The Knight's Tour

Volume Number: 14 (1998)
Issue Number: 11
Column Tag: Programming Puzzles

# The Knight's Tour

by F.C. Kuechmann

### A seemingly simple problem with thousands of solutions

There is a class of problems that, though seemingly simple in concept, involve numbers so large that the time or material required for solution renders them effectively impossible to solve manually within a human lifetime. The "grains of wheat on a chessboard" described by Gamow [1988] is one of the simpler and more easily explained examples of this sort of problem. We start with a single grain of wheat on the first square of the board, two grains on the second, four on the third, eight on the fourth, and so on. Each square receiving twice the number of grains as the previous square, until all 64 squares are occupied. Simple enough, right? Gamow suggests that it would take the entire world's wheat production for 2000 years to fill the board! In this article we're going to look at a similar challenge and show how to solve it with your Macintosh.

## The Problem

The "knight's tour" is another chessboard problem that involves deceptively large numbers (this one is simpler though - we don't need any wheat). In the game of chess the knight can move only in L-shaped patterns consisting of two squares one direction and a single square perpendicular to the direction of the first two. There are eight possible moves from any given starting square, shown in Figure 1. From the 16 squares at the middle of a chessboard all eight moves can be executed without leaving the board; Away from the center fewer moves are executable because the knight would end up off the board entirely. In general, a knight in row 1 or 8, or column 1 or 8, can execute only 4 moves. A knight in row 2 or 7, or column 2 or 7, can execute 6 moves. A knight on a corner square has only two executable moves.

Figure 1. The eight possible moves of a knight.

The object of the knight's tour is, from a given starting square, to visit each square on the board exactly once.

From many of the 64 possible starting squares no complete tours are possible, whereas others offer thousands. My experiments have shown that, if there is at least one complete tour from a given starting square, there is a large number of complete tours from that square.

Starting at square one, we test eight possible moves. Each time a move is executed, we must test another eight moves, then another eight, and another, until we have either visited all 64 squares or exhausted the possible moves. At square 63, eight moves must be considered. At square 62, 8^2 moves must be tested. More generally, at any given square n, the number of moves to be tested is 8^(64-n), with a significantly smaller number of executable moves. If the knight's tour were as straightforward as the grains of wheat problem, determining all possible solutions from any given starting square would be described by a geometric progression of 8+(8^2)+(8^3)..+(8^62)+(8^63) - or 8^64 tests. That is not a small number! In fact, we get eight new tests only when we actually execute a move, so the number of required tests is somewhat smaller.

A human with a chessboard, a knight, and a pad of paper to record moves, together with a well-conceived systematic method and fast hands, would require so much time to derive even a single solution that it is practically if not theoretically impossible using hand methods.

 1 38 59 36 43 48 57 52 60 35 2 49 58 51 44 47 39 32 37 42 3 46 53 56 34 61 40 27 50 55 4 45 31 10 33 62 41 26 23 54 18 63 28 11 24 21 14 5 9 30 19 16 7 12 25 22 64 17 8 29 20 15 6 13

Figure 2. One complete knight's tour.

Niklaus Wirth [1976,1986] describes a trial-and-error approach to the problem using recursion and backtracking, with soucecode in Pascal [1976] and Modula-2 [1986]. Unlike a human, a computer can find solutions quite easily, although it can still take a great deal of time. With Wirth's method and CodeWarrior Pascal, the solution shown in Figure 2 requires 66,005,601 possible moves to be considered, 8,250,732 moves to be executed, and occupies 35 seconds of time on a PPC Mac 6500/225. A total of 107 solutions for the same starting square were found in just under two hours with 16,114,749,106 total position tests and 2,014,343,776 moves; 12 hours got more than a thousand solutions without testing more than a fraction of the possible moves. At that rate finding all solutions for the entire board would take a very long time. Because of symmetries, however, we could simply divide the board into four 16-square quadrants, Figure 3, and find the solutions for any quadrant, then calculate the solutions for the remaining quadrants by mirroring.

# 4

Figure 3. The board as quadrants.

Solutions for quadrant 2 mirror those for quadrant 1 on the vertical axis. Quadrants 3 and 4 mirror quadrants 1 and 2 on the horizontal axis.

## The Program

The chess board occupies the leftmost 2/3 of the window, with a control panel on the right. Top left of the control panel are three times...

1. total time
2. time on current starting square
3. time since the most recent solution was found.

Tour 1 has only number 1; Tour 2 has numbers 1 and 3.

Top right is the current rotation pattern for testing possible moves; the patterns are toggled between 1 and 2 by clicking the Pat button, and the position is selected by clicking the Rot button. Below the time are statistics on move tests, moves, backtracks, and the maximum backtrack level.

Buttons for starting, pausing, pattern and rotation selection, update board status, tour selection [eight options], and speed 1-9 follow at bottom right.

The EvUp/SolUp button toggles update status. In the default EvUp mode the board is updated whenever the events are tested, and those intervals are determined by the speed setting; in SolUp mode the board is updated only if and when a complete tour is achieved. Since testing for events and updating the board require large amounts of time relative to calculating the knight's moves, higher execution speeds offer less frequent event testing and board updating.

## The Tours

The eight tour options are:

• Tour 1 - finds one solution from the starting square and terminates; starting square selected by clicking on it.
• Tour 2 - finds all solutions from starting square; starting square selected by clicking on it.
• Tour 3 - starts at row 1, column 1 and moves through the entire board; if a solution is found, the next square becomes the starting square.
• Tour 4 - starts at row 1, column 1 and moves through the entire board; finds all solutions for each square.

Several program options are selected by menu.

• The File menu offers Run and Quit options.
• The Delay menu allows selection of the pause after each complete tour. The minimum is no pause, the maximum 30 seconds, the default 1 second.
• The Time menu determines the maximum time spent touring from a given starting square. In the cases of tours 1 and 2, pursuit of solutions ceases at that point; with the other six tours execution continues at the next square. The minimum selection is 2 minutes; the maximum specific interval 4 weeks. The default in no time limit.
• The Save menu offers options of No save, Save as text, and Save as records. The default is No save.

## Drawing the Chess Board

The empty chess board is drawn and optionally initialized by calling the procedure in Listing 1. It calls the code in Listing 2 64 times, passing row, column and flag values. The flag determines whether the global array ggChessBd, which stores the current moves, is affected. If the flag is TRUE, the array location ggChessBd[row,column] is set to zero. The flag is TRUE during initialization, FALSE during all other updates.

#### Listing 1.

```ClearTheBoard
procedure ClearTheBoard(flag:boolean);
{clear the board by drawing blank squares at}
{all 64 positions}
var
row,column:integer;
begin
for column:=1 to ggN do
for row:=1 to ggN do
SnuffKnight(row,column,flag);
end;
```

The SnuffKnight procedure in Listing 2 erases the square at the location given by row and column by drawing a light or dark empty square.

#### Listing 2.

```SnuffKnight
procedure SnuffKnight (row,column:integer;flag:boolean);
{erases the move number at the specified row and column}
{position by drawing an empty square there}
var
vOffset,hOffset,height,width:integer;
pictureRect:Rect;
thePicture:PicHandle;
begin
SetPort(ggKnightWindow);
ggTourRect:=ggKnightWindow^.portRect;

if column mod 2=0 then
begin
{even # columns}
if row mod 2=0 then
thePicture:=GetPicture(ggcDK_ERASE_ID)
else
thePicture:=GetPicture(ggcLT_ERASE_ID);
end
else
begin
{odd # columns}
if row mod 2>0 then
thePicture:=GetPicture(ggcDK_ERASE_ID)
else
thePicture:=GetPicture(ggcLT_ERASE_ID);
end;

pictureRect:=thePicture^^.picFrame;
hOffset:=(column-1) * ggcSQUARE_SIZE;
vOffset:=(row-1) * ggcSQUARE_SIZE;
height:=pictureRect.bottom-pictureRect.top;
width:=pictureRect.right-pictureRect.left;
PlacePict(ggTourRect,vOffset,hOffset,height,width);
DrawPicture(thePicture,ggTourRect);
if flag then
ggChessBd[row,column]:=0;
end;
```

Listing 3 shows how the board is refreshed after an update event. If the value in location ggChessBd[row,column] is non-zero (i.e. it holds a move number for the knight), that number is drawn by calling the DrawKnight code in Listing 4; Otherwise Listing 2 is called with a flag value of FALSE.

#### Listing 3.

```UpDateBoard
procedure UpDateBoard;
var
row,column,index:integer;
begin
for row:=1 to ggN do
for column:=1 to ggN do
begin
index:=ggChessBd[row,column];
if index>0 then
DrawKnight(row,column,index)
else
SnuffKnight(row,column,FALSE);
end;
end;
```

#### Listing 4.

```DrawKnight
procedure DrawKnight(row,column,index:integer);
{draws a square with a knight move # at the specified row}
{and column}
var
vOffset,hOffset,height,width:integer;
S:Str255;
begin
SetPort(ggKnightWindow);
ggTourRect:=ggKnightWindow^.portRect;
hOffset:=(column-1) * ggcSQUARE_SIZE;
vOffset:=(row) * ggcSQUARE_SIZE;
NumToString(index,S);
if index<10 then
begin
{selectively erase squares with 1-9 when backtracking}
if (ggIndex<10) and (ggMaxBak<ggNsqr) then
SnuffKnight(row,column,FALSE);
MoveTo(hOffset+20,vOffset);
end
else
MoveTo(hOffset+14,vOffset);
TextSize(20);
ForeColor(blackColor);

if column mod 2=0 then
begin
if row mod 2=0 then
BackColor(redColor)
else
BackColor(whiteColor);
end
else
begin
if row mod 2>0 then
BackColor(redColor)
else
BackColor(whiteColor);
end;

TextMode(srcCopy);
DrawString(S);
BackColor(whiteColor);
end;
```

## The Core Procedure

Most of the work in Knight's Tour is accomplished in Listing 5a. Testing for events, tracking the time, updating the board and statistics is accomplished by calling Listing 5b. The variable index holds the move number, x and y the column and row numbers. Variable k counts the possible moves 1-8. The global arrays gDeltaX and gDeltaY hold the number of squares to be moved on the X and Y axes to get to the position to be tested. Those values are added to the current row and column values to get the position to be tested. If the new position is on the board (i.e. both row and column in the 1..8 range, Listing 5c) and that board location unoccupied (Listing 5d), the move is made (Listing 5e); then if we don't have a complete tour (Listing 5f) the code in Listing 5a calls itself to make the next move. If the tested move can't be executed, the next possible move is tested. When no more possibilities exist, we drop out of loop and backtrack.

#### Listing 5a.

```Try
procedure Try(index,x,y:integer;var q:boolean);
var
k,column,row,dX,dY:integer;
q1:boolean;
begin
k:=0;
ggIndex:=index;
q1:=FALSE;
repeat
Inc(gLoopCount);
if gLoopCount>=ggUpdateInterval then
Inc(gTests);
if gTests>=ggcTenTo7th then
begin
gTests:=0;
Inc(gTestOvr);
EraseTestCount;
UpdateTests(gTests,gTestOvr);
end;
Inc(k);
dX:=gDeltaX[k];
dY:=gDeltaY[k];
column:=x+dX;
row:=y+dY;
if SquareIsOnBoard(row,column) and
SquareNotOccupied(row,column) then
begin
MakeTheMove(row,column,index);
Inc(gMoves);
if gMoves>=ggcTenTo7th then
begin
gMoves:=0;
Inc(gMoveOvr);
EraseMoveCount;
UpdateMoves(gMoves,gMoveOvr);
end;

if not CompleteTour(index) then
begin
Try(index+1,column,row,q1);

if (not q1) and (not ggQuitFlag) then
begin
ggChessBd[row,column]:=0;
Inc(gBakTrax);
if gBakTrax>=ggcTenTo7th then
begin
gBakTrax:=0;
EraseBakTrax;
Inc(gBakOvr);
UpDateBakTrax(gBakTrax,gBakOvr);
end;

if index<gLowestSoFar then
begin
gLowestSoFar:=index;
ggMaxBak:=index;
UpdateLowestRecurse(gLowestSoFar);
end;
end;
end
else if ggTourNum in [1,3] then
begin
q1:=TRUE;
DoSolution(index,q1);
GetTime(gStime);
Inc(ggSolNum);
Inc(gSolNum);
DoTime;
end
else
begin
DoTime;
DoSolution(index,TRUE);
if ggTourNum>3 then
DrawElapsed(0,3);
ggChessBd[row,column]:=0;
GetTime(gStime);
Inc(ggSolNum);
Inc(gSolNum);
DoTime;
end;
end;
until (k>=ggcNumKnightMoves) or ggQuitFlag
or ggErrFlag or gTimeFlag or q1;
q:=q1;
end;
```

#### Listing 5b.

```DoUpdates
begin
gLoopCount:=0;
repeat
if ggUpdateFlag or ggRedrawFlag then
begin
UpDateBoard;
Stall(ggStallVal);
ggRedrawFlag:=FALSE;
end;
HandleEvent;
DoTime;
until (not ggPauseFlag) or gTimeFlag;
end;
```

#### Listing 5c.

```SquareIsOnBoard
function SquareIsOnBoard(row,column:integer):boolean;
begin
If (column in [1..ggN]) and (row in [1..ggN]) then
SquareIsOnBoard:=TRUE
else
SquareIsOnBoard:=FALSE;
end;
```

#### Listing 5d.

```SquareNotOccupied
function SquareNotOccupied(row,column:integer):boolean;
begin
if ggChessBd[row,column]=0 then
SquareNotOccupied:=TRUE
else
SquareNotOccupied:=FALSE;
end;
```

#### Listing 5e.

```MakeTheMove
procedure MakeTheMove(row,column,index:integer);
begin
ggChessBd[row,column]:=index;
end;
```

#### Listing 5f.

```CompleteTour
function CompleteTour(index:integer):boolean;
begin
if index<ggNsqr then
CompleteTour:=FALSE
else
CompleteTour:=TRUE;
end;
```

## Initializing the Offsets

The values in arrays gDeltaX and gDeltaY are initialized to -2,-1,1 or 2 by passing them to the procedure in Listing 6. Two conditions must be accomodated in the initialization: the move pattern 1-2 held in the variable ggPattern, and the rotation 1-8 of that pattern held in ggRot. The move values are held in two, two-by-eight integer constant arrays, cDeltaX and cDeltaY. Using ggPattern and ggRot as indices, the values are transfered from the constant arrays to the proper locations in deltaX and deltaY.

#### Listing 6.

```InitDelta
{x value increases left-to-right}
{y value increases top-to-bottom}
procedure InitDelta(var deltaX,deltaY:ggDeltaType);
type
knightMoves=array[1..2,1..8] of integer;
const
cDeltaX:knightMoves=((-2,-1,1,2,2,1,-1,-2),
(2,1,-1,-2,-2,-1,1,2));
cDeltaY:knightMoves=((-1,-2,-2,-1,1,2,2,1),
(-1,-2,-2,-1,1,2,2,1));
var
n,m,p:integer;
begin
n:=ggRot;
m:=ggPattern;
for p:=1 to 8 do
begin
deltaX[p]:=cDeltaX[m,n];
deltaY[p]:=cDeltaY[m,n];
Inc(n);
if n>8 then
n:=1;
end;
end;
```

## Displaying the Test Pattern

Displaying the testing order for possible moves in the upper right corner of the window and changing that display as the Pat and Rot buttons are clicked is handled by the code in Listing 7. Pattern 1 tests begin at 10 o'clock and rotate clockwise. Pattern 2 tests begin at 2 o'clock and rotate counter-clockwise. Listing 7a copies the test position numbers from integer constant array cPat1 or cPat2 into the display position array gRotPos. Display positions are numbered 1-8 starting at ten o'clock and moving clockwise. The value of rotation variable ggRot is used to index into the appropriate constant array, determined by the value of ggPattern. Listing 7b is then called.

#### Listing 7a.

```DrawPattern
procedure DrawPattern;
type
patArray=array[1..15] of integer;
const
cPat1:patArray=(2,3,4,5,6,7,8,1,2,3,4,5,6,7,8);
cPat2:patArray=(4,3,2,1,8,7,6,5,4,3,2,1,8,7,6);
var
n,p:integer;
begin
p:=ggRot-1;
case ggPattern of
1:
begin
for n:=1 to 8 do
gRotPos[n]:=cPat1[n+(7-p)];
end;
2:
begin
for n:=1 to 8 do
gRotPos[n]:=cPat2[n+p];
end;
end; {case}
DrawPat;
end;
```

Listing 7b sets the text size and colors, then calls Listing 7c to clear the display rectangle. Next it calls Listing 7d to draw the grid of white lines. Finally, using the values stored in array gRotPos, it draws the test order numbers on the grid.

#### Listing 7b.

```DrawPat

procedure DrawPat;
var
leftEdge,topEdge,squareSize,x,y,z,n:integer;
S:Str255;
const
cXoff:integer=6;
cYoff:integer=15;
begin
TextSize(gcPatSize);
ForeColor(whiteColor);
BackColor(blackColor);
ClearRotRect;
DrawMatrix;
BackColor(whiteColor);
leftEdge:=ggcClockLeft+gcPatLeft;
topEdge:=10;
TextMode(srcOr);
squareSize:=20;
S:='K';
x:=(2*squareSize)+cXoff;
y:=(2*squareSize)+cYoff;
MoveTo(leftEdge+x,topEdge+y);
DrawString(S);

for n:=1 to 8 do
begin
z:=gRotPos[n];
NumToString(z,S);
case n of
1:
begin
{position 1}
x:=cXoff;
y:=(squareSize)+cYoff;
MoveTo(leftEdge+x,topEdge+y);
DrawString(S);
end;
2:
begin
{pos 2}
x:=(squareSize)+cXoff;
y:=cYoff;
MoveTo(leftEdge+x,topEdge+y);
DrawString(S);
end;
3:
begin
{pos 3}
x:=(3*squareSize)+cXoff;
y:=cYoff;
MoveTo(leftEdge+x,topEdge+y);
DrawString(S);
end;
4:
begin
{pos 4}
x:=(4*squareSize)+cXoff;
y:=(squareSize)+cYoff;
MoveTo(leftEdge+x,topEdge+y);
DrawString(S);
end;
5:
begin
{pos 5}
x:=(4*squareSize)+cXoff;
y:=(3*squareSize)+cYoff;
MoveTo(leftEdge+x,topEdge+y);
DrawString(S);
end;
6:
begin
{pos 6}
x:=(3*squareSize)+cXoff;
y:=(4*squareSize)+cYoff;
MoveTo(leftEdge+x,topEdge+y);
DrawString(S);
end;
7:
begin
{pos 7}
x:=(squareSize)+cXoff;
y:=(4*squareSize)+cYoff;
MoveTo(leftEdge+x,topEdge+y);
DrawString(S);
end;
8:
begin
{pos 8}
x:=cXoff;
y:=(3*squareSize)+cYoff;
MoveTo(leftEdge+x,topEdge+y);
DrawString(S);
end;
end;
end;
ForeColor(blackColor);
TextMode(srcCopy);
end;
```

Listing 7c calls Listing 7e to set the boundaries of the display rectangle and clears it to black, then adds the pattern and rotation numbers at the bottom.

#### Listing 7c.

```ClearRotRect
procedure ClearRotRect;
var
width,height,leftEdge,topEdge:integer;
myRect:Rect;
S:Str255;
begin
SetPort(ggKnightWindow);
myRect:=ggKnightWindow^.portRect;
leftEdge:=ggcClockLeft+gcPatLeft;
topEdge:=10;
width:=100;
height:=100;
SetRect(myRect,leftEdge,topEdge,width,height);
EraseRect(myRect);
NumToString(ggPattern,S);
S:=concat('Pattern #',S);
MoveTo(leftEdge+10,topEdge+height+gcPatSize+5);
DrawString(S);
NumToString(ggRot,S);
S:=concat('Rotation ',S);
MoveTo(leftEdge+10,topEdge+height+(gcPatSize*2)+10);
DrawString(S);
end;
```

#### Listing 7d.

```DrawMatrix
procedure DrawMatrix;
var
leftEdge,topEdge,n:integer;
begin
leftEdge:=ggcClockLeft+gcPatLeft;
topEdge:=10;
for n:=1 to 4 do
begin
MoveTo(leftEdge+(20*n),topEdge);
Line(0,100);
end;
for n:=1 to 4 do
begin
MoveTo(leftEdge,(20*n)+topEdge);
Line(100,0);
end;
end;
```

#### Listing 7e.

```SetRect
procedure SetRect(var myRect:Rect;
leftEdge,topEdge,width,height:integer);
begin
myRect.top:=topEdge+myRect.top;
myRect.bottom:=myRect.top+height+2;
myRect.left:=leftEdge+myRect.left;
myRect.right:=myRect.left+width;
end;
```

## Running the Program

There are four options that cannot be changed once a tour is underway, although three can be used at default values. The three that can be used at defaults are whether or not to save solutions (Save menu), move test pattern (Pat button), and the rotation of that pattern (Rot button). The fourth, mandatory option, is the tour number. The amount of additional housekeeping required depends on your choice of tour. Tours 1 and 2 require selection of the starting square by clicking on it. The other six tours have fixed starting squares as described previously. Once a sufficient number of selections have been made, the Run button becomes active. Clicking on it starts the search for solutions.

The default speed, button 2, is deliberately rather slow, with frequent board updates and every move displayed. As speeds are increased by clicking higher-numbered buttons, updates and event tests come less frequently.

If you want to see some solutions as rapidly as possible, select Tour 2, pattern 1, rotation 5, speed 8, starting square row 1, column 8.

For additional information, see the operating manual with the aps.

## Source Code

Source code for a Macified implementation of Wirth's algorithm for the knight's tour is supplied for CodeWarrior Professional Pascal. Those readers familiar with Dave Mark's books may notice some resemblances between the sourcecode and some of that found in Dave's books - things like some of the names of constants and general structure of the event loop. I used the Timer project from the Macintosh Pascal Programming Primer, Vol. 1, by Dave Mark and Cartwright Reed, as a "skeleton". Most of the overlying code is mine, but underneath there's a bit of Mark and Reed code doing some of the housekeeping.

## Bibliography and References

• Gamow, George, One Two Three...Infinity, (New York: Dover Books, 1988).
• Wirth, Niklaus, Algorithms + Data Structures = Programs, (Englewood Cliffs NJ: Prentice-Hall, 1976).
• Wirth, Niklaus, Algorithms and Data Structures, (Englewood Cliffs NJ: Prentice-Hall, 1986).

F.C. Kuechmann is a hardware designer, programmer and consultant with degrees from the University of Illinois at Chicago and Clark College who is currently trying to find the time to do the soldering required to make the programmers' clock that he has designed so that he can read the time in hexadecimal. You can reach him at fk@aone.com.

Community Search:
MacTech Search:

Microsoft Office 2016 16.11 - Popular pr...
Microsoft Office 2016 - Unmistakably Office, designed for Mac. The new versions of Word, Excel, PowerPoint, Outlook, and OneNote provide the best of both worlds for Mac users - the familiar Office... Read more
Adobe Photoshop CC 2018 19.1.2 - Profess...
Photoshop CC 2018 is available as part of Adobe Creative Cloud for as little as \$19.99/month (or \$9.99/month if you're a previous Photoshop customer). Adobe Photoshop CC 2018, the industry standard... Read more
Adobe Dreamweaver CC 2018 18.1.0.10155 -...
Dreamweaver CC 2018 is available as part of Adobe Creative Cloud for as little as \$19.99/month (or \$9.99/month if you're a previous Dreamweaver customer). Adobe Dreamweaver CC 2018 allows you to... Read more
Adobe Flash Player 29.0.0.113 - Plug-in...
Adobe Flash Player is a cross-platform, browser-based application runtime that provides uncompromised viewing of expressive applications, content, and videos across browsers and operating systems.... Read more
Drive Genius 5.2.0 - \$79.00
Drive Genius features a comprehensive Malware Scan. Automate your malware protection. Protect your investment from any threat. The Malware Scan is part of the automated DrivePulse utility. DrivePulse... Read more
MegaSeg 6.0.6 - Professional DJ and radi...
MegaSeg is a complete solution for pro audio/video DJ mixing, radio automation, and music scheduling with rock-solid performance and an easy-to-use design. Mix with visual waveforms and Magic... Read more
ffWorks 1.0.7 - Convert multimedia files...
ffWorks (was iFFmpeg), focused on simplicity, brings a fresh approach to the use of FFmpeg, allowing you to create ultra-high-quality movies without the need to write a single line of code on the... Read more
Dash 4.1.5 - Instant search and offline...
Dash is an API documentation browser and code snippet manager. Dash helps you store snippets of code, as well as instantly search and browse documentation for almost any API you might use (for a full... Read more
Evernote 7.0.3 - Create searchable notes...
Evernote allows you to easily capture information in any environment using whatever device or platform you find most convenient, and makes this information accessible and searchable at anytime, from... Read more
jAlbum Pro 15.3 - Organize your digital...
jAlbum Pro has all the features you love in jAlbum, but comes with a commercial license. You can create gorgeous custom photo galleries for the Web without writing a line of code! Beginner-friendly... Read more

## Latest Forum Discussions

Around the Empire: What have you missed...
Oh hi nice reader, and thanks for popping in to check out our weekly round-up of all the stuff that you might have missed across the Steel Media network. Yeah, that's right, it's a big ol' network. Obviously 148Apps is the best, but there are some... | Read more »
All the best games on sale for iPhone an...
It might not have been the greatest week for new releases on the App Store, but don't let that get you down, because there are some truly incredible games on sale for iPhone and iPad right now. Seriously, you could buy anything on this list and I... | Read more »
Everything You Need to Know About The Fo...
In just over a week, Epic Games has made a flurry of announcements. First, they revealed that Fortnite—their ultra-popular PUBG competitor—is coming to mobile. This was followed by brief sign-up period for interested beta testers before sending out... | Read more »
The best games that came out for iPhone...
It's not been the best week for games on the App Store. There are a few decent ones here and there, but nothing that's really going to make you throw down what you're doing and run to the nearest WiFi hotspot in order to download it. That's not to... | Read more »
Death Coming (Games)
Death Coming 1.1.1.536 Device: iOS Universal Category: Games Price: \$1.99, Version: 1.1.1.536 (iTunes) Description: --- Background Story ---You Died. Pure and simple, but death was not the end. You have become an agent of Death: a... | Read more »
Hints, tips, and tricks for Empires and...
Empires and Puzzles is a slick match-stuff RPG that mixes in a bunch of city-building aspects to keep things fresh. And it's currently the Game of the Day over on the App Store. So, if you're picking it up for the first time today, we thought it'd... | Read more »
What You Need to Know About Sam Barlow’s...
Sam Barlow’s follow up to Her Story is #WarGames, an interactive video series that reimagines the 1983 film WarGames in a more present day context. It’s not exactly a game, but it’s definitely still interesting. Here are the top things you should... | Read more »
Pixel Plex Guide - How to Build Better T...
Pixel Plex is the latest city builder that has come to the App Store, and it takes a pretty different tact than the ones that came before it. Instead of being in charge of your own city by yourself, you have to work together with other players to... | Read more »
Fortnite Will Be Better Than PUBG on Mob...
Before last week, if you asked me which game I prefer between Fortnite Battle Royale and PlayerUnknown’s Battlegrounds (PUBG), I’d choose the latter just about 100% of the time. Now that we know that both games are primed to hit our mobile screens... | Read more »
Siege of Dragonspear (Games)
Siege of Dragonspear 2.5.12 Device: iOS Universal Category: Games Price: \$9.99, Version: 2.5.12 (iTunes) Description: Experience the Siege of Dragonspear, an epic Baldur’s Gate tale, filled with with intrigue, magic, and monsters.... | Read more »

## Price Scanner via MacPrices.net

Sunday Sales: \$200 off 13″ Touch Bar MacBook...
Amazon has new 2017 13″ 3.1GHz Touch Bar MacBook Pros on sale this weekend for \$200 off MSRP, each including free shipping: – 13″ 3.1GHz/256GB Space Gray MacBook Pro (MPXV2LL/A): \$1599.99 \$200 off... Read more
B&H drops prices on 15″ MacBook Pros up t...
B&H Photo has dropped prices on new 2017 15″ MacBook Pros, now up to \$300 off MSRP and matching Adorama’s price drop yesterday. Shipping is free, and B&H charges sales tax for NY & NJ... Read more
Apple restocks Certified Refurbished 2017 13″...
Apple has restocked Certified Refurbished 2017 13″ 2.3GHz MacBook Pros for \$200-\$230 off MSRP. A standard Apple one-year warranty is included with each MacBook, models receive new outer cases, and... Read more
13″ Space Gray Touch Bar MacBook Pros on sale...
Adorama has new 2017 13″ Space Gray Touch Bar MacBook Pros on sale for \$150 off MSRP. Shipping is free, and Adorama charges sales tax in NY & NJ only: – 13″ 3.1GHz/256GB Space Gray MacBook Pro (... Read more
Best deal of the year on 15″ Apple MacBook Pr...
Adorama has New 2017 15″ MacBook Pros on sale for up to \$300 off MSRP. Shipping is free, and Adorama charges sales tax in NJ and NY only: – 15″ 2.8GHz Touch Bar MacBook Pro Space Gray (MPTR2LL/A): \$... Read more
Save \$100-\$150+ on 13″ Touch Bar MacBook Pros...
B&H Photo has 13″ Touch Bar MacBook Pros on sale for \$100-\$150 off MSRP. Shipping is free, and B&H charges sales tax for NY & NJ residents only: – 13″ 3.1GHz/256GB Space Gray MacBook Pro... Read more
Current deals on 27″ Apple iMacs, models up t...
B&H Photo has 27″ iMacs on sale for up to \$150 off MSRP. Shipping is free, and B&H charges sales tax for NY & NJ residents only: – 27″ 3.8GHz iMac (MNED2LL/A): \$2149 \$150 off MSRP – 27″ 3... Read more
Thursday Deal: 13″ 2.3GHz MacBook Pro for \$11...
B&H Photo has the 13″ 2.3GHz/128GB Space Gray MacBook Pro on sale for \$100 off MSRP. Shipping is free, and B&H charges sales tax for NY & NJ residents only: – 13-inch 2.3GHz/128GB Space... Read more
How to save \$100-\$190 on 10″ & 12″ iPad P...
Apple is now offering Certified Refurbished 2017 10″ and 12″ iPad Pros for \$100-\$190 off MSRP, depending on the model. An Apple one-year warranty is included with each model, and shipping is free: –... Read more
Silver 12″ 1.3GHz MacBook on sale at B&H...
B&H Photo has the 2017 12″ 1.3GHz Silver MacBook on sale for \$1399.99 including free shipping plus sales tax for NY & NJ residents only. Their price is \$200 off MSRP, and it’s the lowest... Read more

## Jobs Board

Firmware Engineer - *Apple* Accessories - A...
# Firmware Engineer - Apple Accessories Job Number: 113452350 Santa Clara Valley, California, United States Posted: 28-Feb-2018 Weekly Hours: 40.00 **Job Summary** Read more
Automation and Performance Engineer, *Apple*...
# Automation and Performance Engineer, Apple Pay Job Number: 113557967 Santa Clara Valley, California, United States Posted: 09-Mar-2018 Weekly Hours: 40.00 **Job Read more
Hardware Systems Architect - *Apple* Watch...
# Hardware Systems Architect - Apple Watch Job Number: 113565323 Santa Clara Valley, California, United States Posted: 05-Mar-2018 Weekly Hours: 40.00 **Job Read more
Lead *Apple* Solution Consultant - Apple (U...
# Lead Apple Solution Consultant Chicago IL Job Number: 113560644 Chicago, Illinois, United States Posted: 10-Mar-2018 Weekly Hours: 40.00 **Job Summary** As a Lead Read more
Art Director, *Apple* Music + Beats1 Market...
# Art Director, Apple Music + Beats1 Marketing Design Job Number: 113258081 Culver City, California, United States Posted: 07-Mar-2018 Weekly Hours: 40.00 **Job Read more