TweetFollow Us on Twitter

May 99 Challenge

Volume Number: 15 (1999)
Issue Number: 5
Column Tag: Programmer's Challenge

May 99 Challenge

by Bob Boonstra, Westford, MA

Piper

Every once in a while, good fortune not only comes your way, but actually reaches out of your computer monitor, and grabs you by the throat. I felt a little like that while reading a recent issue of TidBITS. In it was a column by Rick Holzgrafe reflecting on the increasing speed of computers, in which Rick described a program he wrote for a PDP-11/60 to solve a word puzzle. The idea behind the puzzle was to take a phrase and map it onto a rectangular grid, with the objective being to map the phrase into a rectangle of the smallest possible area. The word puzzle looked like a good idea for a Challenge, and Rick and TidBITS agreed to let me use it.

In more detail, the puzzle works like this. To start, you are given a null-terminated string consisting of printable characters. You process the characters in order, ignoring any non-alphabetic characters and ignoring case. The first alphabetic character can be mapped to any square in the grid. The next letter can be mapped to any adjacent square, where adjacent is any of the eight neighboring squares in a horizontal, vertical, or diagonal direction. You may reuse a square if it is adjacent and already has the letter you are mapping. If the same letter occurs twice in a row in the input string, the letters must still be mapped to adjacent (but distinct) squares.

The prototype for the code you should write is:

#if defined(__cplusplus)
extern "C" {
#endif

typedef struct GridPoint {
   long x;
   long y;
} GridPoint;

void Piper (
   char *s,
   GridPoint pt[]
);

#if defined(__cplusplus)
}
#endif

For example, your Piper routine might be provided with the string:

            How much wood would a woodchuck chuck if a woodchuck 
            could chuck wood?

You might place the letters of that string into a 4x14 rectangle like:

                  ULD  ADLU
               HDOAIUCOHWUHOD
               UCOWFKHDOMCWOW
                K   WO

Or, you might compact them into an 4x4 rectangle:

               HWMU
               OOCH
               UDWK
               LAFI

You must return the GridPoint coordinates of where each character is mapped, with pt[i] containing the coordinates of input character s[i]. The origin of your coordinate system should be the cell where the first character is placed. The winner will be the solution that stores the input string in a rectangle of minimal area. Note that you are minimizing rectangle area, not the number of occupied squares. A time penalty of 1% for each second of execution time will be added

This will be a native PowerPC Challenge, using the latest CodeWarrior environment. Solutions may be coded in C, C++, or Pascal.

Three Months Ago Winner

The February Challenge invited readers to write a player for the game of Chinese Checkers. Played on a hexagonal board with six appended triangles, Chinese Checkers pits between 2 and 6 players against one another, with the objective being to move one's pieces from the home triangle to the opposite triangle. In the traditional game, the home triangles are usually 3 or 4 positions on a side; the Challenge extended the game to triangles of up to 64 positions. Pieces can either be moved to an immediately adjacent position or jumped over an adjacent piece. A single piece is permitted to make a sequence of jumps in a single move.

As simple as the game sounds, readers found it to be very difficult, so difficult that no solutions were submitted for the Chinese Checkers Challenge. Which left Yours Truly in something of a difficult spot. I could stop the column at this point, which wouldn't be very interesting for readers, not to mention not very satisfying for the magazine. Or I could write a solution for the Challenge myself, something I haven't done since I retired from Competition four plus years ago. Somewhat against my better judgement, I selected the latter option.

The first thing I noticed in solving the Challenge was that the board coordinate system specified in the problem wasn't very useful in generating a solution. I needed a coordinate system that could be easily rotated in 60-degree increments, enabling my solution to play any of the six possible player positions. After some thought, I came up with a more symmetric coordinate system, called CanonPosition in the code, along with conversion routines ConvertPositionToCanonPosition and ConvertCanonPositionToPosition. The commentary in the code illustrates the coordinate system for a board of size 4. Then I needed a way to evaluate board positions. I decided on a simple metric that summed the distances of all pieces from the apex of their goal triangle. That metric could be improved upon by taking possible jump moves into account. The solution starts by computing all possible moves for our player. It then tries each of those moves, and then recursively calls MakeNextMove to process the next player. It computes and tries all moves for that player, and recurses for the next player. Recursion terminates when kMaxPlys turns have been taken for all players. Positions are evaluated using a min-max technique, where each player selects the position that maximizes his position relative to the best position of the other players.

The code could be improved in many ways. Instead of trying all possible positions, it could prune some obviously bad moves in the backward direction. This is complicated by the fact that some good jump multi-moves can include individual jumps that appear to be moving backward. The code might also be improved by evaluating moves by progressive deepening, rather than the depth-first search currently used, and by ordering move evaluation based on the scores at the prior depth. This technique is used in chess programs to prune the move tree to a manageable size. These and other optimizations are left to the reader. :-)

Remember, you can't win if you don't play. To ensure that you have as much time as possible to solve the Challenge, subscribe to the Programmer's Challenge mailing list. To subscribe, see the Challenge web page at <http://www.mactech.com/mactech/progchallenge/>. The Challenge is sent to the list around the 12th of the month before the solutions are due, often in advance of when the physical magazine is delivered.

Here is our sample Chinese Checkers solution:

Chinese Checkers.c
Copyright © 1999 J. Robert Boonstra

/*
*  Example solution for the February 1999 Programmer's Challenge
 *
 *  This solution is provided because no solutions were submitted
 *  for the ChineseCheckers Challenge.  This solution leaves a 
 *  great deal to be desired: it is not optimized, it does not 
 *  prune prospective moves efficiently, and it does not employ
 *  any of the classic alpha-beta techniques for efficiently
 *  selecting a move.
 */

#include <stdio.h>
#include <stdlib.h>
#include <Quickdraw.h>
 
#include "ChineseCheckers.h"

/* Position coordinates specified in problem (size==4)

  0:                           0
  1:                         0   1 
  2:                      -1   0   1 
  3:                    -1   0   1   2
  4:  -6  -5  -4  -3  -2  -1   0   1   2   3   4   5   6 
  5:    -5  -4  -3  -2  -1   0   1   2   3   4   5   6
  6:      -5  -4  -3  -2  -1   0   1   2   3   4   5  
  7:        -4  -3  -2  -1   0   1   2   3   4   5
  8:          -4  -3  -2  -1   0   1   2   3   4  
  9:        -4  -3  -2  -1   0   1   2   3   4   5
 10:      -5  -4  -3  -2  -1   0   1   2   3   4   5  
 11:    -5  -4  -3  -2  -1   0   1   2   3   4   5   6
 12:  -6  -5  -4  -3  -2  -1   0   1   2   3   4   5   6 
 13:                    -1   0   1   2
 14:                      -1   0   1 
 15:                         0   1 
 16:                           0
*/

#define kMaxPlys 1
#define kEmpty -1

/* CanonPosition uses units with (0,0) at the middle of the board */
typedef struct CanonPosition {
   long row;
   long col;
} CanonPosition;

/* Canonical position coordinates (size==4)

 -8:                           0
 -7:                        -1   1 
 -6:                      -2   0   2 
 -5:                    -3  -1   1   3
 -4: -12 -10  -8  -6  -4  -2   0   2   4   6   8  10  12 
 -3:   -11  -9  -7  -5  -3  -1   1   3   5   7   9  11
 -2:     -10  -8  -6  -4  -2   0   2   4   6   8  10  
 -1:        -9  -7  -5  -3  -1   1   3   5   7   9
  0:          -8  -6  -4  -2   0   2   4   6   8  
  1:        -9  -7  -5  -3  -1   1   3   5   7   9
  2:     -10  -8  -6  -4  -2   0   2   4   6   8  10  
  3:   -11  -9  -7  -5  -3  -1   1   3   5   7   9  11
  4: -12 -10  -8  -6  -4  -2   0   2   4   6   8  10  12 
  5:                    -3  -1   1   3
  6:                      -2   0   2 
  7:                        -1   1 
  8:                           0
*/

/* PlayerPos is used to store the location of each of a players pieces */
typedef struct PlayerPos {
   CanonPosition pos;
} PlayerPos;

typedef char *CanonBoard;

static long myNumPlayers,myNumPieces,myIndex,myGameSize,
   myPlayerPosition[6],myMinDist;
static PlayerPos *myPositions;

/* global board */
static CanonBoard myBoard;

/* moveIncrement is added to a CanonPosition to find the adjacent square in the
 * six possible directions 0..6, with 0==horizontal right, 1==down right, ...
 * 5==up right
 */
static CanonPosition moveIncrement[6] = 
   { { 0, 2}, { 1, 1}, { 1,-1}, { 0,-2}, {-1,-1}, {-1, 1} };

/* macros to access the board */
#define CanonRowSize(size) (6*(size)+1)
#define CanonBoardPos(row,col) (3*(myGameSize) +    \
         (2*(myGameSize)+(row))*(CanonRowSize(myGameSize)) + (col))
#define CanonBoardVal(board,row,col)          \
         board[CanonBoardPos(row,col)]
#define IsEmpty(board,row,col)             \
         (kEmpty == board[CanonBoardPos(row,col)])

ConvertPositionToCanonPosition
/* Convert coordinates from problem statement to canonical coordinates */
static CanonPosition ConvertPositionToCanonPosition (
            Position *pos, long size) {
   CanonPosition canon;
   canon.row = pos->row - 2 * size;
   if (pos->row == 2 * (int)(pos->row/2)) {
      canon.col = 2 * pos->col;
   } else {
      canon.col = 2 * pos->col - 1;
   }
   return canon;
}

ConvertCanonPositionToPosition
/* Convert canonical coordinates to coordinates from problem statement */
static Position ConvertCanonPositionToPosition (CanonPosition *canon, long size) {
   Position pos;
   pos.row = canon->row + 2 * size;
   if (canon->row == 2 * (int)(canon->row/2)) {
      pos.col = canon->col / 2;
   } else {
      pos.col = (canon->col + 1) / 2;
   }
   return pos;
}

RotateCanonPosition0ToN
/* rotate board by posNum increments of player positions (60 degrees) */
static CanonPosition RotateCanonPosition0ToN(
         CanonPosition oldPos, long posNum) {
   CanonPosition newPos;
   while (posNum<0) posNum+=6;   /* normalize to 0..5 */
   while (posNum>5) posNum-=6;
   switch (posNum) {
   case 0:
      newPos.row = oldPos.row;
      newPos.col = oldPos.col;
      break;
   case 1:
      newPos.row = (oldPos.row + oldPos.col)/2;
      newPos.col = (oldPos.col - 3*oldPos.row)/2;
      break;
   case 2:
      newPos.row =  (oldPos.col - oldPos.row)/2;
      newPos.col = -(oldPos.col + 3*oldPos.row)/2;
      break;
   case 3:
      newPos.row = -oldPos.row;
      newPos.col = -oldPos.col;
      break;
   case 4:
      newPos.row = -(oldPos.row + oldPos.col)/2;
      newPos.col = -(oldPos.col - 3*oldPos.row)/2;
      break;
   case 5:
      newPos.row = -(oldPos.col - oldPos.row)/2;
      newPos.col =  (oldPos.col + 3*oldPos.row)/2;
      break;
   }
   return newPos;
}

MaxColInRow
/* return the max column number in a given row */
static long MaxColInRow(long row, long size) {
   long maxCol;
   if (row<-size) {
      maxCol = row+2*size;
   } else if (row<0) {
      maxCol = 2*size-row;
   } else if (row<=size) {
      maxCol = row+2*size;
   } else /* if (row<=2*size) */ {
      maxCol = 2*size-row;
   }
   return maxCol;
}

IsLegalPosition
/* determine if a row,col coordinate represents a legal position */
static Boolean IsLegalPosition(CanonPosition *pos) {
   long maxCol;
   if ((pos->row<-2*myGameSize) || (pos->row>2*myGameSize)) 
         return false;
   if ((pos->row + pos->col) != 
               2 * (int)((pos->row + pos->col)/2)) 
      return false;
   maxCol = MaxColInRow(pos->row,myGameSize);
   if ((pos->col<-maxCol) || (pos->col>maxCol)) 
      return false;
   return true;
}

MoveFromTo
/* move a piece between positions from and to, does not check legality of move */
static void MoveFromTo(CanonBoard b,CanonPosition *from,CanonPosition *to,long newValue) {
   PlayerPos *p = &myPositions[newValue*myNumPieces];
   long oldValue = CanonBoardVal(b,from->row,from->col);
   int i;
   
   if (oldValue != newValue) {
      DebugStr("\p check err");
   }
   if ( IsLegalPosition(from) && IsLegalPosition(to) ) {
      CanonBoardVal(b,from->row,from->col) = kEmpty;
      CanonBoardVal(b,to->row,to->col) = (char)newValue;
      for (i=0; i<myNumPieces; i++) {
         if (    (p[i].pos.row == from->row) && 
                     (p[i].pos.col == from->col)) {
            p[i].pos.row = to->row;
            p[i].pos.col = to->col;
            break;
         }
      }
   }
}

PositionDistFromGoal
/* return the distance of a given position from a goal postion for player 0 */
static long PositionDistFromGoal (const CanonPosition *a, const CanonPosition *goal) {
   long rowDelta,colDelta;
   rowDelta = a->row - goal->row;
   if (rowDelta<0) rowDelta = -rowDelta;
   colDelta = a->col - goal->col;
   if (colDelta<0) colDelta = -colDelta;
   if (rowDelta>=colDelta) return rowDelta;
   else return rowDelta + (colDelta-rowDelta)/2;
}

PlayerDistFromGoal
/* return the cumulative distance of a player from his goal postion */
static long PlayerDistFromGoal(long player) {
   long cumDist;
   int i;
   CanonPosition goal;
   PlayerPos *p = &myPositions[player*myNumPieces];
   goal.row = -2*myGameSize;
   goal.col = 0;
   goal = 
      RotateCanonPosition0ToN(goal,(myPlayerPosition[player]+3)%6);
   for (i=0, cumDist=0; i<myNumPieces; i++) {
      CanonPosition *cp = &p[i].pos;
      long dist = PositionDistFromGoal(cp,&goal);
      cumDist += dist;
   }
   return cumDist;
}

InitPlayer
/* initialize the positions for a player at a given position */
static void InitPlayer(char *b,PlayerPos *piecePositions, long player, long position,long size) {
   CanonPosition pos,newPos;
   int col,maxCol,pieceCount;
   PlayerPos *piecePos;
   
   pieceCount = 0;
   for (maxCol=0; maxCol<size; maxCol++) {
      pos.row = -2*size+maxCol;
      maxCol = maxCol;
      for (col=-maxCol; col<=maxCol; col+=2) {
         pos.col = col;
         newPos = RotateCanonPosition0ToN(pos,position);
         CanonBoardVal(b,newPos.row,newPos.col) = (char)player;
   piecePos = &piecePositions[myNumPieces*player + pieceCount];
         piecePos->pos = newPos;
         ++pieceCount;
      }
   }
}

/* some variables to record the history of multi-jump moves, to
   prevent them from repeating infinitely */
static CanonPosition gMoveHistoryPos[6*64];
static long gMoveHistoryDirection[6*64];
static long gMoveHistoryCtr = -1;

CalcMove
/* Calculate a move for a given piece for a given player in a given moveDir.
 * Return true there is a legal move.
 * Return doneWithThisDirection==true if there are no more moves in this direction.
 */
static Boolean CalcMove(
         CanonBoard b, long player, long pieceNum, long moveDir, 
         CanonPosition *p1, CanonPosition *p2, 
         Boolean *doneWithThisDirection, long iterationLimit) {
   Boolean legalMove = true;
   if (gMoveHistoryCtr<0) {
      PlayerPos *p = &myPositions[player*myNumPieces];
      *p2 = *p1 = p[pieceNum].pos;
      p2->row += moveIncrement[moveDir].row;
      p2->col += moveIncrement[moveDir].col;
      if (!IsLegalPosition(p2)) legalMove = false;
      else if (IsEmpty(b,p2->row,p2->col)) {
      } else {
         long oldVal = CanonBoardVal(b,p2->row,p2->col);
         p2->row += moveIncrement[moveDir].row;
         p2->col += moveIncrement[moveDir].col;
         if (!IsLegalPosition(p2)) legalMove = false;
         else if (IsEmpty(b,p2->row,p2->col)) {
            if (gMoveHistoryCtr>iterationLimit) 
                        DebugStr("\p limit exceeded");
            gMoveHistoryPos[++gMoveHistoryCtr] = *p1;
            gMoveHistoryDirection[gMoveHistoryCtr] = 6;
            gMoveHistoryPos[++gMoveHistoryCtr] = *p2;
            gMoveHistoryDirection[gMoveHistoryCtr] = -1;
         } else {
            legalMove = false;
         }
      }
   } else {
      CanonPosition pStart,pTemp;
      long newDir;
      ++gMoveHistoryDirection[gMoveHistoryCtr];
      pStart = pTemp = gMoveHistoryPos[gMoveHistoryCtr];
      while (   (gMoveHistoryCtr>=0) && 
                     (gMoveHistoryDirection[gMoveHistoryCtr]>=6) ) {
         gMoveHistoryCtr-;
      }
      if (gMoveHistoryCtr>0) {
         newDir = gMoveHistoryDirection[gMoveHistoryCtr];
         pTemp.row += moveIncrement[newDir].row;
         pTemp.col += moveIncrement[newDir].col;
         if (!IsLegalPosition(&pTemp)) legalMove=false;
         else if (IsEmpty(b,pTemp.row,pTemp.col)) legalMove=false;
         else {
            pTemp.row += moveIncrement[newDir].row;
            pTemp.col += moveIncrement[newDir].col;
            if (!IsLegalPosition(&pTemp)) legalMove=false;
            else if (!IsEmpty(b,pTemp.row,pTemp.col)) legalMove=false;
            else {
               int i;
               for (i=0; i<=gMoveHistoryCtr; i++)
                  if (   (pTemp.row == gMoveHistoryPos[i].row) && 
                           (pTemp.col == gMoveHistoryPos[i].col) )
                      legalMove=false;
               if (legalMove) {
                  gMoveHistoryDirection[++gMoveHistoryCtr] = -1;
                  gMoveHistoryPos[gMoveHistoryCtr] = pTemp;
                  *p1 = gMoveHistoryPos[0];
                  *p2 = pTemp;
               }
            }
         }
      } else {
         legalMove=false;
      }
      
   }
   *doneWithThisDirection = (gMoveHistoryCtr<0);
   return legalMove;
}

/* multiplier to determine how much storage to reserves for moves for each piece */
#define kMemAllocFudge 12

EnumerateMoves
static long EnumerateMoves(CanonBoard b, long player, CanonPosition moveFrom[], CanonPosition moveTo[]) {
   long numMoves = 0;
   int piece,moveDir;
   Boolean legalMove,doneWithThisDirection;
   for (piece=0; piece<myNumPieces; piece++) {
      int pieceCounter=0;
      int firstPieceMoveIndex = numMoves;
      moveDir = 0;
      do {
         legalMove = CalcMove(b,player,piece,moveDir,
               &moveFrom[numMoves],&moveTo[numMoves],
               &doneWithThisDirection,6*myGameSize);
         if (doneWithThisDirection)
            ++moveDir;
         if (!legalMove) continue;
         if (numMoves>=kMemAllocFudge*myNumPieces-1) {
            DebugStr("\pnumMoves limit exceeded");
            break;
         } else {
            int i;
            for (i=firstPieceMoveIndex; i<numMoves; i++)
               if ( (moveTo[i].row==moveTo[numMoves].row) && 
                   (moveTo[i].col==moveTo[numMoves].col) )
                     legalMove = false;
            if (!legalMove) continue;
            ++numMoves;
         }
      } while (moveDir<6);
   }
   return numMoves;
}

MakeNextMove
/* 
 * Recursive routine to explore move tree.
 * MakeNextMove iterates over all possible moves for a player.
 * If ply limit is not yet reached, it recurses by calling for the next player.
 * Ply limit is decreased by 1 when the "me" player is called.
 * Recursion terminates when ply limit is reached.
 * Score is assigned on return based on the perspective of the player making the move.
 * Simple-minded score algorithm is used: 
 *   difference between player score and the best other player score, where
 *   a player's score is the number of spaces he is away from the final state
 * No alpha-beta pruning is employed - search is exhaustive.
 */

static long MakeNextMove(CanonBoard b, long me, long player, long playerDistances[6], long numPlys,
   Boolean firstTime, CanonPosition *from, CanonPosition *to) {
   long theMove,nextPlayer,numMoves,
               bestScore=0x7FFFFFFF, myBestDistance=0x7FFFFFFF;
   CanonPosition pFrom,pTo,bestFrom,bestTo;
   int newPlys;
   CanonPosition *moveFrom,*moveTo;

   /* allocate storage for possible moves */
   moveFrom = (CanonPosition *)
      malloc(kMemAllocFudge*myNumPieces*sizeof(CanonPosition));
   if (0==moveFrom) 
         DebugStr("\pproblem allocation moveFrom memory");
   moveTo = (CanonPosition *)
      malloc(kMemAllocFudge*myNumPieces*sizeof(CanonPosition));
   if (0==moveTo) 
         DebugStr("\pproblem allocation moveTo memory");
   
   /* prime best move with starting move */
   bestFrom = *from;
   bestTo = *to;
   /* enumerate all legal moves for this player */
   numMoves = EnumerateMoves(b,player,moveFrom,moveTo);
   /* examine all of the enumerated moves */
   for (theMove=0; theMove<numMoves; theMove++) {
      long opponent,scoreDifference,minOpponentDistance,
               myDistance,returnedDistances[6];
      int thePlayer;
      pFrom = moveFrom[theMove];
      pTo = moveTo[theMove];
      if (firstTime) {
         *from = pFrom;
         *to = pTo;
      }
      nextPlayer = (player+1)%myNumPlayers;
      newPlys = (player==me) ? numPlys-1 : numPlys;
      
      /* record move in the simulated board */
      MoveFromTo(b,&pFrom,&pTo,player);
      
      myDistance = PlayerDistFromGoal(player);
      
      /* recurse if ply limit not reached */
      if ( (newPlys>=0) && (myDistance>myMinDist) ){
         /* MakeNextMove returns each player's distance from the goal in 
            returnedDistances, and the score from nextPlayer's perspective in 
            returnScore.
            returnScore is ignored except by nonrecursive callers to MakeNextMove 
          */
         long returnScore;
         returnScore = 
               MakeNextMove(b, me, nextPlayer, returnedDistances, 
                           newPlys, false, from, to);
      } else /*if (player==me)*/ {
         /* terminating recursion, calculate position values for each player */
         /* compute distances for all players */
         for (thePlayer=0; thePlayer<myNumPlayers; thePlayer++)
            returnedDistances[thePlayer] = 
                     PlayerDistFromGoal(thePlayer);
      }
      /* compute best opponent score from this player perspective */
      for (thePlayer=0,minOpponentDistance=0x7fffffff; 
                     thePlayer<myNumPlayers; thePlayer++) {
         if (   (thePlayer != player) && 
            (returnedDistances[thePlayer]<minOpponentDistance) ) 
            minOpponentDistance = returnedDistances[thePlayer];
      }
      scoreDifference = 
            returnedDistances[player]-minOpponentDistance;
      /* Save score if it is the best for this player.
         This move is best if
         (1) our distance from goal minus best opponents distance is smallest, or
         (2) goal distance difference is equal, but our absolute distance is smallest, or
         (3) goal distance difference is equal, and coin flip says pick this move 
                                          (commented out) */
      if ( (scoreDifference < bestScore) ||
          ((scoreDifference==bestScore) && 
                  (returnedDistances[player]<myBestDistance)) /*||
((scoreDifference==bestScore) && ((rand()&0x0080)==1))*/ ) {
         bestScore = scoreDifference;
         myBestDistance = returnedDistances[player];
         for (opponent=0; opponent<myNumPlayers; opponent++)
      playerDistances[opponent] = returnedDistances[opponent];
         bestFrom = pFrom;
         bestTo = pTo;
      }
      /* reverse move to clear board for mext move */
      MoveFromTo(b,&pTo,&pFrom,player);
   }
   /* free dynamically allocated move storage */
   free(moveTo);
   free(moveFrom);
   
   /* return best move */
   *from = bestFrom;
   *to = bestTo;

   return bestScore;
}

FindBestMove
/* find best move for player me from this position on the board */
static long FindBestMove(CanonBoard b, long me, long numPlys, CanonPosition *from, CanonPosition *to) {
   long playerDistances[6];

   return MakeNextMove(b,me,me,playerDistances,numPlys,true,from,to);
}

InitChineseCheckers
void InitChineseCheckers(
   long numPlayers,      /* 2..6  */
   long gameSize, /* base of home triangle, 3..63, you have size*(size+1)/2 pieces */
   long playerPosition[6],   /* 0..5, entries 0..numPlayers-1 are valid */
   long yourIndex /* 0..numPlayers-1, your position is playerPosition[yourIndex] */
) {
   int i,numPositions;
   /* allocate memory for board */
   numPositions = 6*(1+gameSize)*4*(1+gameSize);
   myBoard = (char *)malloc(numPositions*sizeof(char));
   if (myBoard==0) DebugStr("\p could not allocate board");
   myNumPieces = gameSize*(gameSize+1)/2;
   myPositions = (PlayerPos *)
               malloc(6*myNumPieces*sizeof(PlayerPos));
   if (myPositions==0) 
               DebugStr("\p could not allocate myPositions");

   /* copy parameters */
   for (i=0;i<6; i++) myPlayerPosition[i] = playerPosition[i];
   myIndex = yourIndex;
   myNumPlayers = numPlayers;
   myGameSize = gameSize;
   /* initialize board */
   for (i=0; i<numPositions; i++) myBoard[i] = kEmpty;
   for (i=0; i<numPlayers; i++) {
      InitPlayer(myBoard,myPositions,i,playerPosition[i],gameSize);
   }
   
   /* calculate distance metric at goal position */
   for (i=1, myMinDist=0; i<gameSize; i++) myMinDist += i*(i+1);
}

YourMove
void YourMove(
   Position *fromPos,   /* originating position */
   Position *toPos   /* destination position */
) {
   CanonPosition from,to;
   long numPlys = kMaxPlys;
   FindBestMove(myBoard,myIndex,numPlys,&from,&to);
   MoveFromTo(myBoard,&from,&to,myIndex);
   *fromPos = ConvertCanonPositionToPosition(&from,myGameSize);
   *toPos = ConvertCanonPositionToPosition(&to,myGameSize);
}

OpponentMove
void OpponentMove(
   long opponent,   /* index in playerPosition[] of the player making move */
   Position fromPos,   /* originating position */
   Position toPos      /* destination position */
) {
   CanonPosition from,to;
   from = ConvertPositionToCanonPosition(&fromPos,myGameSize);
   to =   ConvertPositionToCanonPosition(&toPos,myGameSize);
   MoveFromTo(myBoard,&from,&to,opponent);
}

TermChineseCheckers
void TermChineseCheckers(void) {
   free (myPositions);
   free (myBoard);
}
 

Community Search:
MacTech Search:

Software Updates via MacUpdate

BetterTouchTool 1.989 - Customize Multi-...
BetterTouchTool adds many new, fully customizable gestures to the Magic Mouse, Multi-Touch MacBook trackpad, and Magic Trackpad. These gestures are customizable: Magic Mouse: Pinch in / out (zoom... Read more
calibre 2.77.0 - Complete e-book library...
Calibre is a complete e-book library manager. Organize your collection, convert your books to multiple formats, and sync with all of your devices. Let Calibre be your multi-tasking digital librarian... Read more
Quicksilver 1.5.2 - Application launcher...
Quicksilver is a light, fast and free Mac application that gives you the power to control your Mac with keystrokes alone. Quicksilver allows you to find what you need quickly and easily, then act... Read more
Paperless 2.3.9 - $49.95
Paperless is a digital documents manager. Remember when everyone talked about how we would soon be a paperless society? Now it seems like we use paper more than ever. Let's face it - we need and we... Read more
Apple GarageBand 10.1.5 - Complete recor...
The new GarageBand is a whole music creation studio right inside your Mac -- complete with keyboard, synths, orchestral and percussion instruments, presets for guitar and voice, an entirely... Read more
Adobe Audition CC 2017 10.0.2 - Professi...
Audition CC 2017 is available as part of Adobe Creative Cloud for as little as $19.99/month (or $9.99/month if you're a previous Audition customer). Adobe Audition CC 2017 empowers you to create and... Read more
Adobe After Effects CC 2017 14.1 - Creat...
After Effects CC 2017 is available as part of Adobe Creative Cloud for as little as $19.99/month (or $9.99/month if you're a previous After Effects customer). The new, more connected After Effects CC... Read more
Adobe Premiere Pro CC 2017 11.0.2 - Digi...
Premiere Pro CC 2017 is available as part of Adobe Creative Cloud for as little as $19.99/month (or $9.99/month if you're a previous Premiere Pro customer). Adobe Premiere Pro CC 2017 lets you edit... Read more
WALTR 2 2.0.9 - $39.95
WALTR 2 helps you wirelessly drag-and-drop any music, ringtones, videos, PDF, and ePub files onto your iPhone, iPad, or iPod without iTunes. It is the second major version of Softorino's critically-... Read more
Yummy FTP Pro 1.11.14 - $14.99 (50% off)
Yummy FTP Pro is an advanced Mac file transfer app which provides a full-featured professional toolkit combined with blazing speeds and impeccable reliability, so whether you want to transfer a few... Read more

Super Mario Run dashes onto Android in M...
Super Mario Run was one of the biggest mobile launches in 2016 before it was met with a lukewarm response by many. While the game itself plays a treat, it's pretty hard to swallow the steep price for the full game. With that said, Android users... | Read more »
WarFriends Beginner's Guide: How to...
Chillingo's new game, WarFriends, is finally available world wide, and so far it's a refreshing change from common mobile game trends. The game's a mix of tower defense, third person shooter, and collectible card game. There's a lot to unpack here... | Read more »
Super Gridland (Entertainment)
Super Gridland 1.0 Device: iOS Universal Category: Entertainment Price: $1.99, Version: 1.0 (iTunes) Description: Match. Build. Survive. "exquisitely tuned" - Rock Paper Shotgun No in-app purches, and no ads! | Read more »
Red's Kingdom (Games)
Red's Kingdom 1.0 Device: iOS Universal Category: Games Price: $4.99, Version: 1.0 (iTunes) Description: Mad King Mac has kidnapped your father and stolen your golden nut! Solve puzzles and battle goons as you explore and battle your... | Read more »
Turbo League Guide: How to tame the cont...
| Read more »
Fire Emblem: Heroes coming to Google Pla...
Nintendo gave us our first look at Fire Emblem: Heroes, the upcoming mobile Fire Emblem game the company hinted at last year. Revealed at the Fire Emblem Direct event held today, the game will condense the series' tactical RPG combat into bite-... | Read more »
ReSlice (Music)
ReSlice 1.0 Device: iOS Universal Category: Music Price: $9.99, Version: 1.0 (iTunes) Description: Audio Slice Machine Slice your audio samples with ReSlice and create flexible musical atoms which can be triggered by MIDI notes or... | Read more »
Stickman Surfer rides in with the tide t...
Stickson is back and this time he's taken up yet another extreme sport - surfing. Stickman Surfer is out this Thursday on both iOS and Android, so if you've been following the other Stickman adventures, you might be interested in picking this one... | Read more »
Z-Exemplar (Games)
Z-Exemplar 1.4 Device: iOS Universal Category: Games Price: $3.99, Version: 1.4 (iTunes) Description: | Read more »
5 dastardly difficult roguelikes like th...
Edmund McMillen's popular roguelike creation The Binding of Isaac: Rebirth has finally crawled onto mobile devices. It's a grotesque dual-stick shooter that tosses you into an endless, procedurally generated basement as you, the pitiable Isaac,... | Read more »

Price Scanner via MacPrices.net

Apple Ranked ‘Most Intimate Brand’
The top ranked ‘”intimate” brands continued to outperform the S&P and Fortune 500 indices in revenue and profit over the past 10 years, according to MBLM’s Brand Intimacy 2017 Report, the largest... Read more
B-Eng introduces SSD Health Check for Mac OS
Fehraltorf, Switzerland based independant Swiss company- B-Eng has announced the release and immediate availability of SSD Health Check 1.0, the company’s new hard drive utility for Mac OS X. As the... Read more
Apple’s Education discount saves up to $300 o...
Purchase a new Mac or iPad using Apple’s Education Store and take up to $300 off MSRP. All teachers, students, and staff of any educational institution qualify for the discount. Shipping is free: -... Read more
4-core 3.7GHz Mac Pro on sale for $2290, save...
Guitar Center has the 3.7GHz 4-core Mac Pro (MD253LL/A) on sale for $2289.97 including free shipping or free local store pickup (if available). Their price is a $710 savings over standard MSRP for... Read more
128GB Apple iPad Air 2, refurbished, availabl...
Apple has Certified Refurbished 128GB iPad Air 2s WiFis available for $419 including free shipping. That’s an $80 savings over standard MSRP for this model. A standard Apple one-year warranty is... Read more
13-inch 2.7GHz Retina MacBook Pro on sale for...
B&H Photo has the 2015 13″ 2.7GHz/128GB Retina Apple MacBook Pro on sale for $100 off MSRP. Shipping is free, and B&H charges NY tax only: - 13″ 2.7GHz/128GB Retina MacBook Pro (MF839LL/A): $... Read more
Laptop Market – Flight To Quality? – The ‘Boo...
Preliminary quarterly PC shipments data released by Gartner Inc. last week reveal an interesting disparity between sales performance of major name PC vendors as opposed to that of less well-known... Read more
IBM and Bell Transform Canadian Enterprise Mo...
IBM and Bell Canada have announced they are joining forces to offer IBM MobileFirst for iOS market-ready enterprise applications for iPad, iPhone or Apple Watch. Bell, Canada’s largest communications... Read more
Otter Products is Closing… For a Day of Givin...
On Thursday, Feb. 9, Otter Products is closing doors to open hearts. In partnership with the OtterCares Foundation, the company is pausing operations for a day so all employees can volunteer with... Read more
15-inch 2.2GHz Retina MacBook Pro on sale for...
Amazon has 2015 15″ 2.2GHz Retina MacBook Pros (MJLQ2LL/A) available for $1799.99 including free shipping. Apple charges $1999 for this model, so Amazon’s price is represents a $200 savings. Read more

Jobs Board

*Apple* & PC Desktop Support Technician...
Apple & PC Desktop Support Technician job in Los Angeles, CA Introduction: We have immediate job openings for several Desktop Support Technicians with one of our Read more
*Apple* Retail - Multiple Positions - Apple,...
SalesSpecialist - Retail Customer Service and SalesTransform Apple Store visitors into loyal Apple customers. When customers enter the store, you're also the Read more
*Apple* Retail - Multiple Positions (Multi-L...
Job Description: Sales Specialist - Retail Customer Service and Sales Transform Apple Store visitors into loyal Apple customers. When customers enter the store, Read more
*Apple* Retail - Multiple Positions - Apple,...
Job Description: Sales Specialist - Retail Customer Service and Sales Transform Apple Store visitors into loyal Apple customers. When customers enter the store, Read more
*Apple* & PC Desktop Support Technician...
Apple & PC Desktop Support Technician job in Stamford, CT We have immediate job openings for several Desktop Support Technicians with one of our most well-known Read more
All contents are Copyright 1984-2011 by Xplain Corporation. All rights reserved. Theme designed by Icreon.