TweetFollow Us on Twitter

May 99 Challenge

Volume Number: 15 (1999)
Issue Number: 5
Column Tag: Programmer's Challenge

May 99 Challenge

by Bob Boonstra, Westford, MA

Piper

Every once in a while, good fortune not only comes your way, but actually reaches out of your computer monitor, and grabs you by the throat. I felt a little like that while reading a recent issue of TidBITS. In it was a column by Rick Holzgrafe reflecting on the increasing speed of computers, in which Rick described a program he wrote for a PDP-11/60 to solve a word puzzle. The idea behind the puzzle was to take a phrase and map it onto a rectangular grid, with the objective being to map the phrase into a rectangle of the smallest possible area. The word puzzle looked like a good idea for a Challenge, and Rick and TidBITS agreed to let me use it.

In more detail, the puzzle works like this. To start, you are given a null-terminated string consisting of printable characters. You process the characters in order, ignoring any non-alphabetic characters and ignoring case. The first alphabetic character can be mapped to any square in the grid. The next letter can be mapped to any adjacent square, where adjacent is any of the eight neighboring squares in a horizontal, vertical, or diagonal direction. You may reuse a square if it is adjacent and already has the letter you are mapping. If the same letter occurs twice in a row in the input string, the letters must still be mapped to adjacent (but distinct) squares.

The prototype for the code you should write is:

#if defined(__cplusplus)
extern "C" {
#endif

typedef struct GridPoint {
   long x;
   long y;
} GridPoint;

void Piper (
   char *s,
   GridPoint pt[]
);

#if defined(__cplusplus)
}
#endif

For example, your Piper routine might be provided with the string:

            How much wood would a woodchuck chuck if a woodchuck 
            could chuck wood?

You might place the letters of that string into a 4x14 rectangle like:

                  ULD  ADLU
               HDOAIUCOHWUHOD
               UCOWFKHDOMCWOW
                K   WO

Or, you might compact them into an 4x4 rectangle:

               HWMU
               OOCH
               UDWK
               LAFI

You must return the GridPoint coordinates of where each character is mapped, with pt[i] containing the coordinates of input character s[i]. The origin of your coordinate system should be the cell where the first character is placed. The winner will be the solution that stores the input string in a rectangle of minimal area. Note that you are minimizing rectangle area, not the number of occupied squares. A time penalty of 1% for each second of execution time will be added

This will be a native PowerPC Challenge, using the latest CodeWarrior environment. Solutions may be coded in C, C++, or Pascal.

Three Months Ago Winner

The February Challenge invited readers to write a player for the game of Chinese Checkers. Played on a hexagonal board with six appended triangles, Chinese Checkers pits between 2 and 6 players against one another, with the objective being to move one's pieces from the home triangle to the opposite triangle. In the traditional game, the home triangles are usually 3 or 4 positions on a side; the Challenge extended the game to triangles of up to 64 positions. Pieces can either be moved to an immediately adjacent position or jumped over an adjacent piece. A single piece is permitted to make a sequence of jumps in a single move.

As simple as the game sounds, readers found it to be very difficult, so difficult that no solutions were submitted for the Chinese Checkers Challenge. Which left Yours Truly in something of a difficult spot. I could stop the column at this point, which wouldn't be very interesting for readers, not to mention not very satisfying for the magazine. Or I could write a solution for the Challenge myself, something I haven't done since I retired from Competition four plus years ago. Somewhat against my better judgement, I selected the latter option.

The first thing I noticed in solving the Challenge was that the board coordinate system specified in the problem wasn't very useful in generating a solution. I needed a coordinate system that could be easily rotated in 60-degree increments, enabling my solution to play any of the six possible player positions. After some thought, I came up with a more symmetric coordinate system, called CanonPosition in the code, along with conversion routines ConvertPositionToCanonPosition and ConvertCanonPositionToPosition. The commentary in the code illustrates the coordinate system for a board of size 4. Then I needed a way to evaluate board positions. I decided on a simple metric that summed the distances of all pieces from the apex of their goal triangle. That metric could be improved upon by taking possible jump moves into account. The solution starts by computing all possible moves for our player. It then tries each of those moves, and then recursively calls MakeNextMove to process the next player. It computes and tries all moves for that player, and recurses for the next player. Recursion terminates when kMaxPlys turns have been taken for all players. Positions are evaluated using a min-max technique, where each player selects the position that maximizes his position relative to the best position of the other players.

The code could be improved in many ways. Instead of trying all possible positions, it could prune some obviously bad moves in the backward direction. This is complicated by the fact that some good jump multi-moves can include individual jumps that appear to be moving backward. The code might also be improved by evaluating moves by progressive deepening, rather than the depth-first search currently used, and by ordering move evaluation based on the scores at the prior depth. This technique is used in chess programs to prune the move tree to a manageable size. These and other optimizations are left to the reader. :-)

Remember, you can't win if you don't play. To ensure that you have as much time as possible to solve the Challenge, subscribe to the Programmer's Challenge mailing list. To subscribe, see the Challenge web page at <http://www.mactech.com/mactech/progchallenge/>. The Challenge is sent to the list around the 12th of the month before the solutions are due, often in advance of when the physical magazine is delivered.

Here is our sample Chinese Checkers solution:

Chinese Checkers.c
Copyright © 1999 J. Robert Boonstra

/*
*  Example solution for the February 1999 Programmer's Challenge
 *
 *  This solution is provided because no solutions were submitted
 *  for the ChineseCheckers Challenge.  This solution leaves a 
 *  great deal to be desired: it is not optimized, it does not 
 *  prune prospective moves efficiently, and it does not employ
 *  any of the classic alpha-beta techniques for efficiently
 *  selecting a move.
 */

#include <stdio.h>
#include <stdlib.h>
#include <Quickdraw.h>
 
#include "ChineseCheckers.h"

/* Position coordinates specified in problem (size==4)

  0:                           0
  1:                         0   1 
  2:                      -1   0   1 
  3:                    -1   0   1   2
  4:  -6  -5  -4  -3  -2  -1   0   1   2   3   4   5   6 
  5:    -5  -4  -3  -2  -1   0   1   2   3   4   5   6
  6:      -5  -4  -3  -2  -1   0   1   2   3   4   5  
  7:        -4  -3  -2  -1   0   1   2   3   4   5
  8:          -4  -3  -2  -1   0   1   2   3   4  
  9:        -4  -3  -2  -1   0   1   2   3   4   5
 10:      -5  -4  -3  -2  -1   0   1   2   3   4   5  
 11:    -5  -4  -3  -2  -1   0   1   2   3   4   5   6
 12:  -6  -5  -4  -3  -2  -1   0   1   2   3   4   5   6 
 13:                    -1   0   1   2
 14:                      -1   0   1 
 15:                         0   1 
 16:                           0
*/

#define kMaxPlys 1
#define kEmpty -1

/* CanonPosition uses units with (0,0) at the middle of the board */
typedef struct CanonPosition {
   long row;
   long col;
} CanonPosition;

/* Canonical position coordinates (size==4)

 -8:                           0
 -7:                        -1   1 
 -6:                      -2   0   2 
 -5:                    -3  -1   1   3
 -4: -12 -10  -8  -6  -4  -2   0   2   4   6   8  10  12 
 -3:   -11  -9  -7  -5  -3  -1   1   3   5   7   9  11
 -2:     -10  -8  -6  -4  -2   0   2   4   6   8  10  
 -1:        -9  -7  -5  -3  -1   1   3   5   7   9
  0:          -8  -6  -4  -2   0   2   4   6   8  
  1:        -9  -7  -5  -3  -1   1   3   5   7   9
  2:     -10  -8  -6  -4  -2   0   2   4   6   8  10  
  3:   -11  -9  -7  -5  -3  -1   1   3   5   7   9  11
  4: -12 -10  -8  -6  -4  -2   0   2   4   6   8  10  12 
  5:                    -3  -1   1   3
  6:                      -2   0   2 
  7:                        -1   1 
  8:                           0
*/

/* PlayerPos is used to store the location of each of a players pieces */
typedef struct PlayerPos {
   CanonPosition pos;
} PlayerPos;

typedef char *CanonBoard;

static long myNumPlayers,myNumPieces,myIndex,myGameSize,
   myPlayerPosition[6],myMinDist;
static PlayerPos *myPositions;

/* global board */
static CanonBoard myBoard;

/* moveIncrement is added to a CanonPosition to find the adjacent square in the
 * six possible directions 0..6, with 0==horizontal right, 1==down right, ...
 * 5==up right
 */
static CanonPosition moveIncrement[6] = 
   { { 0, 2}, { 1, 1}, { 1,-1}, { 0,-2}, {-1,-1}, {-1, 1} };

/* macros to access the board */
#define CanonRowSize(size) (6*(size)+1)
#define CanonBoardPos(row,col) (3*(myGameSize) +    \
         (2*(myGameSize)+(row))*(CanonRowSize(myGameSize)) + (col))
#define CanonBoardVal(board,row,col)          \
         board[CanonBoardPos(row,col)]
#define IsEmpty(board,row,col)             \
         (kEmpty == board[CanonBoardPos(row,col)])

ConvertPositionToCanonPosition
/* Convert coordinates from problem statement to canonical coordinates */
static CanonPosition ConvertPositionToCanonPosition (
            Position *pos, long size) {
   CanonPosition canon;
   canon.row = pos->row - 2 * size;
   if (pos->row == 2 * (int)(pos->row/2)) {
      canon.col = 2 * pos->col;
   } else {
      canon.col = 2 * pos->col - 1;
   }
   return canon;
}

ConvertCanonPositionToPosition
/* Convert canonical coordinates to coordinates from problem statement */
static Position ConvertCanonPositionToPosition (CanonPosition *canon, long size) {
   Position pos;
   pos.row = canon->row + 2 * size;
   if (canon->row == 2 * (int)(canon->row/2)) {
      pos.col = canon->col / 2;
   } else {
      pos.col = (canon->col + 1) / 2;
   }
   return pos;
}

RotateCanonPosition0ToN
/* rotate board by posNum increments of player positions (60 degrees) */
static CanonPosition RotateCanonPosition0ToN(
         CanonPosition oldPos, long posNum) {
   CanonPosition newPos;
   while (posNum<0) posNum+=6;   /* normalize to 0..5 */
   while (posNum>5) posNum-=6;
   switch (posNum) {
   case 0:
      newPos.row = oldPos.row;
      newPos.col = oldPos.col;
      break;
   case 1:
      newPos.row = (oldPos.row + oldPos.col)/2;
      newPos.col = (oldPos.col - 3*oldPos.row)/2;
      break;
   case 2:
      newPos.row =  (oldPos.col - oldPos.row)/2;
      newPos.col = -(oldPos.col + 3*oldPos.row)/2;
      break;
   case 3:
      newPos.row = -oldPos.row;
      newPos.col = -oldPos.col;
      break;
   case 4:
      newPos.row = -(oldPos.row + oldPos.col)/2;
      newPos.col = -(oldPos.col - 3*oldPos.row)/2;
      break;
   case 5:
      newPos.row = -(oldPos.col - oldPos.row)/2;
      newPos.col =  (oldPos.col + 3*oldPos.row)/2;
      break;
   }
   return newPos;
}

MaxColInRow
/* return the max column number in a given row */
static long MaxColInRow(long row, long size) {
   long maxCol;
   if (row<-size) {
      maxCol = row+2*size;
   } else if (row<0) {
      maxCol = 2*size-row;
   } else if (row<=size) {
      maxCol = row+2*size;
   } else /* if (row<=2*size) */ {
      maxCol = 2*size-row;
   }
   return maxCol;
}

IsLegalPosition
/* determine if a row,col coordinate represents a legal position */
static Boolean IsLegalPosition(CanonPosition *pos) {
   long maxCol;
   if ((pos->row<-2*myGameSize) || (pos->row>2*myGameSize)) 
         return false;
   if ((pos->row + pos->col) != 
               2 * (int)((pos->row + pos->col)/2)) 
      return false;
   maxCol = MaxColInRow(pos->row,myGameSize);
   if ((pos->col<-maxCol) || (pos->col>maxCol)) 
      return false;
   return true;
}

MoveFromTo
/* move a piece between positions from and to, does not check legality of move */
static void MoveFromTo(CanonBoard b,CanonPosition *from,CanonPosition *to,long newValue) {
   PlayerPos *p = &myPositions[newValue*myNumPieces];
   long oldValue = CanonBoardVal(b,from->row,from->col);
   int i;
   
   if (oldValue != newValue) {
      DebugStr("\p check err");
   }
   if ( IsLegalPosition(from) && IsLegalPosition(to) ) {
      CanonBoardVal(b,from->row,from->col) = kEmpty;
      CanonBoardVal(b,to->row,to->col) = (char)newValue;
      for (i=0; i<myNumPieces; i++) {
         if (    (p[i].pos.row == from->row) && 
                     (p[i].pos.col == from->col)) {
            p[i].pos.row = to->row;
            p[i].pos.col = to->col;
            break;
         }
      }
   }
}

PositionDistFromGoal
/* return the distance of a given position from a goal postion for player 0 */
static long PositionDistFromGoal (const CanonPosition *a, const CanonPosition *goal) {
   long rowDelta,colDelta;
   rowDelta = a->row - goal->row;
   if (rowDelta<0) rowDelta = -rowDelta;
   colDelta = a->col - goal->col;
   if (colDelta<0) colDelta = -colDelta;
   if (rowDelta>=colDelta) return rowDelta;
   else return rowDelta + (colDelta-rowDelta)/2;
}

PlayerDistFromGoal
/* return the cumulative distance of a player from his goal postion */
static long PlayerDistFromGoal(long player) {
   long cumDist;
   int i;
   CanonPosition goal;
   PlayerPos *p = &myPositions[player*myNumPieces];
   goal.row = -2*myGameSize;
   goal.col = 0;
   goal = 
      RotateCanonPosition0ToN(goal,(myPlayerPosition[player]+3)%6);
   for (i=0, cumDist=0; i<myNumPieces; i++) {
      CanonPosition *cp = &p[i].pos;
      long dist = PositionDistFromGoal(cp,&goal);
      cumDist += dist;
   }
   return cumDist;
}

InitPlayer
/* initialize the positions for a player at a given position */
static void InitPlayer(char *b,PlayerPos *piecePositions, long player, long position,long size) {
   CanonPosition pos,newPos;
   int col,maxCol,pieceCount;
   PlayerPos *piecePos;
   
   pieceCount = 0;
   for (maxCol=0; maxCol<size; maxCol++) {
      pos.row = -2*size+maxCol;
      maxCol = maxCol;
      for (col=-maxCol; col<=maxCol; col+=2) {
         pos.col = col;
         newPos = RotateCanonPosition0ToN(pos,position);
         CanonBoardVal(b,newPos.row,newPos.col) = (char)player;
   piecePos = &piecePositions[myNumPieces*player + pieceCount];
         piecePos->pos = newPos;
         ++pieceCount;
      }
   }
}

/* some variables to record the history of multi-jump moves, to
   prevent them from repeating infinitely */
static CanonPosition gMoveHistoryPos[6*64];
static long gMoveHistoryDirection[6*64];
static long gMoveHistoryCtr = -1;

CalcMove
/* Calculate a move for a given piece for a given player in a given moveDir.
 * Return true there is a legal move.
 * Return doneWithThisDirection==true if there are no more moves in this direction.
 */
static Boolean CalcMove(
         CanonBoard b, long player, long pieceNum, long moveDir, 
         CanonPosition *p1, CanonPosition *p2, 
         Boolean *doneWithThisDirection, long iterationLimit) {
   Boolean legalMove = true;
   if (gMoveHistoryCtr<0) {
      PlayerPos *p = &myPositions[player*myNumPieces];
      *p2 = *p1 = p[pieceNum].pos;
      p2->row += moveIncrement[moveDir].row;
      p2->col += moveIncrement[moveDir].col;
      if (!IsLegalPosition(p2)) legalMove = false;
      else if (IsEmpty(b,p2->row,p2->col)) {
      } else {
         long oldVal = CanonBoardVal(b,p2->row,p2->col);
         p2->row += moveIncrement[moveDir].row;
         p2->col += moveIncrement[moveDir].col;
         if (!IsLegalPosition(p2)) legalMove = false;
         else if (IsEmpty(b,p2->row,p2->col)) {
            if (gMoveHistoryCtr>iterationLimit) 
                        DebugStr("\p limit exceeded");
            gMoveHistoryPos[++gMoveHistoryCtr] = *p1;
            gMoveHistoryDirection[gMoveHistoryCtr] = 6;
            gMoveHistoryPos[++gMoveHistoryCtr] = *p2;
            gMoveHistoryDirection[gMoveHistoryCtr] = -1;
         } else {
            legalMove = false;
         }
      }
   } else {
      CanonPosition pStart,pTemp;
      long newDir;
      ++gMoveHistoryDirection[gMoveHistoryCtr];
      pStart = pTemp = gMoveHistoryPos[gMoveHistoryCtr];
      while (   (gMoveHistoryCtr>=0) && 
                     (gMoveHistoryDirection[gMoveHistoryCtr]>=6) ) {
         gMoveHistoryCtr-;
      }
      if (gMoveHistoryCtr>0) {
         newDir = gMoveHistoryDirection[gMoveHistoryCtr];
         pTemp.row += moveIncrement[newDir].row;
         pTemp.col += moveIncrement[newDir].col;
         if (!IsLegalPosition(&pTemp)) legalMove=false;
         else if (IsEmpty(b,pTemp.row,pTemp.col)) legalMove=false;
         else {
            pTemp.row += moveIncrement[newDir].row;
            pTemp.col += moveIncrement[newDir].col;
            if (!IsLegalPosition(&pTemp)) legalMove=false;
            else if (!IsEmpty(b,pTemp.row,pTemp.col)) legalMove=false;
            else {
               int i;
               for (i=0; i<=gMoveHistoryCtr; i++)
                  if (   (pTemp.row == gMoveHistoryPos[i].row) && 
                           (pTemp.col == gMoveHistoryPos[i].col) )
                      legalMove=false;
               if (legalMove) {
                  gMoveHistoryDirection[++gMoveHistoryCtr] = -1;
                  gMoveHistoryPos[gMoveHistoryCtr] = pTemp;
                  *p1 = gMoveHistoryPos[0];
                  *p2 = pTemp;
               }
            }
         }
      } else {
         legalMove=false;
      }
      
   }
   *doneWithThisDirection = (gMoveHistoryCtr<0);
   return legalMove;
}

/* multiplier to determine how much storage to reserves for moves for each piece */
#define kMemAllocFudge 12

EnumerateMoves
static long EnumerateMoves(CanonBoard b, long player, CanonPosition moveFrom[], CanonPosition moveTo[]) {
   long numMoves = 0;
   int piece,moveDir;
   Boolean legalMove,doneWithThisDirection;
   for (piece=0; piece<myNumPieces; piece++) {
      int pieceCounter=0;
      int firstPieceMoveIndex = numMoves;
      moveDir = 0;
      do {
         legalMove = CalcMove(b,player,piece,moveDir,
               &moveFrom[numMoves],&moveTo[numMoves],
               &doneWithThisDirection,6*myGameSize);
         if (doneWithThisDirection)
            ++moveDir;
         if (!legalMove) continue;
         if (numMoves>=kMemAllocFudge*myNumPieces-1) {
            DebugStr("\pnumMoves limit exceeded");
            break;
         } else {
            int i;
            for (i=firstPieceMoveIndex; i<numMoves; i++)
               if ( (moveTo[i].row==moveTo[numMoves].row) && 
                   (moveTo[i].col==moveTo[numMoves].col) )
                     legalMove = false;
            if (!legalMove) continue;
            ++numMoves;
         }
      } while (moveDir<6);
   }
   return numMoves;
}

MakeNextMove
/* 
 * Recursive routine to explore move tree.
 * MakeNextMove iterates over all possible moves for a player.
 * If ply limit is not yet reached, it recurses by calling for the next player.
 * Ply limit is decreased by 1 when the "me" player is called.
 * Recursion terminates when ply limit is reached.
 * Score is assigned on return based on the perspective of the player making the move.
 * Simple-minded score algorithm is used: 
 *   difference between player score and the best other player score, where
 *   a player's score is the number of spaces he is away from the final state
 * No alpha-beta pruning is employed - search is exhaustive.
 */

static long MakeNextMove(CanonBoard b, long me, long player, long playerDistances[6], long numPlys,
   Boolean firstTime, CanonPosition *from, CanonPosition *to) {
   long theMove,nextPlayer,numMoves,
               bestScore=0x7FFFFFFF, myBestDistance=0x7FFFFFFF;
   CanonPosition pFrom,pTo,bestFrom,bestTo;
   int newPlys;
   CanonPosition *moveFrom,*moveTo;

   /* allocate storage for possible moves */
   moveFrom = (CanonPosition *)
      malloc(kMemAllocFudge*myNumPieces*sizeof(CanonPosition));
   if (0==moveFrom) 
         DebugStr("\pproblem allocation moveFrom memory");
   moveTo = (CanonPosition *)
      malloc(kMemAllocFudge*myNumPieces*sizeof(CanonPosition));
   if (0==moveTo) 
         DebugStr("\pproblem allocation moveTo memory");
   
   /* prime best move with starting move */
   bestFrom = *from;
   bestTo = *to;
   /* enumerate all legal moves for this player */
   numMoves = EnumerateMoves(b,player,moveFrom,moveTo);
   /* examine all of the enumerated moves */
   for (theMove=0; theMove<numMoves; theMove++) {
      long opponent,scoreDifference,minOpponentDistance,
               myDistance,returnedDistances[6];
      int thePlayer;
      pFrom = moveFrom[theMove];
      pTo = moveTo[theMove];
      if (firstTime) {
         *from = pFrom;
         *to = pTo;
      }
      nextPlayer = (player+1)%myNumPlayers;
      newPlys = (player==me) ? numPlys-1 : numPlys;
      
      /* record move in the simulated board */
      MoveFromTo(b,&pFrom,&pTo,player);
      
      myDistance = PlayerDistFromGoal(player);
      
      /* recurse if ply limit not reached */
      if ( (newPlys>=0) && (myDistance>myMinDist) ){
         /* MakeNextMove returns each player's distance from the goal in 
            returnedDistances, and the score from nextPlayer's perspective in 
            returnScore.
            returnScore is ignored except by nonrecursive callers to MakeNextMove 
          */
         long returnScore;
         returnScore = 
               MakeNextMove(b, me, nextPlayer, returnedDistances, 
                           newPlys, false, from, to);
      } else /*if (player==me)*/ {
         /* terminating recursion, calculate position values for each player */
         /* compute distances for all players */
         for (thePlayer=0; thePlayer<myNumPlayers; thePlayer++)
            returnedDistances[thePlayer] = 
                     PlayerDistFromGoal(thePlayer);
      }
      /* compute best opponent score from this player perspective */
      for (thePlayer=0,minOpponentDistance=0x7fffffff; 
                     thePlayer<myNumPlayers; thePlayer++) {
         if (   (thePlayer != player) && 
            (returnedDistances[thePlayer]<minOpponentDistance) ) 
            minOpponentDistance = returnedDistances[thePlayer];
      }
      scoreDifference = 
            returnedDistances[player]-minOpponentDistance;
      /* Save score if it is the best for this player.
         This move is best if
         (1) our distance from goal minus best opponents distance is smallest, or
         (2) goal distance difference is equal, but our absolute distance is smallest, or
         (3) goal distance difference is equal, and coin flip says pick this move 
                                          (commented out) */
      if ( (scoreDifference < bestScore) ||
          ((scoreDifference==bestScore) && 
                  (returnedDistances[player]<myBestDistance)) /*||
((scoreDifference==bestScore) && ((rand()&0x0080)==1))*/ ) {
         bestScore = scoreDifference;
         myBestDistance = returnedDistances[player];
         for (opponent=0; opponent<myNumPlayers; opponent++)
      playerDistances[opponent] = returnedDistances[opponent];
         bestFrom = pFrom;
         bestTo = pTo;
      }
      /* reverse move to clear board for mext move */
      MoveFromTo(b,&pTo,&pFrom,player);
   }
   /* free dynamically allocated move storage */
   free(moveTo);
   free(moveFrom);
   
   /* return best move */
   *from = bestFrom;
   *to = bestTo;

   return bestScore;
}

FindBestMove
/* find best move for player me from this position on the board */
static long FindBestMove(CanonBoard b, long me, long numPlys, CanonPosition *from, CanonPosition *to) {
   long playerDistances[6];

   return MakeNextMove(b,me,me,playerDistances,numPlys,true,from,to);
}

InitChineseCheckers
void InitChineseCheckers(
   long numPlayers,      /* 2..6  */
   long gameSize, /* base of home triangle, 3..63, you have size*(size+1)/2 pieces */
   long playerPosition[6],   /* 0..5, entries 0..numPlayers-1 are valid */
   long yourIndex /* 0..numPlayers-1, your position is playerPosition[yourIndex] */
) {
   int i,numPositions;
   /* allocate memory for board */
   numPositions = 6*(1+gameSize)*4*(1+gameSize);
   myBoard = (char *)malloc(numPositions*sizeof(char));
   if (myBoard==0) DebugStr("\p could not allocate board");
   myNumPieces = gameSize*(gameSize+1)/2;
   myPositions = (PlayerPos *)
               malloc(6*myNumPieces*sizeof(PlayerPos));
   if (myPositions==0) 
               DebugStr("\p could not allocate myPositions");

   /* copy parameters */
   for (i=0;i<6; i++) myPlayerPosition[i] = playerPosition[i];
   myIndex = yourIndex;
   myNumPlayers = numPlayers;
   myGameSize = gameSize;
   /* initialize board */
   for (i=0; i<numPositions; i++) myBoard[i] = kEmpty;
   for (i=0; i<numPlayers; i++) {
      InitPlayer(myBoard,myPositions,i,playerPosition[i],gameSize);
   }
   
   /* calculate distance metric at goal position */
   for (i=1, myMinDist=0; i<gameSize; i++) myMinDist += i*(i+1);
}

YourMove
void YourMove(
   Position *fromPos,   /* originating position */
   Position *toPos   /* destination position */
) {
   CanonPosition from,to;
   long numPlys = kMaxPlys;
   FindBestMove(myBoard,myIndex,numPlys,&from,&to);
   MoveFromTo(myBoard,&from,&to,myIndex);
   *fromPos = ConvertCanonPositionToPosition(&from,myGameSize);
   *toPos = ConvertCanonPositionToPosition(&to,myGameSize);
}

OpponentMove
void OpponentMove(
   long opponent,   /* index in playerPosition[] of the player making move */
   Position fromPos,   /* originating position */
   Position toPos      /* destination position */
) {
   CanonPosition from,to;
   from = ConvertPositionToCanonPosition(&fromPos,myGameSize);
   to =   ConvertPositionToCanonPosition(&toPos,myGameSize);
   MoveFromTo(myBoard,&from,&to,opponent);
}

TermChineseCheckers
void TermChineseCheckers(void) {
   free (myPositions);
   free (myBoard);
}
 
AAPL
$104.80
Apple Inc.
-0.04
MSFT
$45.99
Microsoft Corpora
+0.97
GOOG
$538.12
Google Inc.
-5.86

MacTech Search:
Community Search:

Software Updates via MacUpdate

OS X Server 4.0 - For OS X 10.10 Yosemit...
Designed for OS X and iOS devices, OS X Server makes it easy to share files, schedule meetings, synchronize contacts, develop software, host your own website, publish wikis, configure Mac, iPhone,... Read more
TotalFinder 1.6.12 - Adds tabs, hotkeys,...
TotalFinder is a universally acclaimed navigational companion for your Mac. Enhance your Mac's Finder with features so smart and convenient, you won't believe you ever lived without them. Tab-based... Read more
BusyCal 2.6.3 - Powerful calendar app wi...
BusyCal is an award-winning desktop calendar that combines personal productivity features for individuals with powerful calendar sharing capabilities for families and workgroups. BusyCal's unique... Read more
calibre 2.7 - Complete e-library managem...
Calibre is a complete e-book library manager. Organize your collection, convert your books to multiple formats, and sync with all of your devices. Let Calibre be your multi-tasking digital... Read more
Skitch 2.7.3 - Take screenshots, annotat...
With Skitch, taking, annotating, and sharing screenshots or images is as fun as it is simple.Communicate and collaborate with images using Skitch and its intuitive, engaging drawing and annotating... Read more
Delicious Library 3.3.2 - Import, browse...
Delicious Library allows you to import, browse, and share all your books, movies, music, and video games with Delicious Library. Run your very own library from your home or office using our... Read more
Art Text 2.4.8 - Create high quality hea...
Art Text is an OS X application for creating high quality textual graphics, headings, logos, icons, Web site elements, and buttons. Thanks to multi-layer support, creating complex graphics is no... Read more
Live Interior 3D Pro 2.9.6 - Powerful an...
Live Interior 3D Pro is a powerful yet very intuitive interior designing application. View Video Tutorials It has every feature of Live Interior 3D Standard, plus some exclusive ones: Create multi... Read more
The Hit List 1.1.7 - Advanced reminder a...
The Hit List manages the daily chaos of your modern life. It's easy to learn - it's as easy as making lists. And it's powerful enough to let you plan, then forget, then act when the time is right.... Read more
jAlbum Pro 12.2.4 - Organize your digita...
jAlbum Pro has all the features you love in jAlbum, but comes with a commercial license. With jAlbum, you can create gorgeous custom photo galleries for the Web without writing a line of code!... Read more

Latest Forum Discussions

See All

Rami Ismail Opens Up distribute​() for D...
Rami Ismail Opens Up distribute​() for Developers Posted by Jessica Fisher on October 24th, 2014 [ permalink ] Rami Ismail, Chief Executive of Business and Development at indie game studio | Read more »
Great Hitman GO Goes on Sale and Gets Ne...
Great Hitman GO Goes on Sale and Gets New Update – Say That Three Times Fast Posted by Jessica Fisher on October 24th, 2014 [ permalink ] | Read more »
Rival Stars Basketball Review
Rival Stars Basketball Review By Jennifer Allen on October 24th, 2014 Our Rating: :: RESTRICTIVE BUT FUNUniversal App - Designed for iPhone and iPad Rival Stars Basketball is a fun mixture of basketball and card collecting but its... | Read more »
Rubicon Development Makes Over a Dozen o...
Rubicon Development Makes Over a Dozen of Their Games Free For This Weekend Only Posted by Jessica Fisher on October 24th, 2014 [ permalink ] | Read more »
I Am Dolphin Review
I Am Dolphin Review By Jennifer Allen on October 24th, 2014 Our Rating: :: NEARLY FIN-TASTICUniversal App - Designed for iPhone and iPad Swim around and eat nearly everything that moves in I Am Dolphin, a fun Ecco-ish kind of game... | Read more »
nPlayer looks to be the ultimate choice...
Developed by Newin Inc, nPlayer may seem like your standard video player – but is aiming to be the best in its field by providing high quality video play performance and support for a huge number of video formats and codecs. User reviews include... | Read more »
Fighting Fantasy: Caverns of the Snow Wi...
Fighting Fantasy: Caverns of the Snow Witch Review By Jennifer Allen on October 24th, 2014 Our Rating: :: CLASSY STORYTELLINGUniversal App - Designed for iPhone and iPad Fighting Fantasy: Caverns of the Snow Witch is a sterling... | Read more »
A Few Days Left (Games)
A Few Days Left 1.01 Device: iOS Universal Category: Games Price: $3.99, Version: 1.01 (iTunes) Description: Screenshots are in compliance to App Store's 4+ age rating! Please see App Preview for real game play! **Important: Make... | Read more »
Toca Boo (Education)
Toca Boo 1.0.2 Device: iOS Universal Category: Education Price: $2.99, Version: 1.0.2 (iTunes) Description: BOO! Did I scare you!? My name is Bonnie and my family loves to spook! Do you want to scare them back? Follow me and I'll... | Read more »
Intuon (Games)
Intuon 1.1 Device: iOS Universal Category: Games Price: $.99, Version: 1.1 (iTunes) Description: Join the battle with your intuition in a new hardcore game Intuon! How well do you trust your intuition? Can you find a needle in a... | Read more »

Price Scanner via MacPrices.net

Nimbus Note Cross=Platform Notes Utility
Nimbus Note will make sure you never forget or lose your valuable data again. Create and edit notes, save web pages, screenshots and any other type of data – and share it all with your friends and... Read more
NewerTech’s Snuglet Makes MagSafe 2 Power Con...
NewerTech has introduced the Snuglet, a precision-manufactured ring designed to sit inside your MagSafe 2 connector port, providing a more snug fit to prevent your power cable from unintentional... Read more
Apple Planning To Sacrifice Gross Margins To...
Digitimes Research’s Jim Hsiao says its analysts believe Apple is planning to sacrifice its gross margins to save its tablet business, which has recently fallen into decline. They project that Apple’... Read more
Who’s On Now? – First Instant-Connect Search...
It’s nighttime and your car has broken down on the side of the highway. You need a tow truck right away, so you open an app on your iPhone, search for the closest tow truck and send an instant... Read more
13-inch 2.5GHz MacBook Pro on sale for $949,...
Best Buy has the 13″ 2.5GHz MacBook Pro available for $949.99 on their online store. Choose free shipping or free instant local store pickup (if available). Their price is $150 off MSRP. Price is... Read more
Save up to $125 on Retina MacBook Pros
B&H Photo has the new 2014 13″ and 15″ Retina MacBook Pros on sale for up to $125 off MSRP. Shipping is free, and B&H charges NY sales tax only. They’ll also include free copies of Parallels... Read more
Apple refurbished Time Capsules available sta...
The Apple Store has certified refurbished Time Capsules available for up to $60 off MSRP. Apple’s one-year warranty is included with each Time Capsule, and shipping is free: - 2TB Time Capsule: $255... Read more
Textilus New Word, Notes and PDF Processor fo...
Textilus is new word-crunching, notes, and PDF processor designed exclusively for the iPad. I haven’t had time to thoroughly check it out yet, but it looks great and early reviews are positive.... Read more
WD My Passport Pro Bus-Powered Thunderbolt RA...
WD’s My Passport Pro RAID solution is powered by an integrated Thunderbolt cable for true portability and speeds as high as 233 MB/s. HighlightsOverviewSpecifications Transfer, Back Up And Edit In... Read more
Save with Best Buy’s College Student Deals
Take an additional $50 off all MacBooks and iMacs at Best Buy Online with their College Students Deals Savings, valid through November 1st. Anyone with a valid .EDU email address can take advantage... Read more

Jobs Board

*Apple* Solutions Consultant - Apple Inc. (U...
…important role that the ASC serves is that of providing an excellent Apple Customer Experience. Responsibilities include: * Promoting Apple products and solutions Read more
Senior Event Manager, *Apple* Retail Market...
…This senior level position is responsible for leading and imagining the Apple Retail Team's global event strategy. Delivering an overarching brand story; in-store, Read more
*Apple* Solutions Consultant (ASC) - Apple (...
**Job Summary** The ASC is an Apple employee who serves as an Apple brand ambassador and influencer in a Reseller's store. The ASC's role is to grow Apple Read more
Project Manager / Business Analyst, WW *Appl...
…a senior project manager / business analyst to work within our Worldwide Apple Fulfillment Operations and the Business Process Re-engineering team. This role will work Read more
*Apple* Retail - Multiple Positions (US) - A...
Job Description: Sales Specialist - Retail Customer Service and Sales Transform Apple Store visitors into loyal Apple customers. When customers enter the store, Read more
All contents are Copyright 1984-2011 by Xplain Corporation. All rights reserved. Theme designed by Icreon.