TweetFollow Us on Twitter

Jan 99 Prog Challenge

Volume Number: 15 (1999)
Issue Number: 1
Column Tag: Programmer's Challenge

January 1999 Programmer's Challenge

by Bob Boonstra, Westford, MA

Sphere Packing

This month we're going to help you recover from the clutter that might result from the holiday season. Imagine that your post-holiday household is filled with gifts, all of which have to be put somewhere. Imagine further that those gifts include sports equipment given to your children, or parents, or siblings, or grandchildren, as the case may be. And finally, imagine that the sports equipment includes a collection of balls of various sizes - basketballs, baseballs, soccer balls, beach balls, etc. (OK, if I've stretched your imagination to the breaking point, think of some other reason you might have a large collection of spherical objects.) We've got to find somewhere to store all of those balls, and space is at a premium. Fortunately, we also have a very large collection of boxes of various sizes, so many, in fact, that you can count on finding a box of the exact size that you might need. In keeping with our desire for a few less difficult problems, your Challenge is to pack the balls into the smallest box possible, so that we can store them efficiently.

The prototype for the code you should write is:

#if defined(__cplusplus)
#if defined (__cplusplus)
extern "C" {
#endif

typedef struct Position {
  double coordinate[3];     /* coordinate[0]==X position, [1]==Y, [2]==Z */
} Position;

void PackSpheres(
    long numSpheres,        /* input: number of spheres to pack */
    double radius[],        /* input: radius of each of numSpheres spheres */
    Position location[]     /* output: location of center of each sphere */
);

#if defined (__cplusplus)
}
#endif

Your PackSpheres routine will be given the number of balls (numSpheres) to be packed away, along with the radius of each of those spheres. The task is simple. Arrange the collection of balls into a rectangular parallelepiped ("box") such that no ball intersects any other ball (i.e., the distance between the centers of any two balls is greater than or equal to the sum of their radii). PackSpheres returns back the coordinates of the center of each ball in the location parameter. Your objective is to minimize the volume of the box that contains all the balls, where the extent of the box in each dimension (X, Y, and Z) is determined by the maximum and minimum coordinates of the balls, considering both the location of the center of the ball and its radius.

While you must ensure that the balls do not intersect, you need not ensure that the balls touch. In our storage room, boxes of balls can contain balls that levitate in the open space between other balls.

The winner will be the solution that minimizes the volume of the box containing all the balls, plus a penalty of 1% of additional storage volume for each millisecond of execution time.

This will be a native PowerPC Challenge, using the latest CodeWarrior environment. Solutions may be coded in C, C++, or Pascal.

Three Months Ago Winner

Congratulations to Pat Brown (Staunton, VA) for submitting the winning solution to the October Hearts Challenge. Pat's solution beat the second-place entry submitted by Tom Saxton and "dummy" entries that rounded out a tournament of four players. Pat's solution was both the faster of the two and the more successful at avoiding point cards, capturing approximately one third fewer points than Tom's solution.

Pat's strategy was fairly simple. His passing strategy is to pass the three highest cards in his hand. By not including a low heart in the pass, this strategy can aid a shoot attempt by an opponent, as well as being dangerous if it passes the queen of spades to the left. When leading, the playing strategy is to force out the queen of spades as quickly as possible, unless of course he has the queen. While he does not attempt to "shoot the moon", he is watchful for attempts by other players to shoot, and holds on to high cards until any potential shoot is spoiled. Otherwise, Pat tries to play the highest legal card that is lower than the current trick leader.

Tom submitted two solutions, a simple one (used in the tournament at Tom's request), and a more sophisticated (but less successful) one. The simple solution also tries to avoid taking tricks and does not attempt to shoot. It is a little more clever in selecting the pass, in that it tries to create a void if possible. It does not keep track of who might be attempting to shoot, and therefore does not attempt to stop them. Tom's second player keeps track of who is void in what suits and tries to shoot when it has a strong hand. However, it isn't quite perfected, and does much worse in a tournament than the first player.

I've included a Point Comparison chart that helps explain the performance of the two players. The vertical bars indicate the number of hands in which each player captured the number of points shown along the horizontal axis. You can see that Pat's solution was slightly more successful at capturing fewer than 4 points in a hand, very successful at avoiding being stuck with the queen of spaces, and extremely effective at capturing fewer than 20 points in a hand. The line graphs show the cumulative effect of the respective strategies on the score.

The table below summarizes the scoring for Pat and Tom's Hearts entries. The teams played a total of 24 matches, consisting of over 25000 hands of 13 tricks each. The Total Points column in the table lists the number of hearts captured during all of those tricks, plus 13 points for each Queen of Spades, and -26 points for each shoot. The table shows the number of tricks "won" by each player, and the number of times each successfully "shot the moon". You can see that Pat's winning solution did not attempt to shoot, and was very successful at avoiding being stuck with all of the point cards. Although not shown in the table, the less-than-intelligent "dummy" players "shot the moon" more often than either Pat or Tom. This was a consequence of their simplistic "strategy" for not taking points, which led them to hold on to high cards longer than a more sophisticated player would have done. Also shown in the table are the execution time of each solution in milliseconds, the total score, including the penalty of one point per millisecond of execution time, and the code and data sizes. As usual, the number in parentheses after the entrant's name is the total number of Challenge points earned in all Challenges prior to this one.

Name Total Points Tricks Won Shoots Time (msec) Score Code Size Data Size
Pat Brown 94775 59703 1 833 95608 3152 398
Tom Saxton (49) 157105 80902 67 1230 158335 2548 72

Top Contestants

Listed here are the Top Contestants for the Programmer's Challenge, including everyone who has accumulated 20 or more points during the past two years. The numbers below include points awarded over the 24 most recent contests, including points earned by this month's entrants.

  1. Munter, Ernst 204
  2. Saxton, Tom 59
  3. Boring, Randy 56
  4. Mallett, Jeff 50
  5. Rieken, Willeke 47
  6. Cooper, Greg 44
  7. Maurer, Sebastian 40
  8. Heithcock, JG 37
  9. Murphy, ACC 34
  10. Nicolle, Ludovic 34
  11. Lewis, Peter 31
  12. Hart, Alan 21
  13. Antoniewicz, Andy 20
  14. Brown, Pat 20
  15. Day, Mark 20
  16. Higgins, Charles 20
  17. Hostetter, Mat 20
  18. Studer, Thomas 20

There are three ways to earn points: (1) scoring in the top 5 of any Challenge, (2) being the first person to find a bug in a published winning solution or, (3) being the first person to suggest a Challenge that I use. The points you can win are:

1st place20 points
2nd place10 points
3rd place7 points
4th place4 points
5th place2 points
finding bug2 points
suggesting Challenge2 points

Here is Pat's winning Hearts solution:

MyHearts.c
Copyright © 1998 Pat Brown

#include "Hearts.h"

/* ***************************************************
 * Hearts.c
 *
 * Author: Pat Brown
 *
 * Trivia: there are 5.36447377655x10^28 different ways that a
 * deck can be dealed out for a game of Hearts.
 */

#define gMAX        52
#define gMIN        1

// Just the relative rankings, 1..52.
// Can be referenced easily using spot and suit value.
/*
        2C,2D,2S,3C,3D,3S,4C,4D,4S,5C,5D,5S,6C,6D,6S,2H,3H,4H,
        5H,6H,7C,7D,7S,8C,8D,8S,9C,9D,9S,7H,8H,9H,10C,10D,10S,
        JC,JD,JS,QC,QD,KC,KD,AC,AD,10H,JH,QH,KS,AS,KH,AH,QS
*/
static const int gCardValue[5][14] =
{
    {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0},    // NoSuit
    {0, 3, 6, 9,12,15,22,25,28,35,38,52,48,49},    // Spade
    {0,16,17,18,19,29,30,31,32,45,46,47,50,51},    // Heart
    {0, 2, 5, 8,11,14,21,24,27,34,37,40,42,44},    // Diamond
    {0, 1, 4, 7,10,13,20,23,26,33,36,39,41,43}     // Club
};

inline int getCardValue(theSuit, theSpot)
        { return gCardValue[theSuit][theSpot]; }

inline UInt16 NEXTSEAT(UInt16 theSeat)
        { return (theSeat+1)%4; }


/************
  Prototypes
*************/
inline static SInt16 findThisCard(const Card theCards[13],
        const Suit theSuit, const Spot theSpot);
static UInt16 findHighestLimitCard(const Card theCards[13],
        const int uLimit);
static UInt16 findLowestLimitCard(const Card theCards[13],
        const int lLimit);
static UInt16 findHighestIndexLimitCard(const Card theCards[13],
        const UInt16 valid[13], const int numValid, const int uLimit);
static UInt16 findLowestIndexLimitCard(const Card theCards[13],
        const UInt16 valid[13], const int numValid, const int lLimit);
static int findValidCards(const Card theCards[13],
        const Suit theSuit, UInt16 validCards[13]);

inline UInt16        findHighestCard(const Card theCards[13])
    { return findHighestLimitCard(theCards,gMAX); }
inline UInt16        findLowestCard(const Card theCards[13])
    { return findLowestLimitCard(theCards,gMIN); }
inline UInt16        findHighestIndexCard(const Card theCards[13],
        const UInt16 valid[13], const int numValid)
    { return findHighestIndexLimitCard(theCards,valid,numValid,gMAX); }
inline UInt16        findLowestIndexCard(const Card theCards[13],
        const UInt16 valid[13], const int numValid)
    { 
        return findLowestIndexLimitCard(theCards,valid,numValid,gMIN); 
    }

/******************
  Global variables
*******************/
static UInt16     mySeat;
// hasPoints is a bitfield of which players have
// taken points in this hand
static int            hasPoints;
// another bitfield of what suits I'm cutting
static int            cuttingSuit;
static int            tryToSpoil;
/******************************************************
runningTotal keeps track of "points" for each player
in a hand. These aren't real points, but a key to
watch for someone trying to pull a sweep.
If someone gets more than six hearts, or the queen of
spades and three hearts, they may be trying to sweep
(unless someone else has points).
*******************************************************/
static int            runningTotal[4];
static Boolean    blackLadyInHand;
static Boolean    blackLadyPlayed;
static Boolean    heartsBroken;

/********************
  Required functions
*********************/

InitTournament
pascal void InitTournament(const UInt16 numPlayers,
                const UInt16 gameEndingScore)
{
    return;
}

InitGame
pascal void InitGame(const UInt32 playerID[4],
                const UInt16 yourSeat)
{
    mySeat = yourSeat;
}

SelectPass
pascal void SelectPass(const Card dealtHand[13],
         const Pass passDirection, UInt16 passedCards[3])
{
    int    i, top, newtop;

// Init globals at the start of a hand.
    blackLadyPlayed = heartsBroken = 
            tryToSpoil = hasPoints = cuttingSuit = 
            runningTotal[0]=runningTotal[1]=runningTotal[2]=runningTotal[3]
            = 0;

    if (passDirection != kNoPass)
    {
        top = gMAX;
        for (i=0; i<3; i++) // get the three highest cards
        {
            newtop = passedCards[i] = 
                    findHighestLimitCard(dealtHand, top);
            top = getCardValue(dealtHand[newtop].suit, 
                                    dealtHand[newtop].spot)-1;
        }
    }
}

PlayTrick
pascal void PlayTrick(const UInt16 trickNumber,
                 const UInt16 trickLeader, const Card yourHand[13],
                 const Card cardsPlayed[4], UInt16 *yourPlay)
{
    UInt16     validCards[13], myCard;
    int            num, i;
    Suit         leadingSuit;
    Spot         whatsTaking;
    UInt16     whosTaking;
    Boolean    pointsTaking;

    if (trickNumber == 0)
    {
    // see if I've been passed the Queen of Spades
        blackLadyInHand = 
                    (findThisCard(yourHand, kSpade, kQueen) >= 0);
        if (trickLeader == mySeat)
        {
            *yourPlay = findThisCard(yourHand, kClub, k2);
            return;
        }
        else
            goto NOTLEADING;
    }
    
    if (trickLeader == mySeat)
    {
        // try to force the Queen of Spades (unless I have it)
        if (!blackLadyPlayed && !blackLadyInHand)
        {
            if (
                (num = findValidCards(yourHand, kSpade, validCards)) != 0)
            {
            myCard = findLowestIndexCard(yourHand, validCards, num);
                // don't play higher than the Queen
                if (yourHand[myCard].spot < kKing)
                {
                    *yourPlay = myCard;
                    return;
                }
            }
        } // (!blackLadyPlayed && !blackLadyInHand)
        num = findValidCards(yourHand, kNoSuit, validCards);
        *yourPlay = findLowestIndexCard(yourHand, validCards, num);
        return;
    } // if (trickLeader == mySeat)

NOTLEADING:    
    leadingSuit = cardsPlayed[trickLeader].suit;
    num=0;
    // this is faster than scanning yourHand every time
    if ((cuttingSuit & (1 << leadingSuit)))
        goto CUTTING;
    if (
        (num = findValidCards(yourHand, leadingSuit, validCards))==1)
    {
    // only one card we can play
        *yourPlay = validCards[0];
        return;
    }
    if (num == 0)
    {
        cuttingSuit |= 1 << leadingSuit;
        goto CUTTING;
    }
    if (num == 0)
    {
CUTTING:
    // we're cutting this suit
        if (trickNumber == 0)
        {
        // Can't play points on the first trick.
        // 51 keeps us from playing the Queen of Spades.
            num = findValidCards(yourHand, kNoSuit, validCards);
            *yourPlay = 
        findHighestIndexLimitCard(yourHand, validCards, num, 51);
            return;
        }
        if (!tryToSpoil)
            *yourPlay = findHighestCard(yourHand);
        else // Save the high cards to spoil a sweep.
            *yourPlay = findLowestCard(yourHand);
        return;
    } // if (num == 0)
    
    // See who's winning this trick so far.
    i = trickLeader;
    pointsTaking = leadingSuit == kHeart;
    whatsTaking = kNoSpot;
    while (i != mySeat)
    {
        if (    (cardsPlayed[i].suit == kSpade) && 
                    (cardsPlayed[i].spot == kQueen))
            pointsTaking = true;
        if (cardsPlayed[i].suit == leadingSuit)
        {
            if (cardsPlayed[i].spot > whatsTaking)
            {
                whatsTaking = cardsPlayed[i].spot;
                whosTaking = i;
            }
        }
        else // (cardsPlayed[i].suit != leadingSuit)
        {
                pointsTaking |= (cardsPlayed[i].suit == kHeart);
        } // if (cardsPlayed[i].suit == leadingSuit) else
        i = NEXTSEAT(i);
    } // while (i != mySeat)

    if ((leadingSuit == kSpade) && blackLadyInHand)
    {
        myCard = findThisCard(yourHand, kSpade, kQueen);
        if (whatsTaking > kQueen) // dump it on King or Ace
        {
            *yourPlay = myCard;
            return;
        }
        else // don't play the Queen of Spades
        {
            for (i=0;i<num;i++)
            {
                if (validCards[i] == myCard)
                {
                    while (++i < num)
                        validCards[i-1] = validCards[i];
                    num-;
                }
            } // for (i=0;i<num;i++)
        } // if (whatsTaking > kQueen) else
    } // if ((leadingSuit == kSpade) && blackLadyInHand)
            
    if (trickLeader == NEXTSEAT(i)) // playing last
    {
        if (!pointsTaking)
        {
            if (tryToSpoil) // don't waste the high cards
                *yourPlay = 
                    findLowestIndexCard(yourHand, validCards, num);
            else
                *yourPlay = 
                    findHighestIndexCard(yourHand, validCards, num);
            return;
        }
        else
        {
            if (tryToSpoil == (1 << whosTaking))
            {
        myCard = findHighestIndexCard(yourHand, validCards, num); 
              if (yourHand[myCard].spot < whatsTaking) // we can't take this trick
              myCard = findLowestIndexCard(yourHand, validCards, num);
                *yourPlay = myCard;
                return;
            }
            else // someone else is spoiling the sweep
            {
                *yourPlay = 
                findHighestIndexLimitCard(yourHand, validCards, num, 
                                    getCardValue(leadingSuit, whatsTaking));
                return;
            }
        } // if (!pointsTaking) else
    } // if (trickLeader == NEXTSEAT(i))
    
    if (tryToSpoil)
    {
        myCard = findHighestIndexCard(yourHand, validCards, num);
    if (yourHand[myCard].spot < whatsTaking) // we can't take this trick
        myCard = findLowestIndexCard(yourHand, validCards, num);
        *yourPlay = myCard;
        return;
    }
    
    // Standard behaviour
    // Play the highest card under the current highest card.
    *yourPlay = findHighestIndexLimitCard(yourHand, validCards, 
                            num, getCardValue(leadingSuit, whatsTaking));
    return;
}

TrickResults
pascal void TrickResults(const Card lastTrick[4],
                const UInt16 trickWinner)
{
// Keep track on who has what points so we can watch for a sweep.
    int    i;
    int    points = 0;
    int    whoWon;

    for (i=0; i<4; i++)
    {
        switch (lastTrick[i].suit)
        {
            case kSpade:
                if (lastTrick[i].spot == kQueen)
                {
                // not 13, we trigger a sweep when "points" hit 7
                    points += 4;
                    blackLadyPlayed = true;
                    blackLadyInHand = false;
                }
                break;
            case kHeart:
                points++;
                heartsBroken = true;
                break;
        }
    } // for (i=0; i<4; i++)
    if (points == 0)
        return;
    points = runningTotal[trickWinner] += points;
    whoWon = 1 << trickWinner;
    hasPoints |= whoWon;
    if (tryToSpoil)
    {
        if (whoWon != tryToSpoil)
            tryToSpoil = 0;
    }
    else // (!tryToSpoil)
    {
        if (trickWinner != mySeat)
            tryToSpoil = ((hasPoints == whoWon) && (points > 6)) 
? whoWon : 0;
    }
}

HandResults
pascal void HandResults(const SInt16 pointsThisHand[4],
                const SInt32 cumPoints[4])
{
    return;
}

/**************
  My functions
***************/

findThisCard
/**************************************
Return the index of a particular card,
or -1 if it's not there.
***************************************/
inline static SInt16 findThisCard(const Card theCards[13],
                const Suit theSuit, const Spot theSpot)
{
    SInt16    c = -1, i = 13;
    
    while ((c<0) && i-)
    {
        if (    (theCards[i].spot == theSpot) && 
                    (theCards[i].suit == theSuit))
                c = i;
    }
    return c;
}

findHighestLimitCard
/*****************************************************
These next few functions find cards based on a limit.
(it's an inclusive limit)
If there are no cards within the limit, then call
the opposite function.
******************************************************/
static UInt16 findHighestLimitCard(const Card theCards[13],
                const int uLimit)
{
    int         i = 13;
    int         points, theValue = 0;
    SInt16    theCard = -1;
    
    while (i-)
    {
        points = getCardValue(theCards[i].suit, theCards[i].spot);
        if ((points > theValue) && (points <= uLimit))
        {
            theCard = i;
            if (uLimit == (theValue = points))
                return theCard;
        }
    }
    if (theCard < 0)
        theCard = findLowestLimitCard(theCards, uLimit);
    return theCard;
}

findLowestLimitCard
static UInt16 findLowestLimitCard(const Card theCards[13],
                const int lLimit)
{
    int         i = 13;
    int         points, theValue = 99;
    SInt16    theCard = -1;
    
    while (i-)
    {
        points = getCardValue(theCards[i].suit, theCards[i].spot);
        if ((points < theValue) && (points >= lLimit))
        {
            theCard = i;
            if (lLimit == (theValue = points))
                return theCard;
        }
    }
    if (theCard < 0)
        theCard = findHighestLimitCard(theCards, lLimit);
    return theCard;
}

findHighestIndexLimitCard
/***************************************************
Index functions use an array of valid card indexes.
************ INFINITE RECURSION WARNING ************
 Do not call these functions with numValid == 0!!!
****************************************************/
static UInt16 findHighestIndexLimitCard(const Card theCards[13],
                const UInt16 valid[13], const int numValid, 
                const int uLimit)
{
    int         i = numValid;
    int         points, theValue = 0;
    SInt16    theCard = -1;
    
    while (i-)
    {
        points = getCardValue(theCards[valid[i]].suit, 
                              theCards[valid[i]].spot);
        if ((points > theValue) && (points <= uLimit))
        {
            theCard = valid[i];
            if (uLimit == (theValue = points))
                return theCard;
        }
    }
    if (theCard < 0)
    theCard = findLowestIndexLimitCard(theCards, valid, numValid, 
                                                 uLimit);
    return theCard;
}

findLowestIndexLimitCard
static UInt16 findLowestIndexLimitCard(const Card theCards[13],
                const UInt16 valid[13], const int numValid, 
                const int lLimit)
{
    int         i = numValid;
    int         points, theValue = 99;
    SInt16    theCard = -1;
    
    while (i-)
    {
        points = getCardValue(theCards[valid[i]].suit, 
                                                    theCards[valid[i]].spot);
        if ((points < theValue) && (points >= lLimit))
        {
            theCard = valid[i];
            if (lLimit == (theValue = points))
                return theCard;
        }
    }
    if (theCard < 0)
theCard = findHighestIndexLimitCard(theCards, valid, numValid, 
                                                   lLimit);
    return theCard;
}

findValidCards
/*********************************************************
Fill an array with indexes to cards of a particular suit.
Returns the number of valid cards (the size of the array)
Passing kNoSuit will fill the list depending on whether
hearts can be played now.
**********************************************************/
static int findValidCards(const Card theCards[13],
                const Suit theSuit, UInt16 validCards[13])
{
    UInt16    i;
    int         num = 0;
    
    if (theSuit == kNoSuit)
    {
        if (heartsBroken)
        {
            for (i=0; i<13; i++)
                if (theCards[i].suit != kNoSuit) validCards[num++] = i;
        }
        else // (!heartsBroken)
        {
            for (i=0; i<13; i++)
            {
                if (    (theCards[i].suit != kHeart) && 
                            (theCards[i].suit != kNoSuit))
                    validCards[num++] = i;
            }
            if (num == 0) // Nothing but hearts left to play.
            {
                for (i=0; i<13; i++)
            if (theCards[i].suit != kNoSuit) validCards[num++] = i;
            }
        } // if (heartsBroken) else
    }
    else // (theSuit != kNoSuit)
    {
        for (i=0; i<13; i++)
        {
            if (theCards[i].suit == theSuit)
                validCards[num++] = i;
        }
    }
    return num;
}

 

Community Search:
MacTech Search:

Software Updates via MacUpdate

Latest Forum Discussions

See All

Whitethorn Games combines two completely...
If you have ever gone fishing then you know that it is a lesson in patience, sitting around waiting for a bite that may never come. Well, that's because you have been doing it wrong, since as Whitehorn Games now demonstrates in new release Skate... | Read more »
Call of Duty Warzone is a Waiting Simula...
It's always fun when a splashy multiplayer game comes to mobile because they are few and far between, so I was excited to see the notification about Call of Duty: Warzone Mobile (finally) launching last week and wanted to try it out. As someone who... | Read more »
Albion Online introduces some massive ne...
Sandbox Interactive has announced an upcoming update to its flagship MMORPG Albion Online, containing massive updates to its existing guild Vs guild systems. Someone clearly rewatched the Helms Deep battle in Lord of the Rings and spent the next... | Read more »
Chucklefish announces launch date of the...
Chucklefish, the indie London-based team we probably all know from developing Terraria or their stint publishing Stardew Valley, has revealed the mobile release date for roguelike deck-builder Wildfrost. Developed by Gaziter and Deadpan Games, the... | Read more »
Netmarble opens pre-registration for act...
It has been close to three years since Netmarble announced they would be adapting the smash series Solo Leveling into a video game, and at last, they have announced the opening of pre-orders for Solo Leveling: Arise. [Read more] | Read more »
PUBG Mobile celebrates sixth anniversary...
For the past six years, PUBG Mobile has been one of the most popular shooters you can play in the palm of your hand, and Krafton is celebrating this milestone and many years of ups by teaming up with hit music man JVKE to create a special song for... | Read more »
ASTRA: Knights of Veda refuse to pump th...
In perhaps the most recent example of being incredibly eager, ASTRA: Knights of Veda has dropped its second collaboration with South Korean boyband Seventeen, named so as it consists of exactly thirteen members and a video collaboration with Lee... | Read more »
Collect all your cats and caterpillars a...
If you are growing tired of trying to build a town with your phone by using it as a tiny, ineffectual shover then fear no longer, as Independent Arts Software has announced the upcoming release of Construction Simulator 4, from the critically... | Read more »
Backbone complete its lineup of 2nd Gene...
With all the ports of big AAA games that have been coming to mobile, it is becoming more convenient than ever to own a good controller, and to help with this Backbone has announced the completion of their 2nd generation product lineup with their... | Read more »
Zenless Zone Zero opens entries for its...
miHoYo, aka HoYoverse, has become such a big name in mobile gaming that it's hard to believe that arguably their flagship title, Genshin Impact, is only three and a half years old. Now, they continue the road to the next title in their world, with... | Read more »

Price Scanner via MacPrices.net

B&H has Apple’s 13-inch M2 MacBook Airs o...
B&H Photo has 13″ MacBook Airs with M2 CPUs and 256GB of storage in stock and on sale for up to $150 off Apple’s new MSRP, starting at only $849. Free 1-2 day delivery is available to most US... Read more
M2 Mac minis on sale for $100-$200 off MSRP,...
B&H Photo has Apple’s M2-powered Mac minis back in stock and on sale today for $100-$200 off MSRP. Free 1-2 day shipping is available for most US addresses: – Mac mini M2/256GB SSD: $499, save $... Read more
Mac Studios with M2 Max and M2 Ultra CPUs on...
B&H Photo has standard-configuration Mac Studios with Apple’s M2 Max & Ultra CPUs in stock today and on Easter sale for $200 off MSRP. Their prices are the lowest available for these models... Read more
Deal Alert! B&H Photo has Apple’s 14-inch...
B&H Photo has new Gray and Black 14″ M3, M3 Pro, and M3 Max MacBook Pros on sale for $200-$300 off MSRP, starting at only $1399. B&H offers free 1-2 day delivery to most US addresses: – 14″ 8... Read more
Department Of Justice Sets Sights On Apple In...
NEWS – The ball has finally dropped on the big Apple. The ball (metaphorically speaking) — an antitrust lawsuit filed in the U.S. on March 21 by the Department of Justice (DOJ) — came down following... Read more
New 13-inch M3 MacBook Air on sale for $999,...
Amazon has Apple’s new 13″ M3 MacBook Air on sale for $100 off MSRP for the first time, now just $999 shipped. Shipping is free: – 13″ MacBook Air (8GB RAM/256GB SSD/Space Gray): $999 $100 off MSRP... Read more
Amazon has Apple’s 9th-generation WiFi iPads...
Amazon has Apple’s 9th generation 10.2″ WiFi iPads on sale for $80-$100 off MSRP, starting only $249. Their prices are the lowest available for new iPads anywhere: – 10″ 64GB WiFi iPad (Space Gray or... Read more
Discounted 14-inch M3 MacBook Pros with 16GB...
Apple retailer Expercom has 14″ MacBook Pros with M3 CPUs and 16GB of standard memory discounted by up to $120 off Apple’s MSRP: – 14″ M3 MacBook Pro (16GB RAM/256GB SSD): $1691.06 $108 off MSRP – 14... Read more
Clearance 15-inch M2 MacBook Airs on sale for...
B&H Photo has Apple’s 15″ MacBook Airs with M2 CPUs (8GB RAM/256GB SSD) in stock today and on clearance sale for $999 in all four colors. Free 1-2 delivery is available to most US addresses.... Read more
Clearance 13-inch M1 MacBook Airs drop to onl...
B&H has Apple’s base 13″ M1 MacBook Air (Space Gray, Silver, & Gold) in stock and on clearance sale today for $300 off MSRP, only $699. Free 1-2 day shipping is available to most addresses in... Read more

Jobs Board

Medical Assistant - Surgical Oncology- *Apple...
Medical Assistant - Surgical Oncology- Apple Hill Location: WellSpan Medical Group, York, PA Schedule: Full Time Sign-On Bonus Eligible Remote/Hybrid Regular Apply Read more
Omnichannel Associate - *Apple* Blossom Mal...
Omnichannel Associate - Apple Blossom Mall Location:Winchester, VA, United States (https://jobs.jcp.com/jobs/location/191170/winchester-va-united-states) - Apple Read more
Cashier - *Apple* Blossom Mall - JCPenney (...
Cashier - Apple Blossom Mall Location:Winchester, VA, United States (https://jobs.jcp.com/jobs/location/191170/winchester-va-united-states) - Apple Blossom Mall Read more
Operations Associate - *Apple* Blossom Mall...
Operations Associate - Apple Blossom Mall Location:Winchester, VA, United States (https://jobs.jcp.com/jobs/location/191170/winchester-va-united-states) - Apple Read more
Business Analyst | *Apple* Pay - Banco Popu...
Business Analyst | Apple PayApply now " Apply now + Apply Now + Start applying with LinkedIn Start + Please wait Date:Mar 19, 2024 Location: San Juan-Cupey, PR Read more
All contents are Copyright 1984-2011 by Xplain Corporation. All rights reserved. Theme designed by Icreon.