TweetFollow Us on Twitter

Code Optimization

Volume Number: 15 (1999)
Issue Number: 4
Column Tag: CodeWarrior Workshop

Code Optimization

by Andrew Downs

Code Optimization Options in CodeWarrior

Introduction

Code optimization involves the application of rules and algorithms to program code with the goal of making it faster, smaller, more efficient, and so on. Often these types of optimizations conflict with each other: for instance, faster code usually ends up larger, not smaller. Optimizations can be performed at several levels (e.g. source code, intermediate representations), and by various parties, such as the developer or the compiler/optimizer.

This article discusses and demonstrates the code optimization options available in CodeWarrior Pro. In spite of its ever-growing sophistication, CodeWarrior still makes it easy to select the right level of optimization for your program. Understanding how CodeWarrior applies optimizations will help when it is time to debug your code, especially when using a low-level debugger or when the source code is not available.

Optimization Terms

In order to understand the process, you need to speak the language. Here are definitions for the terms discussed in this article, plus a few extras. Keep in mind that the words replace, substitute, etc. do not imply physical changes to your original source code, but rather are reflected in the generated machine code, after your source code has been parsed and optimized.

Each term includes a brief description, including why it is important. Code examples illustrating some of these terms will be presented later in the article.

Common subexpression elimination
If the value resulting from the calculation of a subexpression is used multiple times, perform the calculation once and substitute the result for each individual calculation.
Constant propagation
Replace variables that rely on an unchanging value with the value itself.
Copy propagation
Replace multiple variables that use the same calculated value with one variable.
Dead code elimination
Code that never gets executed can be removed from the object file to reduce stored size and runtime footprint.
Dead store elimination
Variables and related store operations that are never used can be removed from the object file to reduce stored size and runtime footprint.
Global register allocation
Variables that do not overlap in scope may be placed in registers, rather than remaining in RAM. Accessing values stored in registers is faster than accessing values in RAM.
Global vs. peephole scope
Global optimization allows the compiler/optimizer to look at the overall program and determine how best to apply the desired optimization level. Peephole provides local optimizations, which do not account for patterns or conditions in the program as a whole. Local optimizations may include instruction substitutions.
Inline calls
A function that is fairly small can have its machine instructions substituted at the point of each call to the function, instead of generating an actual call. This trades space (the size of the function code) for speed (no function call overhead).
Instruction scheduling
Instructions for a specific processor may be generated, resulting in more efficient code for that processor but possible compatibility or efficiency problems on other processors. This optimization may be better applied to embedded systems, where the CPU type is known at build time. Most desktop software should use the Generic PowerPC option in CodeWarrior.
Lifetime analysis
A register can be reused for multiple variables, as long as those variables do not overlap in scope.
Loop counting using CTR
The count register (CTR) on the PowerPC is intended to be used for counting, such as in loop iterations. There are some branch instructions that specifically use the value in the CTR.
Loop invariant expressions (code motion)
Values that do not change during execution of a loop can be moved out of the loop, speeding up loop execution.
Loop transformations
Some loop constructs can be rewritten to execute more quickly. For example, a for{} loop can be rewritten as a while{} loop, saving one or more instructions.
Loop unrolling
Statements within a loop that rely on sequential indices or accesses can be repeated more than once in the body of the loop. This results in checking the loop conditional less often.
Strength reduction
Certain operations and their corresponding machine code instructions require more time to execute than simpler, possibly less efficient counterparts.

CodeWarrior Optimization Dialog

Figure 1 shows the dialog box pane used to specify instruction scheduling and peephole optimization in CodeWarrior.


Figure 1. PPC processor pane.

Global optimizations are specified in the optimization pane, shown in Figure 2. Global optimization can be performed with the intent of making the resulting code faster or smaller, but not both.


Figure 2. Global optimization pane.

The code examples presented in this article use either peephole optimization or the faster execution speed settings. The smaller code size setting is briefly discussed later in the article. Profiled results for smaller code size are provided in the article archive, but are not illustrated in code examples.

Disassembling Code

The Disassemble menu item under the Project menu in CodeWarrior allows you to view the compiler's output resulting from application of any optimization choices. This is extremely useful in that it gives you a chance to save an assembly listing of your code for use during debugging sessions. That menu item was used to produce the listings presented in this article.

Just Enough Assembly Language

Listed below are the PowerPC instructions used in this article. Following each is the expanded mnemonic, and a short description of what the instruction does (using the specified operands). The instructions are presented in mnemonic alphabetical order, not the order in which they are encountered in the code. For a thorough treatment of Power PC assembly language, refer to the references listed at the end of this article.

add r30,r30,r0
Add: store the sum of the values stored in r0 and r30 in r30.
addi r30,r30,1
Add Immediate: add 1 to the value stored in r30, and store the result in r30.
b *+12
Branch: continue execution at the location 12 bytes (3 instructions) after this instruction.
bdnz *-80
Branch if Decremented Count Register is Not Zero: decrement the Count Register, and if its value is not zero, continue execution 80 bytes (20 instructions) before this instruction.
bl.whileTest__Fv
Branch and Link: branch to the location specified and continue execution, saving the address of the next instruction to be executed in this routine in the Link Register.
blt *-12
Branch if Less Than: if the result of the previous comparison resulted in the Condition Register LT bit being set, continue execution at the instruction 12 bytes (3 instructions) prior to this instruction.
bne *-28
Branch if Not Equal: if the result of the previous compare operation is not zero, as recorded in the Condition Register EQ bit, continue execution at the instruction 28 bytes (7 instructions) before this instruction.
cmplw r31,r29
Compare Logical Word: perform an unsigned comparison between r29 and r31, and update the Condition Register as appropriate.
cmplwir31,$0000
Compare Logical Word Immediate: compare the value in r31 against 0, and set the appropriate flags in the Condition Register.
li r30,0
Load Immediate: move the value 0 into register r30.
lwzr3,gLimit(RTOC)
Load Word and Zero: move the value of the global variable gLimit into register r3. Global variables are referenced as offsets from the Table of Contents register (RTOC).
mr r31,r29
Move Register: copy the contents of r29 into r31.
mtctr r0
Move To Count Register: copy the value in r0 to the Count Register (typically used for loop iteration).
mullw r0,r29,r28
Multiply integer word, return Low Word: store the product of the values stored in r28 and r29 in r0.
stmw r26,-24(SP)
Store Multiple Word: store registers r26-r31 beginning at the location -24 bytes off the current stack pointer location.
stw r31,-4(SP)
Store Word: store register r31 at the location -4 bytes off the current stack pointer location.
subir31,r31,1
Subtract Immediate: subtract 1 from the value in r31, and store the result in r31.
subic.r31,r31,1
Subtract Immediate Carrying: similar to subi, but set the Exception Register CA bit with the result of the carry (whether it occurs or not).

Example Code

The archive for this article includes the .c and .dump files. Listing 1 contains the source code used to test the optimization options. For illustration purposes, some of the functions contain redundant or unused variables, unoptimized loops, and so on.

The profiler calls and header include statement are commented out. The sample project file in the archive includes the profiler library, so if you would like to use the profiler, simply uncomment the four lines in the source code, compile, and run.

Listing 1: test.c

test.c
Sample code with loops and variable usage.

#include <stdio.h>
#include <stdlib.h>
//#include <profiler.h>

unsigned long cseTest( void );
unsigned long doWhileTest( void );
unsigned long whileTest( void );
unsigned long forTest( void );

unsigned long gLimit = 1000L;

int main( void ) {
//ProfilerInit( collectSummary, bestTimeBase, 10, 3 );
//ProfilerSetStatus( 1 );
   unsigned long   theResult;
   unsigned long   j = 0L;

   j++;

   theResult = whileTest();
   
   theResult = doWhileTest();
   
   theResult = cseTest();

   theResult = forTest();
   
   j-;
//ProfilerDump( "\ptest.c.prof");
//ProfilerTerm();
   return 0;
}

unsigned long whileTest( void ) {
   unsigned long   theResult = 0L;
   unsigned long   i, limit = gLimit;

   i = 0;
   
   while ( i < limit )
      i++;
   
   return 0;
}

unsigned long doWhileTest( void ) {
   unsigned long   theResult = 0L;
   unsigned long   i, limit = 1000L;
   unsigned long dest[ 1000 ], index = 0;

   i = limit;
   
   do {
      dest[ index++ ] = i;
      i-;
   } while ( i > 0 );

   return 0;
}

unsigned long cseTest( void ) {
   unsigned long   theResult = 0L;
   unsigned long   i, limit = 1000L;
   unsigned long   product = 0L;
   unsigned long   x = 4;
   unsigned long   y = 3;

   theResult = limit;
   
   i = limit;
   
   do {
      product += x * y;
   } while ( i- > 0 );

   return 0;
}

unsigned long forTest( void ) {
   unsigned long   i, limit = 1000, sum = 0;
   
   for ( i= 0; i < limit; i++ )
      sum += i;

   return sum;
}

Peephole Optimization

The peephole optimizer applies a set of pattern-matching rules to the code, with the goal of replacing inefficient sequences of instructions with more efficient sequences. A second goal is to perform some register usage optimizations based on variable lifetimes. Both benefits are shown in the following examples.

Note that function prolog and epilog code is only occasionally presented in the listings in this article. The full listings are included in the article archive.

In the first example, the non-optimized version of main() contains the following assembly code, where register r30 is used to hold the value of j:

int main( void ) {
//...

   // Initialize j.
   // unsigned long   j = 0L;
      li    r30,0

   // Increment j.
   // j++;
      addi   r30,r30,1

   // theResult = whileTest();
      bl    .whileTest__Fv

   // ...

Enabling the peephole optimizer results in no action being taken on j, since its value is never used:

int main( void ) {
//...

   // Initialize j.
   // unsigned long   j = 0L;

   // Increment j.
   // j++;
   // No instructions generated!

   // theResult = whileTest();
      bl    .whileTest__Fv

   // ...

The second example uses the function doWhileTest(). The variable limit is accessed twice, but its value never changes. In addition, there is a subtract/compare instruction sequence. First, the unoptimized version:

unsigned long doWhileTest( void ) {
// ...

   // unsigned long   i, limit = 1000L;
   // Initialize limit in r29.
      li    r29,1000

   // i = limit;
   // Copy limit into r31.
      mr    r31,r29

   // i-;
   // Subtract 1 from i (in r31).
      subi   r31,r31,1

   // } while ( i > 0 );
   // Compare to 0 and branch if not equal.
      cmplwi  r31,$0000
      bne   *-28

The peephole optimizer detects the redundant register usage for the variable limit, and the fact that the value of limit never changes. The peephole optimizer also finds the inefficient subtract/compare sequence. It transforms the function into:

unsigned long doWhileTest( void ) {
// ...

   // Initialize limit in r31.
   // This is the same register used for i, so no copy/move operation is required.
      li    r31,1000

   // i-;
   // Subtract with carry and set condition flags.
      subic.  r31,r31,1
      
   // Branch based on result of subtraction operation.
   // Comparison operation is implicit.
      bne   *-20

The profiler says:

The CodeWarrior profiler, which can be used to measure (among other things) the amount of time spent in various functions, showed the following execution times for doWhileTest():

Optimization LevelFunctionTime (ms)% of Total Time
NonedoWhileTest()0.13139.3
PeepholedoWhileTest()0.10534.4

These results were obtained using the bestTimeBase setting. At runtime, this translated into the PowerPC timebase setting, which uses the Real-Time Clock (RTC) register on PPC 601-based machines, and the Time Base (TB) register on later implementations, for accurate, low-overhead timing.

The fourth column is the percentage of total program running time spent in this function. This is very useful in determining where to begin optimizing. To use it properly, you should compare the results for all of the functions at a given optimization level. (The profiler summary for all functions and all optimization levels is included in the article archive.) You need to be careful, because the time and % of total time columns do not necessarily mirror each other. You will see in one of the examples (Global Optimization - Level 4) that sometimes an inverse relationship occurs: less time spent in a function may be accompanied by a greater percentage of total time!

In summary, even though its scope is relatively local, the peephole optimizer may be able to provide some performance benefits, depending on patterns it detects in the code. In this case, it decreased execution time slightly (by approximately 20%).

Global Optimization - Level 1

This level of optimization provides global register allocation and dead code elimination.

Here is the non-optimized version of whileTest():

unsigned long whileTest( void ) {
      stw   r31,-4(SP)
      stw   r30,-8(SP)

   // unsigned long   theResult = 0L;
      li    r0,0
      stw   r0,-16(SP)

   // unsigned long   i, limit = gLimit;
      lwz   r3,gLimit(RTOC)
      lwz   r30,0(r3)

   // i = 0;
      li    r31,0

   // while ( i < limit )
      b    *+8
      i++;
   
      addi   r31,r31,1
      cmplw  r31,r30
      blt   *-8

The level 1 optimized version eliminates the non-volatile register saves, and uses volatile registers for local variables. Also, the assignment of theResult is eliminated, since its value is never used.

unsigned long whileTest( void ) {
   // unsigned long   theResult = 0L;
   // unsigned long   i, limit = gLimit;
      lwz   r3,gLimit(RTOC)
      lwz   r0,0(r3)

   // i = 0;
      li    r3,0

   // while ( i < limit )
      b    *+8

      // i++;
      addi   r3,r3,1
      cmplw  r3,r0
      blt   *-8

The profiler says:

Optimization LevelFunctionTime (ms)% of Total Time
NonewhileTest()0.0257.5
Global - Faster 1whileTest()0.0257.5

In this case, the result is not faster, but it is more efficient in terms of number of instructions used (code size).

Global Optimization - Level 2

This level of optimization adds common subexpression elimination and copy propagation to those provided by level 1.

Here is the non-optimized version of cseTest():

unsigned long cseTest( void ) {
   // Preserve the non-volatile registers (r26-r31).
      stmw   r26,-24(SP)

   // unsigned long   i, limit = 1000L;
      li    r27,1000

   // unsigned long   product = 0L;
      li    r30,0

   // unsigned long   x = 4;
      li    r29,4

   // unsigned long   y = 3;
      li    r28,3

   // theResult = limit;
   
   // i = limit;
      mr    r31,r27

   // do {
      // product += x * y;
      // A multiply is an expensive (slow) operation.
      mullw  r0,r29,r28
      add   r30,r30,r0

   // } while ( i- > 0 );
      cmplwi  r31,$0000
      subi   r31,r31,1
      bne   *-16

Enabling level 2 optimization changes the multiply instruction to an add (using a constant value of 12). As with level 1, the use of volatile registers (r0, r3-r12) replaces usage of non-volatile registers (r13-r31). As a result, the store multiple instruction goes away.

unsigned long cseTest( void ) {
   // No store multiple register instruction.
   // unsigned long   theResult = 0L;
   // ...

   // theResult = limit;   
      li    r4,0
   
   // i = limit;
   // do {
      li    r3,1000

      // product += x * y;
      // Add the constant value 12 to product.
      addi   r4,r4,12

   // } while ( i- > 0 );
      cmplwi  r3,$0000
      subi   r3,r3,1
      bne   *-12

The profiler says:

Optimization LevelFunctionTime (ms)% of Total Time
NonecseTest()0.13139.3
Global - Faster 2cseTest()0.04718.7

The optimized version is approximately 64% faster than the original!

Global Optimization - Level 3

This level of optimization adds loop transformations, strength reduction, and loop-invariant code motion to those provided by level 2.

Here is the non-optimized version of forTest():

unsigned long forTest( void ) {
      stw   r31,-4(SP)
      stw   r30,-8(SP)
      stw   r29,-12(SP)

   // unsigned long   i, limit = 1000, sum = 0;
      li    r29,1000
      li    r30,0

   // for ( i= 0; i < limit; i++ )
      li    r31,0
      b    *+12

      // sum += i;
      add   r30,r30,r31
      addi   r31,r31,1
      cmplw  r31,r29
      blt   *-12

Applying the optimizations results in an unrolling of the loop. This code now contains the equivalent of ten loop iterations in the body of the loop. Notice that the iterator (limit) has been reduced to the value of 100 to compensate.

unsigned long forTest( void ) {
   // unsigned long   i, limit = 1000, sum = 0;
      li    r3,0
      li    r4,0
      b    *+4

   // for ( i= 0; i < limit; i++ )
      // Iterate over the loop 1000 times (total).
      // Use the count register to hold the adjusted value of limit (100).
      li    r0,100
      mtctr  r0
      b    *+4

      // sum += i;
      add   r3,r3,r4
      addi   r4,r4,1
      add   r3,r3,r4
      addi   r4,r4,1
      add   r3,r3,r4
      addi   r4,r4,1
      add   r3,r3,r4
      addi   r4,r4,1
      add   r3,r3,r4
      addi   r4,r4,1
      add   r3,r3,r4
      addi   r4,r4,1
      add   r3,r3,r4
      addi   r4,r4,1
      add   r3,r3,r4
      addi   r4,r4,1
      add   r3,r3,r4
      addi   r4,r4,1
      add   r3,r3,r4
      addi   r4,r4,1
      bdnz   *-80

The profiler says:

Optimization LevelFunctionTime (ms)% of Total Time
NoneforTest()0.04613.9
Global - Faster 3forTest()0.03114.9

The optimized version is approximately 33% faster. Notice the increased percentage of total time: the time savings obtained in this loop must have been outweighed by more significant savings elsewhere in the optimized program.

Global Optimization - Level 4

This level of optimization adds repeated loop-invariant code motion and common subexpression elimination. The optimized code becomes a candidate for further optimizations, until no more opportunities are found.

For this example, we will compare the level 3 and 4 versions of the same function. Here is the level 3 optimized version of cseTest():

unsigned long cseTest( void ) {
   // unsigned long   theResult = 0L;
   // unsigned long   i, limit = 1000L;
   // unsigned long   product = 0L;
   // unsigned long   x = 4;
   // unsigned long   y = 3;

   // theResult = limit;
   
   // i = limit;
   
   // do {
      li    r4,0
      li    r3,1000
      b    *+4

      // product += x * y;
   // } while ( i- > 0 );
      addi   r4,r4,12
      cmplwi  r3,$0000
      subi   r3,r3,1
      bne   *-12

Here is the level 4 version. Notice that the value of product is never calculated, probably because it is never used.

unsigned long cseTest( void ) {
   // unsigned long   theResult = 0L;
   // ...
   
   // do {
      li    r3,1000
      b    *+4
      b    *+4

      // product += x * y;
   // } while ( i- > 0 );
      cmplwi  r3,$0000
      subi   r3,r3,1
      bne   *-8

The profiler says:

Optimization LevelFunctionTime (ms)% of Total Time
Global - Faster 3cseTest()0.04622.4
Global - Faster 4cseTest()0.02814.8

Again, much (39%) faster the second time around!

Faster vs. Smaller

Although I am not presenting examples using global optimizations for smaller code, the profiler results for those settings are included in the archive. For reference, here are the generated code sizes for faster vs. smaller, for each optimization level:

Faster 0 360 48 (constant) Faster 1 260 Faster 2 220 Faster 3 308 Faster 4 316 Smaller 0 312 Smaller 1 260 Smaller 2 220 Smaller 3 236 Smaller 4 244
Faster/SmallerLevelCode Size (bytes)Data Size (bytes)
Faster036048 (constant)
Faster1260
Faster2220
Faster3308
Faster4316
Smaller0312
Smaller1260
Smaller2220
Smaller3236
Smaller4244

The smaller option always generated code that was no larger, and usually smaller, than its faster counterpart at each optimization level. Applying levels 3 and 4 always resulted in increased code size (compared to level 2). However, the percentage increase from level 2 to level 4 for the smaller setting (10.9%) is much lower than for the faster setting (43.6%).

Be careful in trying to apply these results to another program. Each program has its own unique characteristics, which may respond favorably to some types of optimization but not to others. Plus, your needs may dictate which type of optimization to perform. For example, code destined for embedded systems may require the smaller option.

Doing it Yourself

Hand-optimized programs may still present the best performance. For example, you can optimize loops yourself, or include assembly functions mixed with high-level code. On the other hand, that approach is time-consuming, costly, and possibly less portable. Plus, not all developers have the necessary skills to hand-optimize. Relying on the development environment to perform optimizations is a good thing.

Writing a straightforward, correct program is key to generating an optimized program. That version becomes the starting point in the optimization process. Every subsequent adjustment or optimization, whether applied by the developer or the development environment, should only make the code faster or tighter.

Debugging efforts should focus on the unoptimized version, since the generated machine code most closely mirrors the original source. Once the program is bug-free (!), the desired type and level of optimization should be applied.

Conclusion

Optimization techniques can improve code size or speed. CodeWarrior provides several categories of optimization, including peephole, global, and instruction scheduling. You can apply any of these in combination via the project preferences dialog. It is worth reviewing your disassembled code to assess the impact the optimizations will have on subsequent debugging sessions. Debugging will be easier if performed on the unoptimized version of your code, since the optimized version of the code may not closely mirror the original source. Once the bugs are out, add the appropriate type of optimization.

References

  • Compiler Construction, Niklaus Wirth, Addison-Wesley, 1996.
  • Optimizing PowerPC Code, Gary Kacmarcik, Addison-Wesley, 1995.
  • PowerPC Microprocessor Developer's Guide, John Bunda et al, Sams Publishing, 1995.
  • Writing Compilers and Interpreters, Ronald Mak, Wiley Computer Publishing, 1996.

Credits

Thanks to Tom Thompson of Metrowerks for reviewing this article and providing insight into CodeWarrior's optimization process.

Archive URL

The article archive, containing a CodeWarrior project file, source code, and disassembler and profiler dump files, is available at <www.mactech.com/>.


Andrew Downs is a Technical Lead for Template Software in New Orleans, LA, designing and building enterprise apps. He also teaches Java programming at Tulane University College. Andrew wrote the Macintosh freeware program Recent Additions, and the Java application UDPing. You can reach him at andrew@downs.net.

 

Community Search:
MacTech Search:

Software Updates via MacUpdate

coconutBattery 3.6.3 - Displays info abo...
With coconutBattery you're always aware of your current battery health. It shows you live information about your battery such as how often it was charged and how is the current maximum capacity in... Read more
Little Snitch 4.0.2 - Alerts you about o...
Little Snitch gives you control over your private outgoing data. Track background activity As soon as your computer connects to the Internet, applications often have permission to send any... Read more
VueScan 9.5.82 - Scanner software with a...
VueScan is a scanning program that works with most high-quality flatbed and film scanners to produce scans that have excellent color fidelity and color balance. VueScan is easy to use, and has... Read more
Postbox 5.0.17 - Powerful and flexible e...
Postbox is a new email application that helps you organize your work life and get stuff done. It has all the elegance and simplicity of Apple Mail, but with more power and flexibility to manage even... Read more
CleanMyMac 3.8.6 - $39.95
CleanMyMac makes space for the things you love. Sporting a range of ingenious new features, CleanMyMac lets you safely and intelligently scan and clean your entire system, delete large, unused files... Read more
Default Folder X 5.1.6b3 - Enhances Open...
Default Folder X attaches a toolbar to the right side of the Open and Save dialogs in any OS X-native application. The toolbar gives you fast access to various folders and commands. You just click on... Read more
Amazon Chime 4.6.5852 - Amazon-based com...
Amazon Chime is a communications service that transforms online meetings with a secure, easy-to-use application that you can trust. Amazon Chime works seamlessly across your devices so that you can... Read more
VOX 2.8.30 - Music player that supports...
VOX just sounds better! The beauty is in its simplicity, yet behind the minimal exterior lies a powerful music player with a ton of features and support for all audio formats you should ever need.... Read more
iFFmpeg 6.4.3 - Convert multimedia files...
iFFmpeg is a comprehensive media tool to convert movie, audio and media files between formats. The FFmpeg command line instructions can be very hard to master/understand, so iFFmpeg does all the hard... Read more
Alfred 3.4.1 - Quick launcher for apps a...
Alfred is an award-winning productivity application for OS X. Alfred saves you time when you search for files online or on your Mac. Be more productive with hotkeys, keywords, and file actions at... Read more

War Wings beginner's guide - how to...
War Wings is the newest project from well-established game maker Miniclip. It's a World War II aerial dogfighting game with loads of different airplane models to unlock and battle. The game offers plenty of single player and multiplayer action. We... | Read more »
How to win every 2v2 battle in Clash Roy...
2v2 is coming back to Clash Royale in a big way. Although it's only been available for temporary periods of time, 2v2 has seen a hugely positive fan response, with players clamoring for more team-based gameplay. Soon we'll get yet another taste of... | Read more »
Roll to Win with Game of Dice’s new upda...
Joycity’s hit Game of Dice gets a big new update this week, introducing new maps, mechanics, and even costumes. The update sets players loose on an exciting new map, The Cursed Tower, that allows folks to use special Runes mid-match. If you feel... | Read more »
Bottom of the 9th (Games)
Bottom of the 9th 1.0.1 Device: iOS iPhone Category: Games Price: $4.99, Version: 1.0.1 (iTunes) Description: Play the most exciting moment of baseball in this fast-paced dice and card game! | Read more »
The best apps for viewing the solar ecli...
If you somehow missed the news, many parts of the United States will be witness to a total solar eclipse on August 21 for the first time in over 90 years. It'll be possible to see the eclipse in at least some capacity throughout the continental U... | Read more »
The 5 best mobile survival games
Games like ARK: Survival Evolved and Conan Exiles have taken the world of gaming by storm. The market is now flooded with hardcore survival games that send players off into the game's world with nothing but maybe the clothes on their back. Never... | Read more »
Portal Walk (Games)
Portal Walk 1.0 Device: iOS Universal Category: Games Price: $1.99, Version: 1.0 (iTunes) Description: Portal Walk is adventure and relaxing platform game about Eugene. Eugene stuck between worlds and trying to find way back home.... | Read more »
Technobabylon (Games)
Technobabylon 1.0 Device: iOS Universal Category: Games Price: $4.99, Version: 1.0 (iTunes) Description: City of Newton, 2087. Genetic engineering is the norm, the addictive Trance has replaced almost any need for human interaction,... | Read more »
5 reasons why 2v2 is the best mode in Cl...
Supercell has been teasing fans with 2v2 windows that allow players to team up for limited periods of time. The Summer of 2v2 was just this past July, but players are already clamoring for more of that sweet, sweet team-based action. The fans have... | Read more »
The best deals on the App Store this wee...
It seems like the week's only just started, and yet here we are with a huge pile of discounted games to sort through. There are some real doozies on sale this week. We're talking some truly stellar titles. Let's take a look at four of the best... | Read more »

Price Scanner via MacPrices.net

Back To School With The Edge Desk All-in-one...
Back to school is just around the corner, and the ergonomically correct Edge Desk all-in-one portable kneeling desk is ideal for students living in dorms and small apartments, Edge Desk features:... Read more
Norton Core Secure Wi-Fi Router Now Available...
First introduced at the 2017 Consumer Electronics Show (CES), Norton Core, a secure, high-performance Wi-Fi router, fundamentally changed the concept of Wi-Fi routers by making security the primary... Read more
ViewSonic Adds New 27-inch 4K UHD Monitor to...
ViewSonic Corp. has introduced the VP2785-4K, a 27-inch 4K UHD (3840×2160) monitor that delivers precise and consistent color representation and performance to ensure incredible image quality. Built... Read more
Apple now offering Certified Refurbished 2017...
Apple is now offering Certified Refurbished 2017 27″ iMacs for up to $350 off original MSRP. Apple’s one-year warranty is standard, and shipping is free. The following models are available: – 27″ 3.... Read more
13-inch 2.3GHz MacBook Pros on sale for $100...
Amazon has the new 2017 13″ 2.3GHz MacBook Pros on sale today for $100 off MSRP, each including free shipping: – 13″ 2.3GHz/128GB Space Gray MacBook Pro (MPXQ2LL/A): $1199.99 $100 off MSRP – 13″ 2.... Read more
Clearance 2016 13-inch MacBook Airs available...
B&H Photo has clearance 2016 13″ MacBook Airs available for up to $200 off original MSRP. Shipping is free, and B&H charges NY & NJ sales tax only: – 13″ 1.6GHz/128GB MacBook Air (MMGF2LL... Read more
Clearance 21-inch and 27-inch iMacs available...
B&H Photo has clearance 21″ and 27″ Apple iMacs available for up to $500 off original MSRP, each including free shipping plus NY & NJ sales tax only: – 27″ 3.3GHz iMac 5K: $1799 $500 off... Read more
New iOS 11 Productivity Features Welcome But...
The iOS community is in late summer holding mode awaiting the September arrival of the iPhone 8 and iOS 11. iOS 11 public betas have been available for months — number six was released this week —... Read more
Samsung Electronics Launches New Portable SSD...
Samsung Electronics America, Inc. has announced the launch of Samsung Portable SSD T5 – its newest portable solid state drive (PSSD) that raises the bar for the performance of external memory... Read more
TrendForce Reports YoY Gain of 3.6% for 2Q17...
Market research firm TrendForce reports that the global notebook shipments for this second quarter registered a sequential quarterly increase of 5.7% and a year-on-year increase of 3.6%, totaling 39.... Read more

Jobs Board

Business Development Manager - *Apple* Medi...
Job Summary Apple Music is a single, intuitive app that...- all in one place. You can stream any Apple Music song, playlist or album, and download it Read more
Development Operations and Site Reliability E...
Development Operations and Site Reliability Engineer, Apple Payment Gateway Job Number: 57572631 Santa Clara Valley, California, United States Posted: Jul. 27, 2017 Read more
Frameworks Engineering Manager, *Apple* Wat...
Frameworks Engineering Manager, Apple Watch Job Number: 41632321 Santa Clara Valley, California, United States Posted: Jun. 15, 2017 Weekly Hours: 40.00 Job Summary Read more
Program Manager, *Apple* Pay Business Opera...
…Manager to deliver and sustain a seamless user and support experience for Apple Pay Cash, the upcoming person-to-person payments feature in iMessage. On the Business Read more
Sr. Software Engineer, Core Services, *Apple...
…You will be part of the server team that powers various features within the Apple client applications - iTunes, App Store, iBooks, Podcast, Apple Music etc. You Read more
All contents are Copyright 1984-2011 by Xplain Corporation. All rights reserved. Theme designed by Icreon.