TweetFollow Us on Twitter

The Knight's Tour

Volume Number: 14 (1998)
Issue Number: 11
Column Tag: Programming Puzzles

The Knight's Tour

by F.C. Kuechmann

A seemingly simple problem with thousands of solutions

There is a class of problems that, though seemingly simple in concept, involve numbers so large that the time or material required for solution renders them effectively impossible to solve manually within a human lifetime. The "grains of wheat on a chessboard" described by Gamow [1988] is one of the simpler and more easily explained examples of this sort of problem. We start with a single grain of wheat on the first square of the board, two grains on the second, four on the third, eight on the fourth, and so on. Each square receiving twice the number of grains as the previous square, until all 64 squares are occupied. Simple enough, right? Gamow suggests that it would take the entire world's wheat production for 2000 years to fill the board! In this article we're going to look at a similar challenge and show how to solve it with your Macintosh.

The Problem

The "knight's tour" is another chessboard problem that involves deceptively large numbers (this one is simpler though - we don't need any wheat). In the game of chess the knight can move only in L-shaped patterns consisting of two squares one direction and a single square perpendicular to the direction of the first two. There are eight possible moves from any given starting square, shown in Figure 1. From the 16 squares at the middle of a chessboard all eight moves can be executed without leaving the board; Away from the center fewer moves are executable because the knight would end up off the board entirely. In general, a knight in row 1 or 8, or column 1 or 8, can execute only 4 moves. A knight in row 2 or 7, or column 2 or 7, can execute 6 moves. A knight on a corner square has only two executable moves.

Figure 1. The eight possible moves of a knight.

The object of the knight's tour is, from a given starting square, to visit each square on the board exactly once.

From many of the 64 possible starting squares no complete tours are possible, whereas others offer thousands. My experiments have shown that, if there is at least one complete tour from a given starting square, there is a large number of complete tours from that square.

Starting at square one, we test eight possible moves. Each time a move is executed, we must test another eight moves, then another eight, and another, until we have either visited all 64 squares or exhausted the possible moves. At square 63, eight moves must be considered. At square 62, 8^2 moves must be tested. More generally, at any given square n, the number of moves to be tested is 8^(64-n), with a significantly smaller number of executable moves. If the knight's tour were as straightforward as the grains of wheat problem, determining all possible solutions from any given starting square would be described by a geometric progression of 8+(8^2)+(8^3)..+(8^62)+(8^63) - or 8^64 tests. That is not a small number! In fact, we get eight new tests only when we actually execute a move, so the number of required tests is somewhat smaller.

A human with a chessboard, a knight, and a pad of paper to record moves, together with a well-conceived systematic method and fast hands, would require so much time to derive even a single solution that it is practically if not theoretically impossible using hand methods.

1 38 59 36 43 48 57 52
60 35 2 49 58 51 44 47
39 32 37 42 3 46 53 56
34 61 40 27 50 55 4 45
31 10 33 62 41 26 23 54
18 63 28 11 24 21 14 5
9 30 19 16 7 12 25 22
64 17 8 29 20 15 6 13

Figure 2. One complete knight's tour.

Niklaus Wirth [1976,1986] describes a trial-and-error approach to the problem using recursion and backtracking, with soucecode in Pascal [1976] and Modula-2 [1986]. Unlike a human, a computer can find solutions quite easily, although it can still take a great deal of time. With Wirth's method and CodeWarrior Pascal, the solution shown in Figure 2 requires 66,005,601 possible moves to be considered, 8,250,732 moves to be executed, and occupies 35 seconds of time on a PPC Mac 6500/225. A total of 107 solutions for the same starting square were found in just under two hours with 16,114,749,106 total position tests and 2,014,343,776 moves; 12 hours got more than a thousand solutions without testing more than a fraction of the possible moves. At that rate finding all solutions for the entire board would take a very long time. Because of symmetries, however, we could simply divide the board into four 16-square quadrants, Figure 3, and find the solutions for any quadrant, then calculate the solutions for the remaining quadrants by mirroring.

1

2

3

4

Figure 3. The board as quadrants.

Solutions for quadrant 2 mirror those for quadrant 1 on the vertical axis. Quadrants 3 and 4 mirror quadrants 1 and 2 on the horizontal axis.

The Program

The chess board occupies the leftmost 2/3 of the window, with a control panel on the right. Top left of the control panel are three times...

  1. total time
  2. time on current starting square
  3. time since the most recent solution was found.

Tour 1 has only number 1; Tour 2 has numbers 1 and 3.

Top right is the current rotation pattern for testing possible moves; the patterns are toggled between 1 and 2 by clicking the Pat button, and the position is selected by clicking the Rot button. Below the time are statistics on move tests, moves, backtracks, and the maximum backtrack level.

Buttons for starting, pausing, pattern and rotation selection, update board status, tour selection [eight options], and speed 1-9 follow at bottom right.

The EvUp/SolUp button toggles update status. In the default EvUp mode the board is updated whenever the events are tested, and those intervals are determined by the speed setting; in SolUp mode the board is updated only if and when a complete tour is achieved. Since testing for events and updating the board require large amounts of time relative to calculating the knight's moves, higher execution speeds offer less frequent event testing and board updating.

The Tours

The eight tour options are:

  • Tour 1 - finds one solution from the starting square and terminates; starting square selected by clicking on it.
  • Tour 2 - finds all solutions from starting square; starting square selected by clicking on it.
  • Tour 3 - starts at row 1, column 1 and moves through the entire board; if a solution is found, the next square becomes the starting square.
  • Tour 4 - starts at row 1, column 1 and moves through the entire board; finds all solutions for each square.
  • Quad 1 - finds all solutions for upper left quadrant.
  • Quad 2 - finds all solutions for upper right quadrant.
  • Quad 3 - finds all solutions for lower left quadrant.
  • Quad 4 - finds all solutions for lower right quadrant.

Menus

Several program options are selected by menu.

  • The File menu offers Run and Quit options.
  • The Delay menu allows selection of the pause after each complete tour. The minimum is no pause, the maximum 30 seconds, the default 1 second.
  • The Time menu determines the maximum time spent touring from a given starting square. In the cases of tours 1 and 2, pursuit of solutions ceases at that point; with the other six tours execution continues at the next square. The minimum selection is 2 minutes; the maximum specific interval 4 weeks. The default in no time limit.
  • The Save menu offers options of No save, Save as text, and Save as records. The default is No save.

Drawing the Chess Board

The empty chess board is drawn and optionally initialized by calling the procedure in Listing 1. It calls the code in Listing 2 64 times, passing row, column and flag values. The flag determines whether the global array ggChessBd, which stores the current moves, is affected. If the flag is TRUE, the array location ggChessBd[row,column] is set to zero. The flag is TRUE during initialization, FALSE during all other updates.

Listing 1.

ClearTheBoard
   procedure ClearTheBoard(flag:boolean);
         {clear the board by drawing blank squares at}
         {all 64 positions}
   var
      row,column:integer;
   begin
      for column:=1 to ggN do
         for row:=1 to ggN do
            SnuffKnight(row,column,flag);
   end;

The SnuffKnight procedure in Listing 2 erases the square at the location given by row and column by drawing a light or dark empty square.

Listing 2.

SnuffKnight
   procedure SnuffKnight (row,column:integer;flag:boolean);
      {erases the move number at the specified row and column}
      {position by drawing an empty square there}
   var
      vOffset,hOffset,height,width:integer;
      pictureRect:Rect;
      thePicture:PicHandle;
   begin
      SetPort(ggKnightWindow);
      ggTourRect:=ggKnightWindow^.portRect;

      if column mod 2=0 then
         begin
               {even # columns}
            if row mod 2=0 then
               thePicture:=GetPicture(ggcDK_ERASE_ID)
            else
               thePicture:=GetPicture(ggcLT_ERASE_ID);
         end
      else
         begin
               {odd # columns}
            if row mod 2>0 then
               thePicture:=GetPicture(ggcDK_ERASE_ID)
            else
               thePicture:=GetPicture(ggcLT_ERASE_ID);
         end;

      pictureRect:=thePicture^^.picFrame;
      hOffset:=(column-1) * ggcSQUARE_SIZE;
      vOffset:=(row-1) * ggcSQUARE_SIZE;
      height:=pictureRect.bottom-pictureRect.top;
      width:=pictureRect.right-pictureRect.left;
      PlacePict(ggTourRect,vOffset,hOffset,height,width);
      DrawPicture(thePicture,ggTourRect);
      if flag then
         ggChessBd[row,column]:=0;
   end;

Listing 3 shows how the board is refreshed after an update event. If the value in location ggChessBd[row,column] is non-zero (i.e. it holds a move number for the knight), that number is drawn by calling the DrawKnight code in Listing 4; Otherwise Listing 2 is called with a flag value of FALSE.

Listing 3.

UpDateBoard
   procedure UpDateBoard;
   var
      row,column,index:integer;
   begin
      for row:=1 to ggN do
         for column:=1 to ggN do
            begin
               index:=ggChessBd[row,column];
               if index>0 then
                  DrawKnight(row,column,index)
               else
                  SnuffKnight(row,column,FALSE);
            end;
   end;

Listing 4.

DrawKnight
   procedure DrawKnight(row,column,index:integer);
      {draws a square with a knight move # at the specified row}
      {and column}
   var
      vOffset,hOffset,height,width:integer;
      S:Str255;
   begin
      SetPort(ggKnightWindow);
      ggTourRect:=ggKnightWindow^.portRect;
      hOffset:=(column-1) * ggcSQUARE_SIZE;
      vOffset:=(row) * ggcSQUARE_SIZE;
      NumToString(index,S);
      if index<10 then
         begin
               {selectively erase squares with 1-9 when backtracking}
            if (ggIndex<10) and (ggMaxBak<ggNsqr) then
               SnuffKnight(row,column,FALSE);
            MoveTo(hOffset+20,vOffset);
         end
      else
         MoveTo(hOffset+14,vOffset);
      TextSize(20);
      ForeColor(blackColor);
      
      if column mod 2=0 then
         begin
            if row mod 2=0 then
               BackColor(redColor)
            else
               BackColor(whiteColor);
         end
      else
         begin   
            if row mod 2>0 then
               BackColor(redColor)
            else
               BackColor(whiteColor);
         end;      
      
      TextMode(srcCopy);
      DrawString(S);
      BackColor(whiteColor);
   end;

The Core Procedure

Most of the work in Knight's Tour is accomplished in Listing 5a. Testing for events, tracking the time, updating the board and statistics is accomplished by calling Listing 5b. The variable index holds the move number, x and y the column and row numbers. Variable k counts the possible moves 1-8. The global arrays gDeltaX and gDeltaY hold the number of squares to be moved on the X and Y axes to get to the position to be tested. Those values are added to the current row and column values to get the position to be tested. If the new position is on the board (i.e. both row and column in the 1..8 range, Listing 5c) and that board location unoccupied (Listing 5d), the move is made (Listing 5e); then if we don't have a complete tour (Listing 5f) the code in Listing 5a calls itself to make the next move. If the tested move can't be executed, the next possible move is tested. When no more possibilities exist, we drop out of loop and backtrack.

Listing 5a.

Try
   procedure Try(index,x,y:integer;var q:boolean);
   var
      k,column,row,dX,dY:integer;
      q1:boolean;
   begin
       k:=0;
       ggIndex:=index;
       q1:=FALSE;
       repeat
        Inc(gLoopCount);
        if gLoopCount>=ggUpdateInterval then
               DoUpdates(index:integer);
        Inc(gTests);
        if gTests>=ggcTenTo7th then
              begin
                 gTests:=0;
                 Inc(gTestOvr);
                 EraseTestCount;
                 UpdateTests(gTests,gTestOvr);
                 end;
        Inc(k);
        dX:=gDeltaX[k];
        dY:=gDeltaY[k];
        column:=x+dX;
        row:=y+dY;
        if SquareIsOnBoard(row,column) and
                           SquareNotOccupied(row,column) then
           begin
              MakeTheMove(row,column,index);
              Inc(gMoves);
              if gMoves>=ggcTenTo7th then
                 begin
                    gMoves:=0;
                    Inc(gMoveOvr);
                     EraseMoveCount;
                     UpdateMoves(gMoves,gMoveOvr);
                 end;

              if not CompleteTour(index) then
                 begin
                    Try(index+1,column,row,q1);

                     if (not q1) and (not ggQuitFlag) then
                        begin
                          ggChessBd[row,column]:=0;
                          Inc(gBakTrax);
                          if gBakTrax>=ggcTenTo7th then
                             begin
                                gBakTrax:=0;
                                  EraseBakTrax; 
                                Inc(gBakOvr);
                                UpDateBakTrax(gBakTrax,gBakOvr);
                             end;

                          if index<gLowestSoFar then
                             begin
                                gLowestSoFar:=index;
                                ggMaxBak:=index;
                                UpdateLowestRecurse(gLowestSoFar);
                             end;
                       end;
                 end
              else if ggTourNum in [1,3] then
                 begin
                    q1:=TRUE;
                    DoSolution(index,q1);
                    GetTime(gStime);
                     Inc(ggSolNum);
                     Inc(gSolNum);
                    UpdateSolNum(gSolNum);
                    DoTime;
                 end
              else
                 begin
                    DoTime;
                    DoSolution(index,TRUE);
                    if ggTourNum>3 then
                       DrawElapsed(0,3);
                    ggChessBd[row,column]:=0;
                    GetTime(gStime);
                     Inc(ggSolNum);
                     Inc(gSolNum);
                    UpdateSolNum(gSolNum);
                    DoTime;           
                 end;
           end;
      until (k>=ggcNumKnightMoves) or ggQuitFlag 
                             or ggErrFlag or gTimeFlag or q1;
      q:=q1;
   end;

Listing 5b.

DoUpdates
   procedure DoUpdates(index:integer);
   begin
      gLoopCount:=0;
      repeat
       if ggUpdateFlag or ggRedrawFlag then
          begin
              UpDateBoard;
              UpdateStats(index);
              Stall(ggStallVal);
              ggRedrawFlag:=FALSE;
           end;
         HandleEvent;
         DoTime;
      until (not ggPauseFlag) or gTimeFlag;
   end;

Listing 5c.

SquareIsOnBoard
   function SquareIsOnBoard(row,column:integer):boolean;
   begin
      If (column in [1..ggN]) and (row in [1..ggN]) then
         SquareIsOnBoard:=TRUE
      else
         SquareIsOnBoard:=FALSE;
   end; 

Listing 5d.

SquareNotOccupied
   function SquareNotOccupied(row,column:integer):boolean;
   begin     
      if ggChessBd[row,column]=0 then
          SquareNotOccupied:=TRUE
      else
          SquareNotOccupied:=FALSE;
   end;

Listing 5e.

MakeTheMove
   procedure MakeTheMove(row,column,index:integer);
   begin
      ggChessBd[row,column]:=index;
   end;

Listing 5f.

CompleteTour
   function CompleteTour(index:integer):boolean;
   begin
      if index<ggNsqr then
         CompleteTour:=FALSE
      else
         CompleteTour:=TRUE;
   end;

Initializing the Offsets

The values in arrays gDeltaX and gDeltaY are initialized to -2,-1,1 or 2 by passing them to the procedure in Listing 6. Two conditions must be accomodated in the initialization: the move pattern 1-2 held in the variable ggPattern, and the rotation 1-8 of that pattern held in ggRot. The move values are held in two, two-by-eight integer constant arrays, cDeltaX and cDeltaY. Using ggPattern and ggRot as indices, the values are transfered from the constant arrays to the proper locations in deltaX and deltaY.

Listing 6.

InitDelta
            {x value increases left-to-right}
            {y value increases top-to-bottom}
   procedure InitDelta(var deltaX,deltaY:ggDeltaType);
   type
      knightMoves=array[1..2,1..8] of integer;
   const
      cDeltaX:knightMoves=((-2,-1,1,2,2,1,-1,-2),
                                     (2,1,-1,-2,-2,-1,1,2));
      cDeltaY:knightMoves=((-1,-2,-2,-1,1,2,2,1),
                                     (-1,-2,-2,-1,1,2,2,1));
   var
      n,m,p:integer;
   begin
      n:=ggRot;
      m:=ggPattern;
      for p:=1 to 8 do
         begin
            deltaX[p]:=cDeltaX[m,n];
            deltaY[p]:=cDeltaY[m,n];
            Inc(n);
            if n>8 then
               n:=1;
         end;
   end;

Displaying the Test Pattern

Displaying the testing order for possible moves in the upper right corner of the window and changing that display as the Pat and Rot buttons are clicked is handled by the code in Listing 7. Pattern 1 tests begin at 10 o'clock and rotate clockwise. Pattern 2 tests begin at 2 o'clock and rotate counter-clockwise. Listing 7a copies the test position numbers from integer constant array cPat1 or cPat2 into the display position array gRotPos. Display positions are numbered 1-8 starting at ten o'clock and moving clockwise. The value of rotation variable ggRot is used to index into the appropriate constant array, determined by the value of ggPattern. Listing 7b is then called.

Listing 7a.

DrawPattern
   procedure DrawPattern;
   type
      patArray=array[1..15] of integer;
   const
      cPat1:patArray=(2,3,4,5,6,7,8,1,2,3,4,5,6,7,8);
      cPat2:patArray=(4,3,2,1,8,7,6,5,4,3,2,1,8,7,6);
   var
      n,p:integer;
   begin
      p:=ggRot-1;
      case ggPattern of
         1:
            begin   
               for n:=1 to 8 do
                  gRotPos[n]:=cPat1[n+(7-p)];
            end;
         2:
            begin   
               for n:=1 to 8 do
                  gRotPos[n]:=cPat2[n+p];
            end;
      end; {case}
      DrawPat;
   end;

Listing 7b sets the text size and colors, then calls Listing 7c to clear the display rectangle. Next it calls Listing 7d to draw the grid of white lines. Finally, using the values stored in array gRotPos, it draws the test order numbers on the grid.

Listing 7b.

DrawPat

   procedure DrawPat;
   var
      leftEdge,topEdge,squareSize,x,y,z,n:integer;
      S:Str255;
   const
      cXoff:integer=6;
      cYoff:integer=15;
   begin
      TextSize(gcPatSize);
      ForeColor(whiteColor);
      BackColor(blackColor);
      ClearRotRect;
      DrawMatrix;
      BackColor(whiteColor);
      leftEdge:=ggcClockLeft+gcPatLeft;
      topEdge:=10;
      TextMode(srcOr);
      squareSize:=20;
      S:='K';
      x:=(2*squareSize)+cXoff;
      y:=(2*squareSize)+cYoff;
      MoveTo(leftEdge+x,topEdge+y);
      DrawString(S);
      
      for n:=1 to 8 do
         begin
            z:=gRotPos[n];
            NumToString(z,S);
            case n of
               1:
                  begin
                        {position 1}
                     x:=cXoff;
                     y:=(squareSize)+cYoff;
                     MoveTo(leftEdge+x,topEdge+y);
                     DrawString(S);
                  end;
               2:
                  begin
                        {pos 2}
                     x:=(squareSize)+cXoff;
                     y:=cYoff;
                     MoveTo(leftEdge+x,topEdge+y);
                     DrawString(S);
                  end;
               3:
                  begin
                        {pos 3}
                     x:=(3*squareSize)+cXoff;
                     y:=cYoff;
                     MoveTo(leftEdge+x,topEdge+y);
                     DrawString(S);
                  end;
               4:
                  begin
                        {pos 4}
                     x:=(4*squareSize)+cXoff;
                     y:=(squareSize)+cYoff;
                     MoveTo(leftEdge+x,topEdge+y);
                     DrawString(S);
                  end;
               5:
                  begin
                        {pos 5}
                     x:=(4*squareSize)+cXoff;
                     y:=(3*squareSize)+cYoff;
                     MoveTo(leftEdge+x,topEdge+y);
                     DrawString(S);
                  end;
               6:
                  begin
                        {pos 6}
                     x:=(3*squareSize)+cXoff;
                     y:=(4*squareSize)+cYoff;
                     MoveTo(leftEdge+x,topEdge+y);
                     DrawString(S);
                  end;
               7:
                  begin
                        {pos 7}
                     x:=(squareSize)+cXoff;
                     y:=(4*squareSize)+cYoff;
                     MoveTo(leftEdge+x,topEdge+y);
                     DrawString(S);
                  end;
               8:
                  begin
                        {pos 8}
                     x:=cXoff;
                     y:=(3*squareSize)+cYoff;
                     MoveTo(leftEdge+x,topEdge+y);
                     DrawString(S);
                  end;
            end;
         end;
      ForeColor(blackColor);
      TextMode(srcCopy);   
   end;

Listing 7c calls Listing 7e to set the boundaries of the display rectangle and clears it to black, then adds the pattern and rotation numbers at the bottom.

Listing 7c.

ClearRotRect
   procedure ClearRotRect;
   var
      width,height,leftEdge,topEdge:integer;
      myRect:Rect;
      S:Str255;
   begin
      SetPort(ggKnightWindow);
      myRect:=ggKnightWindow^.portRect;
      leftEdge:=ggcClockLeft+gcPatLeft;
      topEdge:=10;
      width:=100;
      height:=100;
      SetRect(myRect,leftEdge,topEdge,width,height);   
      EraseRect(myRect);
      NumToString(ggPattern,S);
      S:=concat('Pattern #',S);
      MoveTo(leftEdge+10,topEdge+height+gcPatSize+5);
      DrawString(S);
      NumToString(ggRot,S);
      S:=concat('Rotation ',S);
      MoveTo(leftEdge+10,topEdge+height+(gcPatSize*2)+10);
      DrawString(S);      
   end;

Listing 7d.

DrawMatrix
   procedure DrawMatrix;
   var
      leftEdge,topEdge,n:integer;
   begin
      leftEdge:=ggcClockLeft+gcPatLeft;
      topEdge:=10;
      for n:=1 to 4 do
         begin
            MoveTo(leftEdge+(20*n),topEdge);
            Line(0,100);
         end;
      for n:=1 to 4 do
         begin
            MoveTo(leftEdge,(20*n)+topEdge);
            Line(100,0);   
         end;
   end;

Listing 7e.

SetRect
   procedure SetRect(var myRect:Rect;
                      leftEdge,topEdge,width,height:integer);
   begin
      myRect.top:=topEdge+myRect.top;
      myRect.bottom:=myRect.top+height+2;
      myRect.left:=leftEdge+myRect.left;
      myRect.right:=myRect.left+width;
   end;

Running the Program

There are four options that cannot be changed once a tour is underway, although three can be used at default values. The three that can be used at defaults are whether or not to save solutions (Save menu), move test pattern (Pat button), and the rotation of that pattern (Rot button). The fourth, mandatory option, is the tour number. The amount of additional housekeeping required depends on your choice of tour. Tours 1 and 2 require selection of the starting square by clicking on it. The other six tours have fixed starting squares as described previously. Once a sufficient number of selections have been made, the Run button becomes active. Clicking on it starts the search for solutions.

The default speed, button 2, is deliberately rather slow, with frequent board updates and every move displayed. As speeds are increased by clicking higher-numbered buttons, updates and event tests come less frequently.

If you want to see some solutions as rapidly as possible, select Tour 2, pattern 1, rotation 5, speed 8, starting square row 1, column 8.

For additional information, see the operating manual with the aps.

Source Code

Source code for a Macified implementation of Wirth's algorithm for the knight's tour is supplied for CodeWarrior Professional Pascal. Those readers familiar with Dave Mark's books may notice some resemblances between the sourcecode and some of that found in Dave's books - things like some of the names of constants and general structure of the event loop. I used the Timer project from the Macintosh Pascal Programming Primer, Vol. 1, by Dave Mark and Cartwright Reed, as a "skeleton". Most of the overlying code is mine, but underneath there's a bit of Mark and Reed code doing some of the housekeeping.

Bibliography and References

  • Gamow, George, One Two Three...Infinity, (New York: Dover Books, 1988).
  • Wirth, Niklaus, Algorithms + Data Structures = Programs, (Englewood Cliffs NJ: Prentice-Hall, 1976).
  • Wirth, Niklaus, Algorithms and Data Structures, (Englewood Cliffs NJ: Prentice-Hall, 1986).

F.C. Kuechmann is a hardware designer, programmer and consultant with degrees from the University of Illinois at Chicago and Clark College who is currently trying to find the time to do the soldering required to make the programmers' clock that he has designed so that he can read the time in hexadecimal. You can reach him at fk@aone.com.

 
AAPL
$100.96
Apple Inc.
-0.83
MSFT
$47.52
Microsoft Corpora
+0.84
GOOG
$596.08
Google Inc.
+6.81

MacTech Search:
Community Search:

Software Updates via MacUpdate

Audio Hijack Pro 2.11.3 - Record and enh...
Audio Hijack Pro drastically changes the way you use audio on your computer, giving you the freedom to listen to audio when you want and how you want. Record and enhance any audio with Audio Hijack... Read more
Airfoil 4.8.9 - Send audio from any app...
Airfoil allows you to send any audio to AirPort Express units, Apple TVs, and even other Macs and PCs, all in sync! It's your audio - everywhere. With Airfoil you can take audio from any... Read more
WhatRoute 1.13.0 - Geographically trace...
WhatRoute is designed to find the names of all the routers an IP packet passes through on its way from your Mac to a destination host. It also measures the round-trip time from your Mac to the... Read more
Chromium 37.0.2062.122 - Fast and stable...
Chromium is an open-source browser project that aims to build a safer, faster, and more stable way for all Internet users to experience the web. FreeSMUG-Free OpenSource Mac User Group build is... Read more
Attachment Tamer 3.1.14b9 - Take control...
Attachment Tamer gives you control over attachment handling in Apple Mail. It fixes the most annoying Apple Mail flaws, ensures compatibility with other email software, and allows you to set up how... Read more
Duplicate Annihilator 5.0 - Find and del...
Duplicate Annihilator takes on the time-consuming task of comparing the images in your iPhoto library using effective algorithms to make sure that no duplicate escapes. Duplicate Annihilator detects... Read more
jAlbum Pro 12.2 - Organize your digital...
jAlbum Pro has all the features you love in jAlbum, but comes with a commercial license. With jAlbum, you can create gorgeous custom photo galleries for the Web without writing a line of code!... Read more
jAlbum 12.2 - Create custom photo galler...
With jAlbum, you can create gorgeous custom photo galleries for the Web without writing a line of code! Beginner-friendly, with pro results Simply drag and drop photos into groups, choose a design... Read more
Quicken 2015 2.0.4 - Complete personal f...
Quicken 2015 helps you manage all your personal finances in one place, so you can see where you're spending and where you can save. Quicken automatically categorizes your financial transactions,... Read more
iMazing 1.0 - Complete iOS device manage...
iMazing (formerly DiskAid) is the ultimate iOS device manager with capabilities far beyond what iTunes offers. With iMazing and your iOS device (iPhone, iPad, or iPod), you can: Copy music to and... Read more

Latest Forum Discussions

See All

View Source – HTML, JavaScript and CSS...
View Source – HTML, JavaScript and CSS 1.0 Device: iOS Universal Category: Utilities Price: $.99, Version: 1.0 (iTunes) Description: View Source is an app plus an iOS 8 Safari extension that makes it easy to do one key web developer... | Read more »
Avenged Sevenfold’s Hail To The King: De...
Avenged Sevenfold’s Hail To The King: Deathbat is Coming to iOS on October 16th Posted by Jessica Fisher on September 19th, 2014 [ permalink ] Just in time for Halloween, on October 16 Avenged Sevenfold will be launching | Read more »
Talisman Has Gone Universal – Can Now be...
Talisman Has Gone Universal – Can Now be Played on the iPhone Posted by Jessica Fisher on September 19th, 2014 [ permalink ] | Read more »
Tap Army Review
Tap Army Review By Jennifer Allen on September 19th, 2014 Our Rating: :: SHOOT EM ALLUniversal App - Designed for iPhone and iPad Mindless but fun, Tap Army is a lane-based shooter that should help you relieve some stress.   | Read more »
Monsters! Volcanoes! Loot! Epic Island f...
Monsters! Volcanoes! Loot! | Read more »
Plunder Pirates: Tips, Tricks, Strategie...
Ahoy There, Seadogs: Interested in knowing our thoughts on all this plundering and pirating? Check out our Plunder Pirates Review! Have you just downloaded the rather enjoyable pirate-em-up Plunder Pirates and are in need of some assistance? Never... | Read more »
Goat Simulator Review
Goat Simulator Review By Lee Hamlet on September 19th, 2014 Our Rating: :: THE GRUFFEST OF BILLY GOATSUniversal App - Designed for iPhone and iPad Unleash chaos as a grumpy goat in this humorous but short-lived casual game.   | Read more »
A New and Improved Wunderlist is Here fo...
A New and Improved Wunderlist is Here for iOS 8 Posted by Jessica Fisher on September 19th, 2014 [ permalink ] Universal App - Designed for iPhone and iPad | Read more »
Evernote Update for iOS 8 Adds Web Clipp...
Evernote Update for iOS 8 Adds Web Clipping, Quick Notes, and More Posted by Ellis Spice on September 19th, 2014 [ permalink ] | Read more »
Apple Names Ultimate Productivity Bundl...
Apple Names Ultimate Productivity Bundle by Readdle as the Essential Bundle on the App Store Posted by Jessica Fisher on September 19th, 2014 [ permalink | Read more »

Price Scanner via MacPrices.net

iFixIt Tears Down iPhone 6; Awards Respectabl...
iFixit notes that even the smaller 4.7″ iPhone 6 is a giant among iPhones; so big that Apple couldn’t fit it into the familiar iPhone form factor. In a welcome reversal of a recent trend to more or... Read more
Phone 6 Guide – Tips Book For Both iPhone 6...
iOS Guides has announced its latest eBook: iPhone 6 Guide. Brought to you by the expert team at iOS Guides, and written by best-selling technology author Tom Rudderham, iPhone 6 Guide is packed with... Read more
How to Upgrade iPhone iPad to iOS 8 without D...
PhoneClean, a iPhone cleaner utility offered by iMobie Inc., reveals a solution for upgrading iPhone and iPad to iOS 8 without deleting photos, apps, the new U2 album or anything. Thanks to more than... Read more
Updated Price Trackers
We’ve updated our Mac Price Trackers with the latest information on prices, bundles, and availability on systems from Apple’s authorized internet/catalog resellers: - 15″ MacBook Pros - 13″ MacBook... Read more
Mac Pros available for up to $260 off MSRP
Adorama has Mac Pros on sale for up to $260 off MSRP. Shipping is free, and Adorama charges sales tax in NY & NJ only: - 4-core Mac Pro: $2839.99, $160 off MSRP - 6-core Mac Pro: $3739.99, $260... Read more
13-inch 2.6GHz/256GB Retina MacBook Pros avai...
B&H Photo has the 13″ 2.6GHz/256GB Retina MacBook Pro on sale for $1379 including free shipping plus NY sales tax only. Their price is $120 off MSRP. Read more
Previous-generation 15-inch 2.0GHz Retina Mac...
B&H Photo has leftover previous-generation 15″ 2.0GHz Retina MacBook Pros now available for $1599 including free shipping plus NY sales tax only. Their price is $400 off original MSRP. B&H... Read more
21″ 2.7GHz iMac available for $1179, save $12...
Adorama has 21″ 2.7GHz Hawell iMacs on sale for $1179.99 including free shipping. Their price is $120 off MSRP. NY and NJ sales tax only. Read more
iOS 8 Adoption Rate Slower than iOS 7, 6, Hit...
Apple began pushing out iOS 8 updates to eligible devices around 1pm ET on September 17, 2014. However, unlike with iOS 7, which boasted a wide variety of differences from its predecessor iOS 6, in... Read more
LIkely Final Definitive OS X 10.9.5 Mavericks...
Apple has released what will almost certainly be the last incremental version number update of OS X 10.9 Mavericks (save for futire security updates) before OS X 10.10 Yosemite is released next month... Read more

Jobs Board

Position Opening at *Apple* - Apple (United...
**Job Summary** The Apple Store is a retail environment like no other - uniquely focused on delivering amazing customer experiences. As an Expert, you introduce people Read more
Position Opening at *Apple* - Apple (United...
**Job Summary** As businesses discover the power of Apple computers and mobile devices, it's your job - as a Solutions Engineer - to show them how to introduce these Read more
Position Opening at *Apple* - Apple (United...
…Summary** As a Specialist, you help create the energy and excitement around Apple products, providing the right solutions and getting products into customers' hands. You Read more
*Apple* Retail - Multiple Positions (US) - A...
Sales Specialist - Retail Customer Service and Sales Transform Apple Store visitors into loyal Apple customers. When customers enter the store, you're also the Read more
Project Manager, *Apple* Financial Services...
**Job Summary** Apple Financial Services (AFS) offers consumers, businesses and educational institutions ways to finance Apple purchases. We work with national and Read more
All contents are Copyright 1984-2011 by Xplain Corporation. All rights reserved. Theme designed by Icreon.