RP07,RP07,RP05)  }
asm { SetBit(RP07,RP08,RP06)  }
if(tempBitField==-1)
goto endSetForbidden9;
asm { SetBit(RP06,RP03,RP00)  }
asm { SetBit(RP06,RP04,RP01)  }
asm { SetBit(RP06,RP05,RP02)  }
asm { SetBit(RP06,RP06,RP03)  }
asm { SetBit(RP06,RP07,RP04)  }
if(tempBitField==-1)
goto endSetForbidden9;
asm { SetBit(RP06,RP08,RP05)  }
asm { SetBit(RP05,RP04,RP00)  }
asm { SetBit(RP05,RP05,RP01)  }
asm { SetBit(RP05,RP06,RP02)  }
asm { SetBit(RP05,RP07,RP03)  }
if(tempBitField==-1)
goto endSetForbidden9;
asm { SetBit(RP05,RP08,RP04)  }
asm { SetBit(RP04,RP05,RP00)  }
asm { SetBit(RP04,RP06,RP01)  }
asm { SetBit(RP04,RP07,RP02)  }
asm { SetBit(RP04,RP08,RP03)  }
if(tempBitField==-1)
goto endSetForbidden9;
asm { SetBit(RP03,RP06,RP00)  }
asm { SetBit(RP03,RP07,RP01)  }
asm { SetBit(RP03,RP08,RP02)  }
asm { SetBit(RP02,RP07,RP00)  }
asm { SetBit(RP02,RP08,RP01)  }
asm { SetBit(RP01,RP08,RP00)  }

endSetForbidden9:
if(tempBitField==-1)
goto returnPoint8;
bitField=tempBitField;
bitFieldStore[9]=bitField;

for(bitNum=0;bitNum<n;)
{
if((bitField&(kOne<<bitNum))==0)
{
//RowPosStore[row]=bitNum;
STORE9;

if(n==10)     //record layout!
{
if(RP00>=n/2)
return count;
costasArrays[count*n]=(1<<RP00);
costasArrays[count*n+1]=(1<<RP01);
costasArrays[count*n+2]=(1<<RP02);
costasArrays[count*n+3]=(1<<RP03);
costasArrays[count*n+4]=(1<<RP04);
costasArrays[count*n+5]=(1<<RP05);
costasArrays[count*n+6]=(1<<RP06);
costasArrays[count*n+7]=(1<<RP07);
costasArrays[count*n+8]=(1<<RP08);
costasArrays[count*n+9]=(1<<RP09);
count++;
costasArrays[count*n]=(512>>RP00);
costasArrays[count*n+1]=(512>>RP01);
costasArrays[count*n+2]=(512>>RP02);
costasArrays[count*n+3]=(512>>RP03);
costasArrays[count*n+4]=(512>>RP04);
costasArrays[count*n+5]=(512>>RP05);
costasArrays[count*n+6]=(512>>RP06);
costasArrays[count*n+7]=(512>>RP07);
costasArrays[count*n+8]=(512>>RP08);
costasArrays[count*n+9]=(512>>RP09);
count++;
goto doReturn9;
}
goto begin10;
}
returnPoint9:
bitNum++;
}
doReturn9:
//  bitNum=RowPosStore[row];
bitField=bitFieldStore[8];
goto returnPoint8;

begin10:
tempBitField=blankBitField;
setForbidden10:

asm { SetBit(RP09,RP01,RP00)  }
asm { SetBit(RP09,RP02,RP01)  }
asm { SetBit(RP09,RP03,RP02)  }
asm { SetBit(RP09,RP04,RP03)  }
asm { SetBit(RP09,RP05,RP04)  }
if(tempBitField==-1)
goto endSetForbidden10;
asm { SetBit(RP09,RP06,RP05)  }
asm { SetBit(RP09,RP07,RP06)  }
asm { SetBit(RP09,RP08,RP07)  }
asm { SetBit(RP09,RP09,RP08)  }
asm { SetBit(RP08,RP02,RP00)  }
if(tempBitField==-1)
goto endSetForbidden10;
asm { SetBit(RP08,RP03,RP01)  }
asm { SetBit(RP08,RP04,RP02)  }
asm { SetBit(RP08,RP05,RP03)  }
asm { SetBit(RP08,RP06,RP04)  }
asm { SetBit(RP08,RP07,RP05)  }
if(tempBitField==-1)
goto endSetForbidden10;
asm { SetBit(RP08,RP08,RP06)  }
asm { SetBit(RP08,RP09,RP07)  }
asm { SetBit(RP07,RP03,RP00)  }
asm { SetBit(RP07,RP04,RP01)  }
asm { SetBit(RP07,RP05,RP02)  }
if(tempBitField==-1)
goto endSetForbidden10;
asm { SetBit(RP07,RP06,RP03)  }
asm { SetBit(RP07,RP07,RP04)  }
asm { SetBit(RP07,RP08,RP05)  }
asm { SetBit(RP07,RP09,RP06)  }
asm { SetBit(RP06,RP04,RP00)  }
if(tempBitField==-1)
goto endSetForbidden10;
asm { SetBit(RP06,RP05,RP01)  }
asm { SetBit(RP06,RP06,RP02)  }
asm { SetBit(RP06,RP07,RP03)  }
asm { SetBit(RP06,RP08,RP04)  }
asm { SetBit(RP06,RP09,RP05)  }
if(tempBitField==-1)
goto endSetForbidden10;
asm { SetBit(RP05,RP05,RP00)  }
asm { SetBit(RP05,RP06,RP01)  }
asm { SetBit(RP05,RP07,RP02)  }
asm { SetBit(RP05,RP08,RP03)  }
asm { SetBit(RP05,RP09,RP04)  }
if(tempBitField==-1)
goto endSetForbidden10;
asm { SetBit(RP04,RP06,RP00)  }
asm { SetBit(RP04,RP07,RP01)  }
asm { SetBit(RP04,RP08,RP02)  }
asm { SetBit(RP04,RP09,RP03)  }
asm { SetBit(RP03,RP07,RP00)  }
if(tempBitField==-1)
goto endSetForbidden10;
asm { SetBit(RP03,RP08,RP01)  }
asm { SetBit(RP03,RP09,RP02)  }
asm { SetBit(RP02,RP08,RP00)  }
asm { SetBit(RP02,RP09,RP01)  }
asm { SetBit(RP01,RP09,RP00)  }

endSetForbidden10:
if(tempBitField==-1)
goto returnPoint9;

bitField=tempBitField;
bitFieldStore[10]=bitField;

for(bitNum=0;bitNum<n;)
{
if((bitField&(kOne<<bitNum))==0)
{
//RowPosStore[row]=bitNum;
STORE10;

if(n==11)     //record layout!
{
if(RP01>n/2 && RP00==n/2)
return count;
costasArrays[count*n]=(1<<RP00);
costasArrays[count*n+1]=(1<<RP01);
costasArrays[count*n+2]=(1<<RP02);
costasArrays[count*n+3]=(1<<RP03);
costasArrays[count*n+4]=(1<<RP04);
costasArrays[count*n+5]=(1<<RP05);
costasArrays[count*n+6]=(1<<RP06);
costasArrays[count*n+7]=(1<<RP07);
costasArrays[count*n+8]=(1<<RP08);
costasArrays[count*n+9]=(1<<RP09);
costasArrays[count*n+10]=(1<<RP10);
count++;
costasArrays[count*n]=(1024>>RP00);
costasArrays[count*n+1]=(1024>>RP01);
costasArrays[count*n+2]=(1024>>RP02);
costasArrays[count*n+3]=(1024>>RP03);
costasArrays[count*n+4]=(1024>>RP04);
costasArrays[count*n+5]=(1024>>RP05);
costasArrays[count*n+6]=(1024>>RP06);
costasArrays[count*n+7]=(1024>>RP07);
costasArrays[count*n+8]=(1024>>RP08);
costasArrays[count*n+9]=(1024>>RP09);
costasArrays[count*n+10]=(1024>>RP10);
count++;
goto doReturn10;
}
goto begin11;
}
returnPoint10:
bitNum++;
}
doReturn10:
//  bitNum=RowPosStore[row];
bitField=bitFieldStore[9];
goto returnPoint9;

begin11:
tempBitField=blankBitField;
setForbidden11:

asm { SetBit(RP10,RP01,RP00)  }
asm { SetBit(RP10,RP02,RP01)  }
asm { SetBit(RP10,RP03,RP02)  }
asm { SetBit(RP10,RP04,RP03)  }
asm { SetBit(RP10,RP05,RP04)  }
if(tempBitField==-1) goto endSetForbidden11;
asm { SetBit(RP10,RP06,RP05)  }
asm { SetBit(RP10,RP07,RP06)  }
asm { SetBit(RP10,RP08,RP07)  }
asm { SetBit(RP10,RP09,RP08)  }
asm { SetBit(RP10,RP10,RP09)  }
if(tempBitField==-1) goto endSetForbidden11;
asm { SetBit(RP09,RP02,RP00)  }
asm { SetBit(RP09,RP03,RP01)  }
asm { SetBit(RP09,RP04,RP02)  }
asm { SetBit(RP09,RP05,RP03)  }
asm { SetBit(RP09,RP06,RP04)  }
if(tempBitField==-1) goto endSetForbidden11;
asm { SetBit(RP09,RP07,RP05)  }
asm { SetBit(RP09,RP08,RP06)  }
asm { SetBit(RP09,RP09,RP07)  }
asm { SetBit(RP09,RP10,RP08)  }
asm { SetBit(RP08,RP03,RP00)  }
if(tempBitField==-1) goto endSetForbidden11;
asm { SetBit(RP08,RP04,RP01)  }
asm { SetBit(RP08,RP05,RP02)  }
asm { SetBit(RP08,RP06,RP03)  }
asm { SetBit(RP08,RP07,RP04)  }
asm { SetBit(RP08,RP08,RP05)  }
if(tempBitField==-1) goto endSetForbidden11;
asm { SetBit(RP08,RP09,RP06)  }
asm { SetBit(RP08,RP10,RP07)  }
asm { SetBit(RP07,RP04,RP00)  }
asm { SetBit(RP07,RP05,RP01)  }
asm { SetBit(RP07,RP06,RP02)  }
if(tempBitField==-1) goto endSetForbidden11;
asm { SetBit(RP07,RP07,RP03)  }
asm { SetBit(RP07,RP08,RP04)  }
asm { SetBit(RP07,RP09,RP05)  }
asm { SetBit(RP07,RP10,RP06)  }
asm { SetBit(RP06,RP05,RP00)  }
if(tempBitField==-1) goto endSetForbidden11;
asm { SetBit(RP06,RP06,RP01)  }
asm { SetBit(RP06,RP07,RP02)  }
asm { SetBit(RP06,RP08,RP03)  }
asm { SetBit(RP06,RP09,RP04)  }
asm { SetBit(RP06,RP10,RP05)  }
if(tempBitField==-1) goto endSetForbidden11;
asm { SetBit(RP05,RP06,RP00)  }
asm { SetBit(RP05,RP07,RP01)  }
asm { SetBit(RP05,RP08,RP02)  }
asm { SetBit(RP05,RP09,RP03)  }
asm { SetBit(RP05,RP10,RP04)  }
if(tempBitField==-1) goto endSetForbidden11;
asm { SetBit(RP04,RP07,RP00)  }
asm { SetBit(RP04,RP08,RP01)  }
asm { SetBit(RP04,RP09,RP02)  }
asm { SetBit(RP04,RP10,RP03)  }
asm { SetBit(RP03,RP08,RP00)  }
if(tempBitField==-1) goto endSetForbidden11;
asm { SetBit(RP03,RP09,RP01)  }
asm { SetBit(RP03,RP10,RP02)  }
asm { SetBit(RP02,RP09,RP00)  }
asm { SetBit(RP02,RP10,RP01)  }
asm { SetBit(RP01,RP10,RP00)  }

endSetForbidden11:
if(tempBitField==-1)
goto returnPoint10;

bitField=tempBitField;
bitFieldStore[11]=bitField;

for(bitNum=0;bitNum<n;)
{
if((bitField&(kOne<<bitNum))==0)
{
//RowPosStore[row]=bitNum;
STORE11;

if(n==12)     //record layout!
{
if(RP00>=n/2)
return count;
costasArrays[count*n]=(1<<RP00);
costasArrays[count*n+1]=(1<<RP01);
costasArrays[count*n+2]=(1<<RP02);
costasArrays[count*n+3]=(1<<RP03);
costasArrays[count*n+4]=(1<<RP04);
costasArrays[count*n+5]=(1<<RP05);
costasArrays[count*n+6]=(1<<RP06);
costasArrays[count*n+7]=(1<<RP07);
costasArrays[count*n+8]=(1<<RP08);
costasArrays[count*n+9]=(1<<RP09);
costasArrays[count*n+10]=(1<<RP10);
costasArrays[count*n+11]=(1<<RP11);
count++;
costasArrays[count*n]=(2048>>RP00);
costasArrays[count*n+1]=(2048>>RP01);
costasArrays[count*n+2]=(2048>>RP02);
costasArrays[count*n+3]=(2048>>RP03);
costasArrays[count*n+4]=(2048>>RP04);
costasArrays[count*n+5]=(2048>>RP05);
costasArrays[count*n+6]=(2048>>RP06);
costasArrays[count*n+7]=(2048>>RP07);
costasArrays[count*n+8]=(2048>>RP08);
costasArrays[count*n+9]=(2048>>RP09);
costasArrays[count*n+10]=(2048>>RP10);
costasArrays[count*n+11]=(2048>>RP11);
count++;
goto doReturn11;
}
goto begin12;
}
returnPoint11:
bitNum++;
}
doReturn11:
//  bitNum=RowPosStore[row];
bitField=bitFieldStore[10];
goto returnPoint10;

begin12:
tempBitField=blankBitField;
setForbidden12:

asm { SetBit(RP11,RP01,RP00)  }
asm { SetBit(RP11,RP02,RP01)  }
asm { SetBit(RP11,RP03,RP02)  }
asm { SetBit(RP11,RP04,RP03)  }
asm { SetBit(RP11,RP05,RP04)  }
if(tempBitField==-1) goto endSetForbidden12;
asm { SetBit(RP11,RP06,RP05)  }
asm { SetBit(RP11,RP07,RP06)  }
asm { SetBit(RP11,RP08,RP07)  }
asm { SetBit(RP11,RP09,RP08)  }
asm { SetBit(RP11,RP10,RP09)  }
if(tempBitField==-1) goto endSetForbidden12;
asm { SetBit(RP11,RP11,RP10)  }
asm { SetBit(RP10,RP02,RP00)  }
asm { SetBit(RP10,RP03,RP01)  }
asm { SetBit(RP10,RP04,RP02)  }
asm { SetBit(RP10,RP05,RP03)  }
if(tempBitField==-1) goto endSetForbidden12;
asm { SetBit(RP10,RP06,RP04)  }
asm { SetBit(RP10,RP07,RP05)  }
asm { SetBit(RP10,RP08,RP06)  }
asm { SetBit(RP10,RP09,RP07)  }
asm { SetBit(RP10,RP10,RP08)  }
if(tempBitField==-1) goto endSetForbidden12;
asm { SetBit(RP10,RP11,RP09)  }
asm { SetBit(RP09,RP03,RP00)  }
asm { SetBit(RP09,RP04,RP01)  }
asm { SetBit(RP09,RP05,RP02)  }
asm { SetBit(RP09,RP06,RP03)  }
if(tempBitField==-1) goto endSetForbidden12;
asm { SetBit(RP09,RP07,RP04)  }
asm { SetBit(RP09,RP08,RP05)  }
asm { SetBit(RP09,RP09,RP06)  }
asm { SetBit(RP09,RP10,RP07)  }
asm { SetBit(RP09,RP11,RP08)  }
if(tempBitField==-1) goto endSetForbidden12;
asm { SetBit(RP08,RP04,RP00)  }
asm { SetBit(RP08,RP05,RP01)  }
asm { SetBit(RP08,RP06,RP02)  }
asm { SetBit(RP08,RP07,RP03)  }
asm { SetBit(RP08,RP08,RP04)  }
if(tempBitField==-1) goto endSetForbidden12;
asm { SetBit(RP08,RP09,RP05)  }
asm { SetBit(RP08,RP10,RP06)  }
asm { SetBit(RP08,RP11,RP07)  }
asm { SetBit(RP07,RP05,RP00)  }
asm { SetBit(RP07,RP06,RP01)  }
if(tempBitField==-1) goto endSetForbidden12;
asm { SetBit(RP07,RP07,RP02)  }
asm { SetBit(RP07,RP08,RP03)  }
asm { SetBit(RP07,RP09,RP04)  }
asm { SetBit(RP07,RP10,RP05)  }
asm { SetBit(RP07,RP11,RP06)  }
if(tempBitField==-1) goto endSetForbidden12;
asm { SetBit(RP06,RP06,RP00)  }
asm { SetBit(RP06,RP07,RP01)  }
asm { SetBit(RP06,RP08,RP02)  }
asm { SetBit(RP06,RP09,RP03)  }
asm { SetBit(RP06,RP10,RP04)  }
if(tempBitField==-1) goto endSetForbidden12;
asm { SetBit(RP06,RP11,RP05)  }
asm { SetBit(RP05,RP07,RP00)  }
asm { SetBit(RP05,RP08,RP01)  }
asm { SetBit(RP05,RP09,RP02)  }
asm { SetBit(RP05,RP10,RP03)  }
if(tempBitField==-1) goto endSetForbidden12;
asm { SetBit(RP05,RP11,RP04)  }
asm { SetBit(RP04,RP08,RP00)  }
asm { SetBit(RP04,RP09,RP01)  }
asm { SetBit(RP04,RP10,RP02)  }
asm { SetBit(RP04,RP11,RP03)  }
if(tempBitField==-1) goto endSetForbidden12;
asm { SetBit(RP03,RP09,RP00)  }
asm { SetBit(RP03,RP10,RP01)  }
asm { SetBit(RP03,RP11,RP02)  }
asm { SetBit(RP02,RP10,RP00)  }
asm { SetBit(RP02,RP11,RP01)  }
asm { SetBit(RP01,RP11,RP00)  }

endSetForbidden12:
if(tempBitField==-1)
goto returnPoint11;

bitField=tempBitField;
bitFieldStore[12]=bitField;

for(bitNum=0;bitNum<n;)
{
if((bitField&(kOne<<bitNum))==0)
{
//RowPosStore[row]=bitNum;
STORE12;

if(n==13)     //record layout!
{
if(RP01>n/2 && RP00==n/2)
return count;
costasArrays[count*n]=(1<<RP00);
costasArrays[count*n+1]=(1<<RP01);
costasArrays[count*n+2]=(1<<RP02);
costasArrays[count*n+3]=(1<<RP03);
costasArrays[count*n+4]=(1<<RP04);
costasArrays[count*n+5]=(1<<RP05);
costasArrays[count*n+6]=(1<<RP06);
costasArrays[count*n+7]=(1<<RP07);
costasArrays[count*n+8]=(1<<RP08);
costasArrays[count*n+9]=(1<<RP09);
costasArrays[count*n+10]=(1<<RP10);
costasArrays[count*n+11]=(1<<RP11);
costasArrays[count*n+12]=(1<<RP12);
count++;
costasArrays[count*n]=(4096>>RP00);
costasArrays[count*n+1]=(4096>>RP01);
costasArrays[count*n+2]=(4096>>RP02);
costasArrays[count*n+3]=(4096>>RP03);
costasArrays[count*n+4]=(4096>>RP04);
costasArrays[count*n+5]=(4096>>RP05);
costasArrays[count*n+6]=(4096>>RP06);
costasArrays[count*n+7]=(4096>>RP07);
costasArrays[count*n+8]=(4096>>RP08);
costasArrays[count*n+9]=(4096>>RP09);
costasArrays[count*n+10]=(4096>>RP10);
costasArrays[count*n+11]=(4096>>RP11);
costasArrays[count*n+12]=(4096>>RP12);
count++;
goto doReturn12;
}
goto begin13;
}
returnPoint12:
bitNum++;
}
doReturn12:
//  bitNum=RowPosStore[row];
bitField=bitFieldStore[11];
goto returnPoint11;

begin13:
tempBitField=blankBitField;
setForbidden13:
asm { SetBit(RP12,RP01,RP00)  }
asm { SetBit(RP12,RP02,RP01)  }
asm { SetBit(RP12,RP03,RP02)  }
asm { SetBit(RP12,RP04,RP03)  }
asm { SetBit(RP12,RP05,RP04)  }
if(tempBitField==-1) goto endSetForbidden13;
asm { SetBit(RP12,RP06,RP05)  }
asm { SetBit(RP12,RP07,RP06)  }
asm { SetBit(RP12,RP08,RP07)  }
asm { SetBit(RP12,RP09,RP08)  }
asm { SetBit(RP12,RP10,RP09)  }
if(tempBitField==-1) goto endSetForbidden13;
asm { SetBit(RP12,RP11,RP10)  }
asm { SetBit(RP12,RP12,RP11)  }
asm { SetBit(RP11,RP02,RP00)  }
asm { SetBit(RP11,RP03,RP01)  }
asm { SetBit(RP11,RP04,RP02)  }
if(tempBitField==-1) goto endSetForbidden13;
asm { SetBit(RP11,RP05,RP03)  }
asm { SetBit(RP11,RP06,RP04)  }
asm { SetBit(RP11,RP07,RP05)  }
asm { SetBit(RP11,RP08,RP06)  }
asm { SetBit(RP11,RP09,RP07)  }
if(tempBitField==-1) goto endSetForbidden13;
asm { SetBit(RP11,RP10,RP08)  }
asm { SetBit(RP11,RP11,RP09)  }
asm { SetBit(RP11,RP12,RP10)  }
asm { SetBit(RP10,RP03,RP00)  }
asm { SetBit(RP10,RP04,RP01)  }
if(tempBitField==-1) goto endSetForbidden13;
asm { SetBit(RP10,RP05,RP02)  }
asm { SetBit(RP10,RP06,RP03)  }
asm { SetBit(RP10,RP07,RP04)  }
asm { SetBit(RP10,RP08,RP05)  }
asm { SetBit(RP10,RP09,RP06)  }
if(tempBitField==-1) goto endSetForbidden13;
asm { SetBit(RP10,RP10,RP07)  }
asm { SetBit(RP10,RP11,RP08)  }
asm { SetBit(RP10,RP12,RP09)  }
asm { SetBit(RP09,RP04,RP00)  }
asm { SetBit(RP09,RP05,RP01)  }
if(tempBitField==-1) goto endSetForbidden13;
asm { SetBit(RP09,RP06,RP02)  }
asm { SetBit(RP09,RP07,RP03)  }
asm { SetBit(RP09,RP08,RP04)  }
asm { SetBit(RP09,RP09,RP05)  }
asm { SetBit(RP09,RP10,RP06)  }
if(tempBitField==-1) goto endSetForbidden13;
asm { SetBit(RP09,RP11,RP07)  }
asm { SetBit(RP09,RP12,RP08)  }
asm { SetBit(RP08,RP05,RP00)  }
asm { SetBit(RP08,RP06,RP01)  }
asm { SetBit(RP08,RP07,RP02)  }
if(tempBitField==-1) goto endSetForbidden13;
asm { SetBit(RP08,RP08,RP03)  }
asm { SetBit(RP08,RP09,RP04)  }
asm { SetBit(RP08,RP10,RP05)  }
asm { SetBit(RP08,RP11,RP06)  }
asm { SetBit(RP08,RP12,RP07)  }
if(tempBitField==-1) goto endSetForbidden13;
asm { SetBit(RP07,RP06,RP00)  }
asm { SetBit(RP07,RP07,RP01)  }
asm { SetBit(RP07,RP08,RP02)  }
asm { SetBit(RP07,RP09,RP03)  }
asm { SetBit(RP07,RP10,RP04)  }
if(tempBitField==-1) goto endSetForbidden13;
asm { SetBit(RP07,RP11,RP05)  }
asm { SetBit(RP07,RP12,RP06)  }
asm { SetBit(RP06,RP07,RP00)  }
asm { SetBit(RP06,RP08,RP01)  }
asm { SetBit(RP06,RP09,RP02)  }
if(tempBitField==-1) goto endSetForbidden13;
asm { SetBit(RP06,RP10,RP03)  }
asm { SetBit(RP06,RP11,RP04)  }
asm { SetBit(RP06,RP12,RP05)  }
asm { SetBit(RP05,RP08,RP00)  }
asm { SetBit(RP05,RP09,RP01)  }
if(tempBitField==-1) goto endSetForbidden13;
asm { SetBit(RP05,RP10,RP02)  }
asm { SetBit(RP05,RP11,RP03)  }
asm { SetBit(RP05,RP12,RP04)  }
asm { SetBit(RP04,RP09,RP00)  }
asm { SetBit(RP04,RP10,RP01)  }
asm { SetBit(RP04,RP11,RP02)  }
if(tempBitField==-1) goto endSetForbidden13;
asm { SetBit(RP04,RP12,RP03)  }
asm { SetBit(RP03,RP10,RP00)  }
asm { SetBit(RP03,RP11,RP01)  }
asm { SetBit(RP03,RP12,RP02)  }
asm { SetBit(RP02,RP11,RP00)  }
asm { SetBit(RP02,RP12,RP01)  }
asm { SetBit(RP01,RP12,RP00)  }

endSetForbidden13:

if(tempBitField==-1)
goto returnPoint12;

bitField=tempBitField;
bitFieldStore[13]=bitField;

for(bitNum=0;bitNum<n;)
{
if((bitField&(kOne<<bitNum))==0)
{
//RowPosStore[row]=bitNum;
STORE13;

if(n==14)     //record layout!
{
if(RP00>=n/2)
return count;
costasArrays[count*n]=(1<<RP00);
costasArrays[count*n+1]=(1<<RP01);
costasArrays[count*n+2]=(1<<RP02);
costasArrays[count*n+3]=(1<<RP03);
costasArrays[count*n+4]=(1<<RP04);
costasArrays[count*n+5]=(1<<RP05);
costasArrays[count*n+6]=(1<<RP06);
costasArrays[count*n+7]=(1<<RP07);
costasArrays[count*n+8]=(1<<RP08);
costasArrays[count*n+9]=(1<<RP09);
costasArrays[count*n+10]=(1<<RP10);
costasArrays[count*n+11]=(1<<RP11);
costasArrays[count*n+12]=(1<<RP12);
costasArrays[count*n+13]=(1<<RP13);
count++;
costasArrays[count*n]=(8192>>RP00);
costasArrays[count*n+1]=(8192>>RP01);
costasArrays[count*n+2]=(8192>>RP02);
costasArrays[count*n+3]=(8192>>RP03);
costasArrays[count*n+4]=(8192>>RP04);
costasArrays[count*n+5]=(8192>>RP05);
costasArrays[count*n+6]=(8192>>RP06);
costasArrays[count*n+7]=(8192>>RP07);
costasArrays[count*n+8]=(8192>>RP08);
costasArrays[count*n+9]=(8192>>RP09);
costasArrays[count*n+10]=(8192>>RP10);
costasArrays[count*n+11]=(8192>>RP11);
costasArrays[count*n+12]=(8192>>RP12);
costasArrays[count*n+13]=(8192>>RP13);
count++;
goto doReturn13;
}
goto begin14;
}
returnPoint13:
bitNum++;
}
doReturn13:
//  bitNum=RowPosStore[row];
bitField=bitFieldStore[12];
goto returnPoint12;

begin14:
tempBitField=blankBitField;
setForbidden14:
asm { SetBit(RP13,RP01,RP00)  }
asm { SetBit(RP13,RP02,RP01)  }
asm { SetBit(RP13,RP03,RP02)  }
asm { SetBit(RP13,RP04,RP03)  }
asm { SetBit(RP13,RP05,RP04)  }
if(tempBitField==-1) goto endSetForbidden14;
asm { SetBit(RP13,RP06,RP05)  }
asm { SetBit(RP13,RP07,RP06)  }
asm { SetBit(RP13,RP08,RP07)  }
asm { SetBit(RP13,RP09,RP08)  }
asm { SetBit(RP13,RP10,RP09)  }
if(tempBitField==-1) goto endSetForbidden14;
asm { SetBit(RP13,RP11,RP10)  }
asm { SetBit(RP13,RP12,RP11)  }
asm { SetBit(RP13,RP13,RP12)  }
asm { SetBit(RP12,RP02,RP00)  }
asm { SetBit(RP12,RP03,RP01)  }
if(tempBitField==-1) goto endSetForbidden14;
asm { SetBit(RP12,RP04,RP02)  }
asm { SetBit(RP12,RP05,RP03)  }
asm { SetBit(RP12,RP06,RP04)  }
asm { SetBit(RP12,RP07,RP05)  }
asm { SetBit(RP12,RP08,RP06)  }
if(tempBitField==-1) goto endSetForbidden14;
asm { SetBit(RP12,RP09,RP07)  }
asm { SetBit(RP12,RP10,RP08)  }
asm { SetBit(RP12,RP11,RP09)  }
asm { SetBit(RP12,RP12,RP10)  }
asm { SetBit(RP12,RP13,RP11)  }
if(tempBitField==-1) goto endSetForbidden14;
asm { SetBit(RP11,RP03,RP00)  }
asm { SetBit(RP11,RP04,RP01)  }
asm { SetBit(RP11,RP05,RP02)  }
asm { SetBit(RP11,RP06,RP03)  }
asm { SetBit(RP11,RP07,RP04)  }
if(tempBitField==-1) goto endSetForbidden14;
asm { SetBit(RP11,RP08,RP05)  }
asm { SetBit(RP11,RP09,RP06)  }
asm { SetBit(RP11,RP10,RP07)  }
asm { SetBit(RP11,RP11,RP08)  }
asm { SetBit(RP11,RP12,RP09)  }
if(tempBitField==-1) goto endSetForbidden14;
asm { SetBit(RP11,RP13,RP10)  }
asm { SetBit(RP10,RP04,RP00)  }
asm { SetBit(RP10,RP05,RP01)  }
asm { SetBit(RP10,RP06,RP02)  }
asm { SetBit(RP10,RP07,RP03)  }
if(tempBitField==-1) goto endSetForbidden14;
asm { SetBit(RP10,RP08,RP04)  }
asm { SetBit(RP10,RP09,RP05)  }
asm { SetBit(RP10,RP10,RP06)  }
asm { SetBit(RP10,RP11,RP07)  }
asm { SetBit(RP10,RP12,RP08)  }
if(tempBitField==-1) goto endSetForbidden14;
asm { SetBit(RP10,RP13,RP09)  }
asm { SetBit(RP09,RP05,RP00)  }
asm { SetBit(RP09,RP06,RP01)  }
asm { SetBit(RP09,RP07,RP02)  }
asm { SetBit(RP09,RP08,RP03)  }
if(tempBitField==-1) goto endSetForbidden14;
asm { SetBit(RP09,RP09,RP04)  }
asm { SetBit(RP09,RP10,RP05)  }
asm { SetBit(RP09,RP11,RP06)  }
asm { SetBit(RP09,RP12,RP07)  }
asm { SetBit(RP09,RP13,RP08)  }
if(tempBitField==-1) goto endSetForbidden14;
asm { SetBit(RP08,RP06,RP00)  }
asm { SetBit(RP08,RP07,RP01)  }
asm { SetBit(RP08,RP08,RP02)  }
asm { SetBit(RP08,RP09,RP03)  }
asm { SetBit(RP08,RP10,RP04)  }
if(tempBitField==-1) goto endSetForbidden14;
asm { SetBit(RP08,RP11,RP05)  }
asm { SetBit(RP08,RP12,RP06)  }
asm { SetBit(RP08,RP13,RP07)  }
asm { SetBit(RP07,RP07,RP00)  }
asm { SetBit(RP07,RP08,RP01)  }
if(tempBitField==-1) goto endSetForbidden14;
asm { SetBit(RP07,RP09,RP02)  }
asm { SetBit(RP07,RP10,RP03)  }
asm { SetBit(RP07,RP11,RP04)  }
asm { SetBit(RP07,RP12,RP05)  }
asm { SetBit(RP07,RP13,RP06)  }
if(tempBitField==-1) goto endSetForbidden14;
asm { SetBit(RP06,RP08,RP00)  }
asm { SetBit(RP06,RP09,RP01)  }
asm { SetBit(RP06,RP10,RP02)  }
asm { SetBit(RP06,RP11,RP03)  }
asm { SetBit(RP06,RP12,RP04)  }
if(tempBitField==-1) goto endSetForbidden14;
asm { SetBit(RP06,RP13,RP05)  }
asm { SetBit(RP05,RP09,RP00)  }
asm { SetBit(RP05,RP10,RP01)  }
asm { SetBit(RP05,RP11,RP02)  }
asm { SetBit(RP05,RP12,RP03)  }
if(tempBitField==-1) goto endSetForbidden14;
asm { SetBit(RP05,RP13,RP04)  }
asm { SetBit(RP04,RP10,RP00)  }
asm { SetBit(RP04,RP11,RP01)  }
asm { SetBit(RP04,RP12,RP02)  }
asm { SetBit(RP04,RP13,RP03)  }
if(tempBitField==-1) goto endSetForbidden14;
asm { SetBit(RP03,RP11,RP00)  }
asm { SetBit(RP03,RP12,RP01)  }
asm { SetBit(RP03,RP13,RP02)  }
asm { SetBit(RP02,RP12,RP00)  }
asm { SetBit(RP02,RP13,RP01)  }
asm { SetBit(RP01,RP13,RP00)  }

endSetForbidden14:

if(tempBitField==-1)
goto returnPoint13;

bitField=tempBitField;
bitFieldStore[14]=bitField;

for(bitNum=0;bitNum<n;)
{
if((bitField&(kOne<<bitNum))==0)
{
//RowPosStore[row]=bitNum;
STORE14;

if(n==15)     //record layout!
{
if(RP01>n/2 && RP00==n/2)
return count;
costasArrays[count*n]=(1<<RP00);
costasArrays[count*n+1]=(1<<RP01);
costasArrays[count*n+2]=(1<<RP02);
costasArrays[count*n+3]=(1<<RP03);
costasArrays[count*n+4]=(1<<RP04);
costasArrays[count*n+5]=(1<<RP05);
costasArrays[count*n+6]=(1<<RP06);
costasArrays[count*n+7]=(1<<RP07);
costasArrays[count*n+8]=(1<<RP08);
costasArrays[count*n+9]=(1<<RP09);
costasArrays[count*n+10]=(1<<RP10);
costasArrays[count*n+11]=(1<<RP11);
costasArrays[count*n+12]=(1<<RP12);
costasArrays[count*n+13]=(1<<RP13);
costasArrays[count*n+14]=(1<<RP14);
count++;
costasArrays[count*n]=(16384>>RP00);
costasArrays[count*n+1]=(16384>>RP01);
costasArrays[count*n+2]=(16384>>RP02);
costasArrays[count*n+3]=(16384>>RP03);
costasArrays[count*n+4]=(16384>>RP04);
costasArrays[count*n+5]=(16384>>RP05);
costasArrays[count*n+6]=(16384>>RP06);
costasArrays[count*n+7]=(16384>>RP07);
costasArrays[count*n+8]=(16384>>RP08);
costasArrays[count*n+9]=(16384>>RP09);
costasArrays[count*n+10]=(16384>>RP10);
costasArrays[count*n+11]=(16384>>RP11);
costasArrays[count*n+12]=(16384>>RP12);
costasArrays[count*n+13]=(16384>>RP13);
costasArrays[count*n+14]=(16384>>RP14);
count++;
goto doReturn14;
}
goto begin15;
}
returnPoint14:
bitNum++;
}
doReturn14:
//  bitNum=RowPosStore[row];
bitField=bitFieldStore[13];
goto returnPoint13;

begin15:
tempBitField=blankBitField;
setForbidden15:
asm { SetBit(RP14,RP01,RP00)  }
asm { SetBit(RP14,RP02,RP01)  }
asm { SetBit(RP14,RP03,RP02)  }
asm { SetBit(RP14,RP04,RP03)  }
asm { SetBit(RP14,RP05,RP04)  }
if(tempBitField==-1) goto endSetForbidden15;
asm { SetBit(RP14,RP06,RP05)  }
asm { SetBit(RP14,RP07,RP06)  }
asm { SetBit(RP14,RP08,RP07)  }
asm { SetBit(RP14,RP09,RP08)  }
asm { SetBit(RP14,RP10,RP09)  }
if(tempBitField==-1) goto endSetForbidden15;
asm { SetBit(RP14,RP11,RP10)  }
asm { SetBit(RP14,RP12,RP11)  }
asm { SetBit(RP14,RP13,RP12)  }
asm { SetBit(RP14,RP14,RP13)  }
asm { SetBit(RP13,RP02,RP00)  }
if(tempBitField==-1) goto endSetForbidden15;
asm { SetBit(RP13,RP03,RP01)  }
asm { SetBit(RP13,RP04,RP02)  }
asm { SetBit(RP13,RP05,RP03)  }
asm { SetBit(RP13,RP06,RP04)  }
asm { SetBit(RP13,RP07,RP05)  }
if(tempBitField==-1) goto endSetForbidden15;
asm { SetBit(RP13,RP08,RP06)  }
asm { SetBit(RP13,RP09,RP07)  }
asm { SetBit(RP13,RP10,RP08)  }
asm { SetBit(RP13,RP11,RP09)  }
asm { SetBit(RP13,RP12,RP10)  }
if(tempBitField==-1) goto endSetForbidden15;
asm { SetBit(RP13,RP13,RP11)  }
asm { SetBit(RP13,RP14,RP12)  }
asm { SetBit(RP12,RP03,RP00)  }
asm { SetBit(RP12,RP04,RP01)  }
asm { SetBit(RP12,RP05,RP02)  }
if(tempBitField==-1) goto endSetForbidden15;
asm { SetBit(RP12,RP06,RP03)  }
asm { SetBit(RP12,RP07,RP04)  }
asm { SetBit(RP12,RP08,RP05)  }
asm { SetBit(RP12,RP09,RP06)  }
asm { SetBit(RP12,RP10,RP07)  }
if(tempBitField==-1) goto endSetForbidden15;
asm { SetBit(RP12,RP11,RP08)  }
asm { SetBit(RP12,RP12,RP09)  }
asm { SetBit(RP12,RP13,RP10)  }
asm { SetBit(RP12,RP14,RP11)  }
asm { SetBit(RP11,RP04,RP00)  }
if(tempBitField==-1) goto endSetForbidden15;
asm { SetBit(RP11,RP05,RP01)  }
asm { SetBit(RP11,RP06,RP02)  }
asm { SetBit(RP11,RP07,RP03)  }
asm { SetBit(RP11,RP08,RP04)  }
asm { SetBit(RP11,RP09,RP05)  }
if(tempBitField==-1) goto endSetForbidden15;
asm { SetBit(RP11,RP10,RP06)  }
asm { SetBit(RP11,RP11,RP07)  }
asm { SetBit(RP11,RP12,RP08)  }
asm { SetBit(RP11,RP13,RP09)  }
asm { SetBit(RP11,RP14,RP10)  }
if(tempBitField==-1) goto endSetForbidden15;
asm { SetBit(RP10,RP05,RP00)  }
asm { SetBit(RP10,RP06,RP01)  }
asm { SetBit(RP10,RP07,RP02)  }
asm { SetBit(RP10,RP08,RP03)  }
asm { SetBit(RP10,RP09,RP04)  }
if(tempBitField==-1) goto endSetForbidden15;
asm { SetBit(RP10,RP10,RP05)  }
asm { SetBit(RP10,RP11,RP06)  }
asm { SetBit(RP10,RP12,RP07)  }
asm { SetBit(RP10,RP13,RP08)  }
asm { SetBit(RP10,RP14,RP09)  }
if(tempBitField==-1) goto endSetForbidden15;
asm { SetBit(RP09,RP06,RP00)  }
asm { SetBit(RP09,RP07,RP01)  }
asm { SetBit(RP09,RP08,RP02)  }
asm { SetBit(RP09,RP09,RP03)  }
asm { SetBit(RP09,RP10,RP04)  }
if(tempBitField==-1) goto endSetForbidden15;
asm { SetBit(RP09,RP11,RP05)  }
asm { SetBit(RP09,RP12,RP06)  }
asm { SetBit(RP09,RP13,RP07)  }
asm { SetBit(RP09,RP14,RP08)  }
asm { SetBit(RP08,RP07,RP00)  }
if(tempBitField==-1) goto endSetForbidden15;
asm { SetBit(RP08,RP08,RP01)  }
asm { SetBit(RP08,RP09,RP02)  }
asm { SetBit(RP08,RP10,RP03)  }
asm { SetBit(RP08,RP11,RP04)  }
asm { SetBit(RP08,RP12,RP05)  }
if(tempBitField==-1) goto endSetForbidden15;
asm { SetBit(RP08,RP13,RP06)  }
asm { SetBit(RP08,RP14,RP07)  }
asm { SetBit(RP07,RP08,RP00)  }
asm { SetBit(RP07,RP09,RP01)  }
asm { SetBit(RP07,RP10,RP02)  }
if(tempBitField==-1) goto endSetForbidden15;
asm { SetBit(RP07,RP11,RP03)  }
asm { SetBit(RP07,RP12,RP04)  }
asm { SetBit(RP07,RP13,RP05)  }
asm { SetBit(RP07,RP14,RP06)  }
asm { SetBit(RP06,RP09,RP00)  }
if(tempBitField==-1) goto endSetForbidden15;
asm { SetBit(RP06,RP10,RP01)  }
asm { SetBit(RP06,RP11,RP02)  }
asm { SetBit(RP06,RP12,RP03)  }
asm { SetBit(RP06,RP13,RP04)  }
asm { SetBit(RP06,RP14,RP05)  }
if(tempBitField==-1) goto endSetForbidden15;
asm { SetBit(RP05,RP10,RP00)  }
asm { SetBit(RP05,RP11,RP01)  }
asm { SetBit(RP05,RP12,RP02)  }
asm { SetBit(RP05,RP13,RP03)  }
asm { SetBit(RP05,RP14,RP04)  }
if(tempBitField==-1) goto endSetForbidden15;
asm { SetBit(RP04,RP11,RP00)  }
asm { SetBit(RP04,RP12,RP01)  }
asm { SetBit(RP04,RP13,RP02)  }
asm { SetBit(RP04,RP14,RP03)  }
asm { SetBit(RP03,RP12,RP00)  }
if(tempBitField==-1) goto endSetForbidden15;
asm { SetBit(RP03,RP13,RP01)  }
asm { SetBit(RP03,RP14,RP02)  }
asm { SetBit(RP02,RP13,RP00)  }
asm { SetBit(RP02,RP14,RP01)  }
asm { SetBit(RP01,RP14,RP00)  }

endSetForbidden15:

if(tempBitField==-1)
goto returnPoint14;

bitField=tempBitField;
bitFieldStore[15]=bitField;

for(bitNum=0;bitNum<n;)
{
if((bitField&(kOne<<bitNum))==0)
{
//RowPosStore[row]=bitNum;
STORE15;

if(n==16)     //record layout!
{
if(RP00>=n/2)
return count;
costasArrays[count*n]=(1<<RP00);
costasArrays[count*n+1]=(1<<RP01);
costasArrays[count*n+2]=(1<<RP02);
costasArrays[count*n+3]=(1<<RP03);
costasArrays[count*n+4]=(1<<RP04);
costasArrays[count*n+5]=(1<<RP05);
costasArrays[count*n+6]=(1<<RP06);
costasArrays[count*n+7]=(1<<RP07);
costasArrays[count*n+8]=(1<<RP08);
costasArrays[count*n+9]=(1<<RP09);
costasArrays[count*n+10]=(1<<RP10);
costasArrays[count*n+11]=(1<<RP11);
costasArrays[count*n+12]=(1<<RP12);
costasArrays[count*n+13]=(1<<RP13);
costasArrays[count*n+14]=(1<<RP14);
costasArrays[count*n+15]=(1<<RP15);
count++;
costasArrays[count*n]=(32768>>RP00);
costasArrays[count*n+1]=(32768>>RP01);
costasArrays[count*n+2]=(32768>>RP02);
costasArrays[count*n+3]=(32768>>RP03);
costasArrays[count*n+4]=(32768>>RP04);
costasArrays[count*n+5]=(32768>>RP05);
costasArrays[count*n+6]=(32768>>RP06);
costasArrays[count*n+7]=(32768>>RP07);
costasArrays[count*n+8]=(32768>>RP08);
costasArrays[count*n+9]=(32768>>RP09);
costasArrays[count*n+10]=(32768>>RP10);
costasArrays[count*n+11]=(32768>>RP11);
costasArrays[count*n+12]=(32768>>RP12);
costasArrays[count*n+13]=(32768>>RP13);
costasArrays[count*n+14]=(32768>>RP14);
costasArrays[count*n+15]=(32768>>RP15);
count++;
goto doReturn15;
}
goto begin16;
}
returnPoint15:
bitNum++;
}
doReturn15:
//  bitNum=RowPosStore[row];
bitField=bitFieldStore[14];
goto returnPoint14;

begin16:
tempBitField=blankBitField;
setForbidden16:
asm { SetBit(RP15,RP01,RP00)  }
asm { SetBit(RP15,RP02,RP01)  }
asm { SetBit(RP15,RP03,RP02)  }
asm { SetBit(RP15,RP04,RP03)  }
asm { SetBit(RP15,RP05,RP04)  }
if(tempBitField==-1) goto endSetForbidden16;
asm { SetBit(RP15,RP06,RP05)  }
asm { SetBit(RP15,RP07,RP06)  }
asm { SetBit(RP15,RP08,RP07)  }
asm { SetBit(RP15,RP09,RP08)  }
asm { SetBit(RP15,RP10,RP09)  }
if(tempBitField==-1) goto endSetForbidden16;
asm { SetBit(RP15,RP11,RP10)  }
asm { SetBit(RP15,RP12,RP11)  }
asm { SetBit(RP15,RP13,RP12)  }
asm { SetBit(RP15,RP14,RP13)  }
asm { SetBit(RP15,RP15,RP14)  }
if(tempBitField==-1) goto endSetForbidden16;
asm { SetBit(RP14,RP02,RP00)  }
asm { SetBit(RP14,RP03,RP01)  }
asm { SetBit(RP14,RP04,RP02)  }
asm { SetBit(RP14,RP05,RP03)  }
asm { SetBit(RP14,RP06,RP04)  }
if(tempBitField==-1) goto endSetForbidden16;
asm { SetBit(RP14,RP07,RP05)  }
asm { SetBit(RP14,RP08,RP06)  }
asm { SetBit(RP14,RP09,RP07)  }
asm { SetBit(RP14,RP10,RP08)  }
asm { SetBit(RP14,RP11,RP09)  }
if(tempBitField==-1) goto endSetForbidden16;
asm { SetBit(RP14,RP12,RP10)  }
asm { SetBit(RP14,RP13,RP11)  }
asm { SetBit(RP14,RP14,RP12)  }
asm { SetBit(RP14,RP15,RP13)  }
asm { SetBit(RP13,RP03,RP00)  }
if(tempBitField==-1) goto endSetForbidden16;
asm { SetBit(RP13,RP04,RP01)  }
asm { SetBit(RP13,RP05,RP02)  }
asm { SetBit(RP13,RP06,RP03)  }
asm { SetBit(RP13,RP07,RP04)  }
asm { SetBit(RP13,RP08,RP05)  }
if(tempBitField==-1) goto endSetForbidden16;
asm { SetBit(RP13,RP09,RP06)  }
asm { SetBit(RP13,RP10,RP07)  }
asm { SetBit(RP13,RP11,RP08)  }
asm { SetBit(RP13,RP12,RP09)  }
asm { SetBit(RP13,RP13,RP10)  }
if(tempBitField==-1) goto endSetForbidden16;
asm { SetBit(RP13,RP14,RP11)  }
asm { SetBit(RP13,RP15,RP12)  }
asm { SetBit(RP12,RP04,RP00)  }
asm { SetBit(RP12,RP05,RP01)  }
asm { SetBit(RP12,RP06,RP02)  }
if(tempBitField==-1) goto endSetForbidden16;
asm { SetBit(RP12,RP07,RP03)  }
asm { SetBit(RP12,RP08,RP04)  }
asm { SetBit(RP12,RP09,RP05)  }
asm { SetBit(RP12,RP10,RP06)  }
asm { SetBit(RP12,RP11,RP07)  }
if(tempBitField==-1) goto endSetForbidden16;
asm { SetBit(RP12,RP12,RP08)  }
asm { SetBit(RP12,RP13,RP09)  }
asm { SetBit(RP12,RP14,RP10)  }
asm { SetBit(RP12,RP15,RP11)  }
asm { SetBit(RP11,RP05,RP00)  }
if(tempBitField==-1) goto endSetForbidden16;
asm { SetBit(RP11,RP06,RP01)  }
asm { SetBit(RP11,RP07,RP02)  }
asm { SetBit(RP11,RP08,RP03)  }
asm { SetBit(RP11,RP09,RP04)  }
asm { SetBit(RP11,RP10,RP05)  }
if(tempBitField==-1) goto endSetForbidden16;
asm { SetBit(RP11,RP11,RP06)  }
asm { SetBit(RP11,RP12,RP07)  }
asm { SetBit(RP11,RP13,RP08)  }
asm { SetBit(RP11,RP14,RP09)  }
asm { SetBit(RP11,RP15,RP10)  }
if(tempBitField==-1) goto endSetForbidden16;
asm { SetBit(RP10,RP06,RP00)  }
asm { SetBit(RP10,RP07,RP01)  }
asm { SetBit(RP10,RP08,RP02)  }
asm { SetBit(RP10,RP09,RP03)  }
asm { SetBit(RP10,RP10,RP04)  }
if(tempBitField==-1) goto endSetForbidden16;
asm { SetBit(RP10,RP11,RP05)  }
asm { SetBit(RP10,RP12,RP06)  }
asm { SetBit(RP10,RP13,RP07)  }
asm { SetBit(RP10,RP14,RP08)  }
asm { SetBit(RP10,RP15,RP09)  }
if(tempBitField==-1) goto endSetForbidden16;
asm { SetBit(RP09,RP07,RP00)  }
asm { SetBit(RP09,RP08,RP01)  }
asm { SetBit(RP09,RP09,RP02)  }
asm { SetBit(RP09,RP10,RP03)  }
asm { SetBit(RP09,RP11,RP04)  }
if(tempBitField==-1) goto endSetForbidden16;
asm { SetBit(RP09,RP12,RP05)  }
asm { SetBit(RP09,RP13,RP06)  }
asm { SetBit(RP09,RP14,RP07)  }
asm { SetBit(RP09,RP15,RP08)  }
asm { SetBit(RP08,RP08,RP00)  }
if(tempBitField==-1) goto endSetForbidden16;
asm { SetBit(RP08,RP09,RP01)  }
asm { SetBit(RP08,RP10,RP02)  }
asm { SetBit(RP08,RP11,RP03)  }
asm { SetBit(RP08,RP12,RP04)  }
asm { SetBit(RP08,RP13,RP05)  }
if(tempBitField==-1) goto endSetForbidden16;
asm { SetBit(RP08,RP14,RP06)  }
asm { SetBit(RP08,RP15,RP07)  }
asm { SetBit(RP07,RP09,RP00)  }
asm { SetBit(RP07,RP10,RP01)  }
asm { SetBit(RP07,RP11,RP02)  }
if(tempBitField==-1) goto endSetForbidden16;
asm { SetBit(RP07,RP12,RP03)  }
asm { SetBit(RP07,RP13,RP04)  }
asm { SetBit(RP07,RP14,RP05)  }
asm { SetBit(RP07,RP15,RP06)  }
asm { SetBit(RP06,RP10,RP00)  }
if(tempBitField==-1) goto endSetForbidden16;
asm { SetBit(RP06,RP11,RP01)  }
asm { SetBit(RP06,RP12,RP02)  }
asm { SetBit(RP06,RP13,RP03)  }
asm { SetBit(RP06,RP14,RP04)  }
asm { SetBit(RP06,RP15,RP05)  }
if(tempBitField==-1) goto endSetForbidden16;
asm { SetBit(RP05,RP11,RP00)  }
asm { SetBit(RP05,RP12,RP01)  }
asm { SetBit(RP05,RP13,RP02)  }
asm { SetBit(RP05,RP14,RP03)  }
asm { SetBit(RP05,RP15,RP04)  }
if(tempBitField==-1) goto endSetForbidden16;
asm { SetBit(RP04,RP12,RP00)  }
asm { SetBit(RP04,RP13,RP01)  }
asm { SetBit(RP04,RP14,RP02)  }
asm { SetBit(RP04,RP15,RP03)  }
asm { SetBit(RP03,RP13,RP00)  }
if(tempBitField==-1) goto endSetForbidden16;
asm { SetBit(RP03,RP14,RP01)  }
asm { SetBit(RP03,RP15,RP02)  }
asm { SetBit(RP02,RP14,RP00)  }
asm { SetBit(RP02,RP15,RP01)  }
asm { SetBit(RP01,RP15,RP00)  }

endSetForbidden16:

if(tempBitField==-1)
goto returnPoint15;

bitField=tempBitField;
bitFieldStore[16]=bitField;

for(bitNum=0;bitNum<n;)
{
if((bitField&(kOne<<bitNum))==0)
{
//RowPosStore[row]=bitNum;

if(n==17)     //record layout!
{
if(RP01>n/2 && RP00==n/2)
return count;
costasArrays[count*n]=(1<<RP00);
costasArrays[count*n+1]=(1<<RP01);
costasArrays[count*n+2]=(1<<RP02);
costasArrays[count*n+3]=(1<<RP03);
costasArrays[count*n+4]=(1<<RP04);
costasArrays[count*n+5]=(1<<RP05);
costasArrays[count*n+6]=(1<<RP06);
costasArrays[count*n+7]=(1<<RP07);
costasArrays[count*n+8]=(1<<RP08);
costasArrays[count*n+9]=(1<<RP09);
costasArrays[count*n+10]=(1<<RP10);
costasArrays[count*n+11]=(1<<RP11);
costasArrays[count*n+12]=(1<<RP12);
costasArrays[count*n+13]=(1<<RP13);
costasArrays[count*n+14]=(1<<RP14);
costasArrays[count*n+15]=(1<<RP15);
costasArrays[count*n+16]=(1<<bitNum);
count++;
costasArrays[count*n]=(65536>>RP00);
costasArrays[count*n+1]=(65536>>RP01);
costasArrays[count*n+2]=(65536>>RP02);
costasArrays[count*n+3]=(65536>>RP03);
costasArrays[count*n+4]=(65536>>RP04);
costasArrays[count*n+5]=(65536>>RP05);
costasArrays[count*n+6]=(65536>>RP06);
costasArrays[count*n+7]=(65536>>RP07);
costasArrays[count*n+8]=(65536>>RP08);
costasArrays[count*n+9]=(65536>>RP09);
costasArrays[count*n+10]=(65536>>RP10);
costasArrays[count*n+11]=(65536>>RP11);
costasArrays[count*n+12]=(65536>>RP12);
costasArrays[count*n+13]=(65536>>RP13);
costasArrays[count*n+14]=(65536>>RP14);
costasArrays[count*n+15]=(65536>>RP15);
costasArrays[count*n+16]=(65536>>bitNum);
count++;
goto doReturn16;
}
return count;
}
returnPoint16:
bitNum++;
}
doReturn16:
//  bitNum=RowPosStore[row];
bitField=bitFieldStore[15];
goto returnPoint15;
}
```

Community Search:
MacTech Search:

Garmin Express 4.0.18.0 - Manage your Ga...
Garmin Express is your essential tool for managing your Garmin devices. Update maps, golf courses and device software. You can even register your device. Update maps Update software Register your... Read more
jAlbum Pro 12.6.4 - Organize your digita...
jAlbum Pro has all the features you love in jAlbum, but comes with a commercial license. With jAlbum, you can create gorgeous custom photo galleries for the Web without writing a line of code!... Read more
jAlbum 12.6.4 - Create custom photo gall...
With jAlbum, you can create gorgeous custom photo galleries for the Web without writing a line of code! Beginner-friendly, with pro results Simply drag and drop photos into groups, choose a design... Read more
Microsoft Remote Desktop 8.0.16 - Connec...
With Microsoft Remote Desktop, you can connect to a remote PC and your work resources from almost anywhere. Experience the power of Windows with RemoteFX in a Remote Desktop client designed to help... Read more
Spotify 1.0.4.90. - Stream music, create...
Spotify is a streaming music service that gives you on-demand access to millions of songs. Whether you like driving rock, silky R&B, or grandiose classical music, Spotify's massive catalogue puts... Read more
djay Pro 1.1 - Transform your Mac into a...
djay Pro provides a complete toolkit for performing DJs. Its unique modern interface is built around a sophisticated integration with iTunes and Spotify, giving you instant access to millions of... Read more
Vivaldi 1.0.118.19 - Lightweight browser...
Vivaldi browser. In 1994, two programmers started working on a web browser. Our idea was to make a really fast browser, capable of running on limited hardware, keeping in mind that users are... Read more
Stacks 2.6.11 - New way to create pages...
Stacks is a new way to create pages in RapidWeaver. It's a plugin designed to combine drag-and-drop simplicity with the power of fluid layout. Features: Fluid Layout: Stacks lets you build pages... Read more
xScope 4.1.3 - Onscreen graphic measurem...
xScope is powerful set of tools that are ideal for measuring, inspecting, and testing on-screen graphics and layouts. Its tools float above your desktop windows and can be accessed via a toolbar,... Read more
Cyberduck 4.7 - FTP and SFTP browser. (F...
Cyberduck is a robust FTP/FTP-TLS/SFTP browser for the Mac whose lack of visual clutter and cleverly intuitive features make it easy to use. Support for external editors and system technologies such... Read more

## Latest Forum Discussions

This Week at 148Apps: April 20-24, 2015
The Apps of April How do you know what apps are worth your time and money? Just look to the review team at 148Apps. We sort through the chaos and find the apps you're looking for. The ones we love become Editor’s Choice, standing out above the many... | Read more »
Discover Your Reflexes With Minimalist G...
Discover O, BYOF Studios, may look simple at first with its' color matching premise and swipe controls, but as you speed up the task becomes more daunting. [Read more] | Read more »
Here's Another Roundup of Notable A...
Now that the Apple Watch is publically available (kind of), even more apps and games have been popping up for it. Some of them are updates to existing software, others are brand new. The main thing is that they're all for the Apple Watch, and if you... | Read more »
Use Batting Average and the Apple Watch...
Batting Average, by Pixolini, is designed to help you manage your statistics. Every time you go to bat, you can use your Apple Watch to track  your swings, strikes, and hits. [Read more] | Read more »
Celebrate Studio Pango's 3rd Annive...
It is time to party, Pangoland pals! Studio Pango is celebrating their 3rd birthday and their gift to you is a new update to Pangoland. [Read more] | Read more »
Become the World's Most Important D...
Must Deliver, by cherrypick games, is a top-down endless-runner witha healthy dose of the living dead. [Read more] | Read more »
SoundHound + LiveLyrics is Making its De...
SoundHound Inc. has announced that SoundHound + LiveLyrics, will be one of the first third-party apps to hit the Apple Watch. With  SoundHound you'll be able to tap on your watch and have the app recognize the music you are listening to, then have... | Read more »
Adobe Joins the Apple Watch Lineup With...
A whole tidal wave of apps are headed for the Apple Watch, and Adobe has joined in with 3 new ways to enhance your creativity and collaborate with others. The watch apps pair with iPad/iPhone apps to give you total control over your Adobe projects... | Read more »
Z Steel Soldiers, Sequel to Kavcom'...
Kavcom has released Z Steel Soldiers, which continues the story of the comedic RTS originally created by the Bitmap Brothers. [Read more] | Read more »
Seene Lets You Create 3D Images With You...
Seene, by Obvious Engineering, is a 3D capture app that's meant to allow you to create visually stunning 3D images with a tap of your finger, and then share them as a 3D photo, video or gif. [Read more] | Read more »

## Price Scanner via MacPrices.net

Final day for Best Buy’s 4 Day Sale: Up to \$3...
Best Buy has the new 2015 13″ 1.6GHz/128GB MacBook Air on sale for \$799.99 through April 27th. That’s \$200 off MSRP, and it’s the lowest price available for this new model from any reseller. Choose... Read more
College Student Deals: Additional \$50 off Mac...
Take an additional \$50 off all MacBooks and iMacs at Best Buy Online with their College Students Deals Savings, valid through May 9, 2015. Anyone with a valid .EDU email address can take advantage of... Read more
Save up to \$300 on a new Mac, \$30 on an iPad,...
Purchase a new Mac or iPad at The Apple Store for Education and take up to \$300 off MSRP. All teachers, students, and staff of any educational institution qualify for the discount. Shipping is free,... Read more
Zoho Business Apps for Apple Watch Put Select...
Pleasanton, California based Zoho has launched Zoho Business Apps for Apple Watch, a line of apps that extends Zoho business applications to let users perform select functions from an Apple Watch.... Read more
Universal Stylus Initiative Launched to Creat...
OEMs, stylus and touch controller manufacturers have announced the launch of Universal Stylus Initiative (USI), a new organization formed to develop and promote an industry specification for an... Read more
Amazon Shopping App for Apple Watch
With the new Amazon shopping app for Apple Watch, Amazon customers with one of the wearable devices can simply tap the app on the watch to purchase items in seconds, or save an idea for later. The... Read more
Mac Pros on sale for up to \$260 off MSRP
B&H Photo has Mac Pros on sale for up to \$260 off MSRP. Shipping is free, and B&H charges sales tax in NY only: - 3.7GHz 4-core Mac Pro: \$2799, \$200 off MSRP - 3.5GHz 6-core Mac Pro: \$3719.99... Read more
Apple refurbished Time Capsules available for...
The Apple Store has certified refurbished Time Capsules available for \$100 off MSRP. Apple’s one-year warranty is included with each Time Capsule, and shipping is free: - 2TB Time Capsule: \$199, \$100... Read more
Intel Compute Stick: A New Mini-Computing For...
The Intel Compute Stick, a new pocket-sized computer based on a quad-core Intel Atom processor running Windows 8.1 with Bing, is available now through Intel Authorized Dealers across much of the... Read more
Heal to Launch First One-Touch House Call Doc...
Santa Monica, California based Heal, a pioneer in on-demand personal health care services — will offer the first one-touch, on-demand house call doctor app for the Apple Watch. Heal’s Watch app,... Read more

## Jobs Board

*Apple* iOS Specialist - TCML (United States...
AppleiOS Specialist Senior Apple /iOS Administrator/Engineer responsible for configuration and distribution of desktop, laptop and mobile devices to State Employees Read more
*Apple* Client Systems Solution Specialist -...
…drive revenue and profit in assigned sales segment and/or region specific to the Apple brand and product sets. This person will work directly with CDW Account Managers Read more
*Apple* Retail - Multiple Positions (US) - A...
Sales Specialist - Retail Customer Service and Sales Transform Apple Store visitors into loyal Apple customers. When customers enter the store, you're also the Read more
*Apple* Support Technician IV - Jack Henry a...
Job Description Jack Henry & Associates is seeking an Apple Support Technician. This position while acting independently, ensures the proper day-to-day control of Read more
*Apple* Client Systems Solution Specialist -...
…drive revenue and profit in assigned sales segment and/or region specific to the Apple brand and product sets. This person will work directly with CDW Account Managers Read more