TweetFollow Us on Twitter

Nov 99 Challenge

Volume Number: 15 (1999)
Issue Number: 11
Column Tag: Programmer's Challenge

Programmer's Challenge

by Bob Boonstra, Westford, MA

Putting Green

I'll confess. While I'm as much of a sports fan as the next guy, I've never been able to get excited about golf. Not playing it, except maybe a round of miniature golf while on vacation each summer. Not watching it, which is the closest thing to watching grass grow that I can imagine. In fact, I have a hard time even thinking of golf as a sport. Real sports involve perspiration. Real sports involve being exhausted. Golf doesn't have either, as near as I have been able to tell, and therefore couldn't be worth getting involved in. Or so I thought.

Feeling this way, I didn't pay very much attention to the news that the 1999 Ryder Cup was going to be held relatively close by. And, when a ticket to the first day of matches came my way, I thought about passing it on to someone else. For a few days, that is. Until I started reading some of the growing volume of newspaper coverage and got an appreciation for what a really big deal people were making of this. It seemed even bigger than the baseball All Star game, also held in Boston this year. Baseball, also not the most intense sport, involves some amount of running and perspiration. So if the Ryder Cup was as big as the All Star game, it must be worth watching. So I decided to attend.

What, you must be asking, does any of this have to do with the Programmer's Challenge? Did someone substitute an issue of Sports Illustrated under the cover? No, it's just that the Ryder Cup provided the inspiration for this month's Challenge. Watching Tiger Woods make a birdie putt on the 10th, watching three teams miss essentially the same putt on the 14th, my mind turned to - why, physics, of course. How did they read (or misread) those breaks? Your Challenge will be to figure it out.

The Challenge this month is going to be to put some simulated balls into simulated holes on simulated greens. The greens will be provided to you as an array of three dimensional points, divided into an array of adjoining triangles. You will "putt" the ball by imparting a velocity. The ball will move according to a black box propagation model that incorporates the effects of gravity and drag. How are you supposed to know how the ball will move if you don't have the propagation code? The same way Tiger and Monty do it, of course - practice!

The prototype for the code you should write is:

#if defined(__cplusplus)
extern "C" {

#include <MacTypes.h>

typedef struct Point3DDouble {
 double x;
 double y;
 double z;
} Point3DDouble;

typedef struct Velocity2DDouble {
 double x;
 double y;
} Velocity2DDouble;

typedef struct MyTriangle {
  long pointIndices[3];   /* index of points comprising the triangle */
} MyTriangle;

typedef struct BallPosition {
  double time;
  Point3DDouble pt;
} BallPosition;

void InitGreen(
  Point3DDouble points[], /* green terrain description */
  long numPoints,         /* number of points */
  MyTriangle triangles[], /* triangles comprising the green */
  int numTriangles,       /* number of triangles */
  long pinTriangle,       /* index in triangles[] of the pin on this green */
  long numPracticeHoles,
            /* number of unscored (but timed) holes to practice on this green */
  long numScoredHoles       /* number of holes to be scored on this green */
void StartHole(   /* called to start play on this hole */
  Point3DDouble ballPosition, /* initial ball position on the green */
  Boolean practice   /* TRUE if this hole is practice */

Boolean /* quit */ MakePutt(
  Velocity2DDouble *xyVelocity
   /* return initial ball velocity in the z==0 plane */

void BallMovement(
  BallPosition ballPositions[],
                     /* provides ball movement in response to MakePutt */
  int numBallPositions, /* number of ballPositions provided */
  Boolean inHole   /* true if the ball went into the hole */

#if defined(__cplusplus)

For each green you play on, your InitGreen routine will be called. It will be provided with the coordinates of numPoints points and with the numTriangles triangles that describe the topography of the green. One of the triangles (triangles[pinTriangle]) will represent the pin position on this hole - you need to move the ball from the starting ballPosition so that it enters this triangle in order to complete the hole. InitGreen will also be given the number of practice holes and the number of scored holes to be played on this green, each with a different initial ballPosition. The practice holes will all be played before any of the nonpractice holes, and the number of practice holes will always be at least as great as the number of nonpractice holes.

For each hole, your StartHole routine will be called with the initial ballPosition for that hole. The practice indicator will be set to TRUE if this is a practice hole. Next, your MakePutt and BallMovement routines will be called repeatedly until you put the ball in the hole (inHole==TRUE) or until you quit (MakePutt returns TRUE). You might quit on a practice hole if you decide you don't need any more practice (saving execution time). You might quit on a nonpractice hole if you decide that the cost of completing the hole exceeds the benefit (see the notes on scoring below).

MakePutt returns the velocity vector you want to impart for this shot. It is important to remember that your stroke velocity is specified in the x-y plane. That velocity will be increased (by 1/cos(slope)) to compensate for terrain angle. As the ball moves, the velocity will accelerated due to the effect of gravity, and decelerated due to the effect of drag.

BallMovement provides you with the results of your shot as a sequence of numBallPositions BallPositions. Each BallPosition has a three-dimensional position and a time tag (in seconds relative to the start of this shot). The inHole flag will tell you whether the ball went into the hole, indicating that the hole is over.

Solutions will be scored based on the number of holes successfully completed, the number of strokes required to complete those holes, and the amount of execution time expended. Each completed nonpractice hole earns 100 points. Each nonpractice stroke reduces the score by 10 points, and each second of execution time (including practice time) costs 10 points. The winner will be the solution that earns the greatest number of total points.

This will be a native PowerPC Challenge, using the latest CodeWarrior environment. Solutions may be coded in C, C++, or Pascal. Solutions in Java will also be accepted this month. Java entries must be accompanied by a test driver that uses the interface provided in the problem statement.

Three Months Ago Winner

Congratulations to Rob Shearer (location unknown) for submitting the fastest solution to the August FlyBy Challenge. The objective was to repeatedly render a scene from a sequence of viewpoints and viewing angles. Both Rob and first-time contestant Joe Strout used QuickDraw3D to do the rendering, and both described their solutions as straightforward. Rob converted the triangles that describe the scene to be rendered into a trimesh. He gained a speed advantage by turning off double buffering in QuickDraw3D, which makes the quality of the animation poor, but which was not prohibited by the problem statement. Restoring double buffering is a one-line code change. As a final comment, I'll note that Rob's code demonstrates some good coding techniques (e.g., modularization, use of assert)

I tested the two programs using a single scene with ~3200 points and ~6000 triangles, rendered from a sequence of ~260 viewpoints. The table below lists, for both of the solutions submitted, the total execution time in milliseconds, the code and data size, and the programming language used. As usual, the number in parentheses after the entrant's name is the total number of Challenge points earned in all Challenges prior to this one..

Name Time (msec) Code SizeData Size Lang
Rob Shearer (14) 232035540 1366 C++
Joe Strout 23873 1632 76 C++

Top Contestants

Listed here are the Top Contestants for the Programmer's Challenge, including everyone who has accumulated 10 or more points during the past two years. The numbers below include points awarded over the 24 most recent contests, including points earned by this month's entrants.

1.Munter, Ernst217
2.Saxton, Tom106
3.Maurer, Sebastian70
4.Boring, Randy66
5.Rieken, Willeke51
6.Heithcock, JG39
7.Shearer, Rob34
8.Brown, Pat20
9.Hostetter, Mat20
10. Mallett, Jeff20
11.Nicolle, Ludovic20
12.Murphy, ACC14
13.Jones, Dennis12
14.Hart, Alan11
15.Hewett, Kevin10
16.Selengut, Jared10
17.Smith, Brad10
18.Strout, Joe10
19.Varilly, Patrick10

There are three ways to earn points: (1) scoring in the top 5 of any Challenge, (2) being the first person to find a bug in a published winning solution or, (3) being the first person to suggest a Challenge that I use. The points you can win are:

1st place20 points
2nd place10 points
3rd place7 points
4th place4 points
5th place2 points
finding bug2 points
suggesting Challenge2 points

Here is Rob's winning CHALLENGENAME solution:

Copyright © 1999 Rob Shearer

//  Very simple and straightforward implementation. It was
//  coded beginning to end in under three hours and worked
//  pretty much perfectly on the first build (only bug was
//  (1), below). It won't win any prizes for speed, though.
//  Only two caveats:
//  1)  As is documented in FlyByCamera.h, Quickdraw3D has
//    trouble with camera range with very low hither
//    values in relation to their yon values. This code
//    fixes that by pinning hither to a lower bound.
//  2)  FlyByView.h line 37 turns off double buffering.
//    This gives a tiny speed boost, but obviously makes
//    the animation not so nice. If you need pretty
//    animation, turn double buffering on.

#include "GuardedFlyBy.h"
#include <assert.h>
#include "Terrain.h"
#include "FlyByCamera.h"
#include "FlyByView.h"
#include <memory> // for auto_ptr
#include <Types.h>

// Globals are bad.
namespace FlyBy {
  auto_ptr<Terrain>       theTerrain;
  auto_ptr<FlyByCamera> theCamera;
  auto_ptr<FlyByView>     theView;

// -----------------------------
//    * InitFlyBy
// -----------------------------
//  Set up our globals and init Quickdraw3D

InitFlyBy(  CWindowPtr      theWindow,
      long      numPoints,
      const   TQ3Point3D  thePoints[],
      long      numTriangles,
      const   MyTriangles theTriangles[],
      const   TQ3ViewAngleAspectCameraData
      const   TQ3ColorRGB backgroundColor ) {
  assert( (long) Q3Initialize !=
      kUnresolvedCFragSymbolAddress );
  TQ3Status theStatus(Q3Initialize());
  assert(theStatus != kQ3Failure);
  using namespace FlyBy;
  theTerrain.reset(new Terrain(numPoints,
                  theTriangles ));
  theCamera.reset(new FlyByCamera(perspectiveData));
  theView.reset(new FlyByView(theWindow,

// -----------------------------
//    * GenerateView
// -----------------------------
//  Update the camera placement and render

GenerateView(TQ3CameraPlacement viewPoint) {
  using namespace FlyBy;

// -----------------------------
//    * TermFlyBy
// -----------------------------
//  Delete our globals and exit Quickdraw3D

TermFlyBy() {
  using namespace FlyBy;
  TQ3Status theStatus(Q3Exit());
  assert(theStatus != kQ3Failure);


#ifndef _H_Terrain
#define _H_Terrain

#include <QD3DGeometry.h>
#include <QD3DGroup.h>
#include <QD3DMath.h>
#include "auto_array_ptr.cp"
#include <assert.h>
#include "GuardedFlyBy.h"

class Terrain {
  Terrain(  long        inNumPoints,
        const TQ3Point3D  inPoints[],
        long        inNumTriangles,
        const MyTriangles inTriangles[] )
    : mModel(Q3OrderedDisplayGroup_New()) {
    // Allocate arrays for triangles and attributes
    auto_array_ptr<TQ3TriMeshTriangleData> theTriangles(
      new TQ3TriMeshTriangleData[inNumTriangles]
    assert(theTriangles.get() != nil);
    auto_array_ptr<TQ3ColorRGB> theTriColors(
      new TQ3ColorRGB[inNumTriangles]
    assert(theTriColors.get() != nil);
    auto_array_ptr<TQ3Vector3D> theNormals(
      new TQ3Vector3D[inNumTriangles]
    assert(theNormals.get() != nil);
    // Init attributes
    TQ3TriMeshAttributeData theTriAttributes[2];
    theTriAttributes[0].attributeType =
    theTriAttributes[0].data = theTriColors.get();
    theTriAttributes[0].attributeUseArray = nil;
    theTriAttributes[1].attributeType =
    theTriAttributes[1].data = theNormals.get();
    theTriAttributes[1].attributeUseArray = nil;
    // Loop over inTriangles, filling in triangle
    // and attribute values in TriMesh structures.
    for (long i(0); i < inNumTriangles; ++i) {
      theTriangles[i].pointIndices[0] =
      theTriangles[i].pointIndices[1] =
      theTriangles[i].pointIndices[2] =
      theTriColors[i] =
      TQ3Vector3D theFirstEdge;
      TQ3Vector3D theSecondEdge;
      Q3Vector3D_Cross( &theFirstEdge,
                &(theNormals[i]) );
      Q3Vector3D_Normalize( &(theNormals[i]),
                  &(theNormals[i]) );
    // Compute bounding box
    TQ3BoundingBox theBox;
    if (inNumPoints > 0) {
      theBox.min = theBox.max = inPoints[0];
      theBox.isEmpty = kQ3False;
    } else {
      theBox.isEmpty = kQ3True;
    for (long i(1); i < inNumPoints; ++i) {
      if (inPoints[i].x < theBox.min.x) {
        theBox.min.x = inPoints[i].x;
      } else if (inPoints[i].x > theBox.max.x) {
        theBox.max.x = inPoints[i].x;
      if (inPoints[i].y < theBox.min.y) {
        theBox.min.y = inPoints[i].y;
      } else if (inPoints[i].y > theBox.max.y) {
        theBox.max.y = inPoints[i].y;
      if (inPoints[i].z < theBox.min.z) {
        theBox.min.z = inPoints[i].z;
      } else if (inPoints[i].z > theBox.max.z) {
        theBox.max.z = inPoints[i].z;
    // Init TriMesh data
    TQ3TriMeshData theData;
    theData.triMeshAttributeSet = nil;
    theData.numTriangles = inNumTriangles;
    theData.triangles = theTriangles.get();
    theData.numTriangleAttributeTypes = 2;
    theData.triangleAttributeTypes = theTriAttributes;
    theData.numEdges = 0;
    theData.edges = nil;
    theData.numEdgeAttributeTypes = 0;
    theData.edgeAttributeTypes = nil;
    theData.numPoints = inNumPoints;
    theData.points = const_cast<TQ3Point3D*>(inPoints);
      // Yes, I know: bad form.
    theData.numVertexAttributeTypes = 0;
    theData.vertexAttributeTypes = nil;
    theData.bBox = theBox;
    // Create the TriMesh and add it to our model group
    TQ3GeometryObject theGeometry(Q3TriMesh_New(&theData));
    try {
      TQ3GroupPosition thePos =
        Q3Group_AddObject(mModel, theGeometry);
    } catch (...) { // Wish for C++ "finally" block...
  ~Terrain() {
  TQ3GroupObject GetQ3Group() { return mModel; };

  TQ3GroupObject mModel;

  Terrain(const Terrain& rhs);
  Terrain& operator=(const Terrain& rhs);



#ifndef _H_FlyByCamera
#define _H_FlyByCamera

#include <QD3DCamera.h>
#include <assert.h>

class FlyByCamera {
  FlyByCamera(const TQ3ViewAngleAspectCameraData& inData)
    : mCamera(Q3ViewAngleAspectCamera_New(&inData)) {
    // Quickdraw3D gets confused when the ratio of
    // hither to yon drops too low. All documentation
    // for this Challenge indicates that 0 will be
    // passed for hither, which causes significant
    // artifacts to appear. We pin hither to a lower
    // limit to prevent this (although the better
    // solution is probably to simply have a more
    // reasonable value of hither passed in).
    if (inData.cameraData.range.hither <
      inData.cameraData.range.yon/10000000) {
      TQ3CameraRange newRange;
      newRange.hither =
      newRange.yon = inData.cameraData.range.yon;
      TQ3Status theStatus =
        Q3Camera_SetRange(mCamera, &newRange);
      assert(theStatus != kQ3Failure);
  ~FlyByCamera() {
  TQ3CameraObject GetQ3Camera() { return mCamera; };
  void SetPlacement(const TQ3CameraPlacement& inWhere) {
    TQ3Status theStatus =
      Q3Camera_SetPlacement(mCamera, &inWhere);
    assert(theStatus != kQ3Failure);
  TQ3CameraObject mCamera;
  FlyByCamera(const FlyByCamera& rhs);
  FlyByCamera& operator=(const FlyByCamera& rhs);



#ifndef _H_FlyByView
#define _H_FlyByView

#include <QD3DView.h>
#include <QD3DDrawContext.h>
#include <QD3DRenderer.h>
#include <assert.h>

class FlyByView {
  FlyByView(  CWindowPtr    inWindow,
        TQ3CameraObject inCamera,
        TQ3ColorRGB   inBGColor )
    : mView(Q3View_New()) {
    // Set up the draw context
    // This doesn't seem like the most efficient way
    // to fill in these data structures, but hey...
    TQ3DrawContextData theDrawData;
    theDrawData.clearImageMethod =
    theDrawData.clearImageColor.a = 1;
    theDrawData.clearImageColor.r = inBGColor.r;
    theDrawData.clearImageColor.g = inBGColor.g;
    theDrawData.clearImageColor.b = inBGColor.b;
    theDrawData.paneState = kQ3False;
    theDrawData.maskState = kQ3False;
    // NOTE: We explicitly turn off double  buffering
    // for purposes of speed. This makes the animation
    // very ugly. If you want nicer animation then turn
    // double buffering back on.
    theDrawData.doubleBufferState = kQ3False;
    TQ3MacDrawContextData theMacData;
    theMacData.drawContextData = theDrawData;
    theMacData.window = (CWindowPtr) inWindow;
    theMacData.library = kQ3Mac2DLibraryNone;
    theMacData.viewPort = nil;
    theMacData.grafPort = nil;
    TQ3DrawContextObject theContext =
    try {
      TQ3Status theStatus =
        Q3View_SetDrawContext(mView, theContext);
      assert(theStatus != kQ3Failure);
    } catch (...) {
    // Set up the renderer
    TQ3RendererObject theRenderer =
    try {
      TQ3Status theStatus =
        Q3View_SetRenderer(mView, theRenderer);
      assert(theStatus != kQ3Failure);
    } catch (...) {
    // Set up the camera (which was passed in)
    TQ3Status theStatus =
      Q3View_SetCamera(mView, inCamera);
    assert(theStatus != kQ3Failure);
    // Set up the lighting
    TQ3LightData theData;
    theData.isOn = kQ3True;
    theData.brightness = 1;
    theData.color.r = 1;
    theData.color.g = 1;
    theData.color.b = 1;
    TQ3LightObject theLight =
    try {
      TQ3GroupObject theLights(Q3LightGroup_New());
      try {
        TQ3GroupPosition thePos =
          Q3Group_AddObject(theLights, theLight);
        TQ3Status theStatus =
          Q3View_SetLightGroup(mView, theLights);
        assert(theStatus != kQ3Failure);
      } catch (...) {
    } catch (...) {
  ~FlyByView() {
  void RenderModel(TQ3GroupObject inModel) {
    do {
      Q3DisplayGroup_Submit(inModel, mView);
    } while ( Q3View_EndRendering(mView)
          == kQ3ViewStatusRetraverse );
  TQ3ViewObject mView;

  FlyByView(const FlyByView& rhs);
  FlyByView& operator=(const FlyByView& rhs);


// A "smart pointer" template very similar to the standard
// auto_ptr but using array deletion to delete its pointee.

#ifndef _H_auto_array_ptr
#define _H_auto_array_ptr

#include <size_t.h>
template<class T>
class auto_array_ptr {

  explicit auto_array_ptr(T* p = nil);  
          // Create an auto pointer with
          // ownership of the given object.
  auto_array_ptr(auto_array_ptr<T>& rhs);   
          // Copy constructor sets pointer
          // passed in to nil; new auto pointer
          // assumes ownership of its pointee.
          // Destructor deletes pointee (with
          // delete[]).
  auto_array_ptr<T>&  operator=(auto_array_ptr<T>& rhs);  
          // Assignment sets pointer passed in
          // to nil, deletes current pointee,
          // and assumes ownership of rhs's old
          // pointee.
  // Emulate pointer/array behavior.
  T&      operator*() const;
  T*      operator->() const;
  T&      operator[](std::size_t inIndex);
  const T&  operator[](std::size_t inIndex) const;
  T*      get() const;
          // Return value of current dumb
          // pointer (for the purpose of
          // comparison).
  T*      release();
          // Relinquish ownership of pointee
          // and return value of current dumb
          // pointer.
  void    reset(T* p = nil);
          // Delete current pointee and assume
          // ownership of the given array.
  T*      pointee;



// Code for auto_array_ptr template.
// This file must be #include -ed somewhere in your project
// in order to instantiate the template code.

// This is an #include file, so add guard macros.
#ifndef _CP_auto_array_ptr
#define _CP_auto_array_ptr

#include "auto_array_ptr.h"

// -----------------------------
//    * auto_array_ptr
// -----------------------------
//  Constructor

template<class T>
auto_array_ptr<T>::auto_array_ptr(T* p)
  : pointee(p) {

// -----------------------------
//    * auto_array_ptr
// -----------------------------
//  Copy constructor
template<class T>
auto_array_ptr<T>::auto_array_ptr(auto_array_ptr<T>& rhs)
  : pointee(rhs.release()) {

// -----------------------------
//    * ~auto_array_ptr
// -----------------------------
//  Destructor calls array delete on pointee

template<class T>
auto_array_ptr<T>::~auto_array_ptr() {
  delete[] pointee;

// -----------------------------
//    * operator=
// -----------------------------
//  Assignment operator
template<class T>
auto_array_ptr<T>::operator=(auto_array_ptr<T>& rhs) {
  if (this != &rhs) reset(rhs.release());
  return *this;
// -----------------------------
//    * operator*
// -----------------------------
//  Dereference operator

template<class T>
auto_array_ptr<T>::operator*() const {
  // We could check for nil and throw an exception if
  // necessary, but we don't because (1) it's more
  // efficient not to do so and (2) if we do this array
  // won't act exactly as real arrays do when
  // dereferenced.
  return *pointee;

// -----------------------------
//    * operator->
// -----------------------------
//  Member selection operator
template<class T>
auto_array_ptr<T>::operator->() const {
  return pointee;

// -----------------------------
//    * operator[]
// -----------------------------
//  Element access operator (non-const version)
template<class T>
auto_array_ptr<T>::operator[](std::size_t inIndex) {
  // We could check for nil and throw an exception if
  // necessary, but we don't because (1) it's more
  // efficient not to do so and (2) if we do this array
  // won't act exactly as real array do when
  // accessed.
  return pointee[inIndex];

// -----------------------------
//    * operator[]
// -----------------------------
//  Element access operator (const version)
template<class T>
const T&
auto_array_ptr<T>::operator[](std::size_t inIndex) const {
  // We could check for nil and throw an exception if
  // necessary, but we don't because (1) it's more
  // efficient not to do so and (2) if we do this array
  // won't act exactly as real array do when
  // accessed.
  return pointee[inIndex];
// -----------------------------
//    * get
// -----------------------------
//  Returns dumb pointer to pointee

template<class T>
auto_array_ptr<T>::get() const {
  return pointee;

// -----------------------------
//    * release
// -----------------------------
//  Relinquish ownership of pointee

template<class T>
auto_array_ptr<T>::release() {
  T* oldPointee(pointee);
  pointee = nil;
  return oldPointee;

// -----------------------------
//    * reset
// -----------------------------
//  Delete pointee and assume ownership of the given object

template<class T>
auto_array_ptr<T>::reset(T* p) {
  delete[] pointee;
  pointee = p;  



#include <QD3D.h>
#include <QD3DLight.h>
#include <QD3DCamera.h>
#include <Windows.h>

#if defined(__cplusplus)
extern "C" {

typedef struct MyTriangles {
  long pointIndices[3];
  TQ3ColorRGB triangleColor;
} MyTriangles;

void InitFlyBy(
  CWindowPtr theWindow,
  long numPoints,
  const TQ3Point3D thePoints[],
  long numTriangles,
  const MyTriangles theTriangles[],
  const TQ3ViewAngleAspectCameraData  perspectiveData,
    // perspectiveData.cameraData.range.hither  = 0.0;
    // perspectiveData.cameraData.range.yon   = 1000.0
    // perspectiveData.cameraData.viewPort.origin.x = -1.0
    // perspectiveData.cameraData.viewPort.origin.y = 1.0
    // perspectiveData.cameraData.viewPort.width = 2.0
    // perspectiveData.cameraData.viewPort.height = 2.0
    // perspectiveData.fov        = 1.0
    // perspectiveData.aspectRatioXToY  =
    //   (float) (theWindow->portRect.right - theWindow->portRect.left) / 
    //   (float) (theWindow->portRect.bottom - theWindow->
  const TQ3ColorRGB backgroundColor
    // color of background
void GenerateView(
  TQ3CameraPlacement    viewPoint
void TermFlyBy(
#if defined(__cplusplus)


//  Added guard macros to "FlyBy.h"
#ifndef _H_GuardedFlyBy
#define _H_GuardedFlyBy
#include "FlyBy.h"

Community Search:
MacTech Search:

Software Updates via MacUpdate

Spotify - Stream music, creat...
Spotify is a streaming music service that gives you on-demand access to millions of songs. Whether you like driving rock, silky R&B, or grandiose classical music, Spotify's massive catalogue puts... Read more
Google Chrome 54.0.2840.71 - Modern and...
Google Chrome is a Web browser by Google, created to be a modern platform for Web pages and applications. It utilizes very fast loading of Web pages and has a V8 engine, which is a custom built... Read more
HoudahSpot 4.2.6 - Advanced file-search...
HoudahSpot is a powerful file search tool. Use HoudahSpot to locate hard-to-find files and keep frequently used files within reach. HoudahSpot will immediately feel familiar. It works just the way... Read more
Yummy FTP Pro 1.11.11 - $29.99
Yummy FTP Pro is an advanced Mac file transfer app which provides a full-featured professional toolkit combined with blazing speeds and impeccable reliability, so whether you want to transfer a few... Read more
Shimo - VPN client – for everyon...
Shimo is the most versatile VPN client for OS X and it enables really everybody to master secure network. It supports more protocols than any other VPN application out there! CiscoVPN, AnyConnect,... Read more
Dash 3.4.0 - Instant search and offline...
Dash is an API documentation browser and code snippet manager. Dash helps you store snippets of code, as well as instantly search and browse documentation for almost any API you might use (for a full... Read more
AirRadar 3.1.9 - $9.95
With AirRadar, scanning for wireless networks is now easier and more personalized! It allows you to scan for open networks and tag them as favourites or filter them out. View detailed network... Read more
Printopia 2.1.22 - Share Mac printers wi...
Run Printopia on your Mac to share its printers to any capable iPhone, iPad or iPod Touch. Printopia will also add virtual printers, allowing you to save print-outs to your Mac and send to apps.... Read more
SteerMouse 5.0 - Powerful third-party mo...
SteerMouse is an advanced driver for USB and Bluetooth mice. It also supports Apple Mighty Mouse very well. SteerMouse can assign various functions to buttons that Apple's software does not allow,... Read more
Alarm Clock Pro 10.2.5 - $19.95
Alarm Clock Pro isn't just an ordinary alarm clock. Use it to wake you up in the morning, send and compose e-mails, remind you of appointments, randomize the iTunes selection, control an internet... Read more

Latest Forum Discussions

See All

Game of Dice is now available on Faceboo...
After celebrating its anniversary in style with a brand new update, there’s even more excitement in store for Game of Dice has after just being launched on Facebook Gameroom. A relatively new platform, Facebook Gameroom has been designed for PC... | Read more »
4 addictive clicker games like Best Fien...
Clickers are passive games that take advantage of basic human psychology to suck you in, and they're totally unashamed of that. As long as you're aware that this game has been created to take hold of your brain and leave you perfectly content to... | Read more »
Smile Inc. Guide: How not to die on the...
As if Mondays weren't bad enough, at Smile Inc. you have to deal with giant killer donuts, massive hungry staplers, and blasting zones. It's not exactly a happy, thriving work environment. In fact, you'll be lucky to survive the nine to five.... | Read more »
Oh...Sir! The Insult Simulator (Games)
Oh...Sir! The Insult Simulator 1.0 Device: iOS Universal Category: Games Price: $1.99, Version: 1.0 (iTunes) Description: | Read more »
WitchSpring2 (Games)
WitchSpring2 1.27 Device: iOS Universal Category: Games Price: $3.99, Version: 1.27 (iTunes) Description: This is the story of Luna, the Moonlight Witch as she sets out into the world. This is a sequel to Witch Spring. Witch Spring 2... | Read more »
4 popular apps getting a Halloween makeo...
'Tis the season for all things spooky. So much, so, in fact, that even apps are getting into the spirt of things, dressing up in costume and spreading jack o' lanterns all about the place. These updates bring frightening new character skins, scary... | Read more »
Pokémon GO celebrates Halloween with can...
The folks behind Pokémon GO have some exciting things planned for their Halloween celebration, the first in-game event since it launched back in July. Starting October 26 and ending on November 1, trainers will be running into large numbers of... | Read more »
Best Fiends Forever Guide: How to collec...
The fiendship in Seriously's hit Best Fiends has been upgraded this time around in Best Fiends Forever. It’s a fast-paced clicker with lots of color and style--kind of reminiscent of a ‘90s animal mascot game like Crash Bandicoot. The game... | Read more »
5 apps for the budding mixologist
Creating your own cocktails is something of an art form, requiring a knack for unique tastes and devising interesting combinations. It's easy to get started right in your own kitchen, though, even if you're a complete beginner. Try using one of... | Read more »
5 mobile strategy games to try when you...
Strategy enthusiasts everywhere are celebrating the release of Civilization VI this week, and so far everyone seems pretty satisfied with the first full release in the series since 2010. The series has always been about ultra-addictive gameplay... | Read more »

Price Scanner via

Macs’ Superior Enterprise Deployment Cost Eco...
IBM’s debunking of conventional wisdom and popular mythology about the relative cost of using Apple Mac computers as opposed to PCs running Microsoft Windows at the sixth annual Jamf Nation User... Read more
12-inch WiFi Apple iPad Pros on sale for $50-...
B&H Photo has 12″ WiFi Apple iPad Pros on sale for $50-$70 off MSRP, each including free shipping. B&H charges sales tax in NY only: - 12″ Space Gray 32GB WiFi iPad Pro: $749 $50 off MSRP -... Read more
Apple refurbished 12-inch 128GB iPad Pros ava...
Apple has Certified Refurbished 12″ Apple iPad Pros available for up to $160 off the cost of new iPads. An Apple one-year warranty is included with each model, and shipping is free: - 32GB 12″ iPad... Read more
Apple refurbished iPad minis and iPad Air 2s...
Apple recently dropped prices on several Certified Refurbished iPad mini 4s and 2s as well as iPad Air 2s. An Apple one-year warranty is included with each model, and shipping is free: - 16GB iPad... Read more
MacHTTP-js Preview Full-featured Web Server f...
MacHTTP.Org has released MacHTTP-js Preview for macOS, a full-featured Web server for 21st Century desktops and servers. MacHTTP-js is a modern take on the classic stand-alone, desktop computer Web... Read more
Samsung Galaxy Tab A 10.1 with S Pen Makes US...
Samsung Electronics America, Inc. has announced the release of the Galaxy Tab A 10.1 with S Pen in a highly mobile, lightweight tablet. “With an embedded S Pen, consumers can discover more ways to... Read more
13-inch 2.5GHz MacBook Pro (Apple refurbished...
Apple has Certified Refurbished 13″ 2.5GHz MacBook Pros available for $829, or $270 off the cost of new models. Apple’s one-year warranty is standard, and shipping is free: - 13″ 2.5GHz MacBook Pros... Read more
27-inch iMacs on sale for up to $220 off MSRP
B&H Photo has 27″ Apple iMacs on sale for up to $200 off MSRP including free shipping plus NY sales tax only: - 27″ 3.3GHz iMac 5K: $2099 $200 off MSRP - 27″ 3.2GHz/1TB Fusion iMac 5K: $1899.99 $... Read more
13-inch 2.5GHz MacBook Pro available for $927...
Overstock has the 13″ 2.5GHz MacBook Pro available for $926.99 including free shipping. Their price is $172 off MSRP. Read more
Apple refurbished 2015 13-inch MacBook Airs a...
Apple has Certified Refurbished 2015 13″ MacBook Airs available starting at $759. An Apple one-year warranty is included with each MacBook, and shipping is free: - 2015 13″ 1.6GHz/4GB/128GB MacBook... Read more

Jobs Board

*Apple* Retail - Multiple Positions - Apple,...
Job Description: Sales Specialist - Retail Customer Service and Sales Transform Apple Store visitors into loyal Apple customers. When customers enter the store, Read more
Software Engineering Intern: UI Applications...
Job Summary Apple is currently seeking enthusiastic interns who can work full-time for a minimum of 12-weeks between Fall 2015 and Summer 2016. Our software Read more
Security Data Analyst - *Apple* Information...
…data sources need to be collected to allow Information Security to better protect Apple employees and customers from a wide range of threats.Act as the subject Read more
*Apple* Retail - Multiple Positions - Apple,...
Job Description: Sales Specialist - Retail Customer Service and Sales Transform Apple Store visitors into loyal Apple customers. When customers enter the store, Read more
*Apple* Solutions Consultant - Apple (United...
# Apple Solutions Consultant Job Number: 52812872 Houston, Texas, United States Posted: Oct. 18, 2016 Weekly Hours: 40.00 **Job Summary** As an Apple Solutions Read more
All contents are Copyright 1984-2011 by Xplain Corporation. All rights reserved. Theme designed by Icreon.